CSCE 2211 Applied Data Structures Prof. Amr Goneid
Spring 2024

CSCE 2211 Spring 2024 Applied Data Structures

Assignment #1
Dr. Amr Goneid Date: Thu Feb 8, Due: Thu Feb 15, 2024

Implement the following programs using the Stack ADT:

Problem 1: The Towers of Hanoi (50 points)

In the Towers of Hanoi game, there are 3 pegs (A
, B, C) and N disks with varying sizes that can be
stacked on a peg. The objective is to move all the
disks from peg (A) to peg (C), probably by using
the auxiliary peg (B). At any moment, no larger
disk can be placed on top of a smaller one. For
example:
e To move one disk from A to C:
Move diskl from Ato C
e To move two disks (top is 1, bottom is 2):
Move 1 from A to B
Move 2 from Ato C
Move 1 fromBto C
e To move N disks from A to C and we already know how to move N-1 disks from any
one peg to another:
1. Move the top N-1 disks by a series of legal moves from A to B using C. That
leaves the largest disk (Disk N) in peg A.
2. Move Disk N from A to C directly
3. Move the N-1 disks on peg B by a series of legal moves from B to C using A

Algorithm
This is a recursive problem that can be solved by the following recursive algorithm:

Towers (N, Source , Target , Aux)
{
if (N == 1) move disk 1 from Source to Target directly
else
{
Call Towers to move N-1 disks from Source to Aux via Target
Move disk N from Source to Target directly
Call Towers to move N-1 disks from Aux to Target via Source
}
}

An animation of the game is available at:

http://mathworld.wolfram.com/TowerofHanoi.html

Since any single disk move is always from or to the top of the peg, it is natural to represent the
pegs with their disk contents as stacks of disks.



http://mathworld.wolfram.com/TowerofHanoi.html

CSCE 2211 Applied Data Structures Prof. Amr Goneid
Spring 2024

Required Implementations:

1. Implement an array-based stack template class Stackt.

2. Develop a program using the algorithm given above to simulate the Towers of Hanoi
game. Number the disks 1,2,3,...,N in ascending order of their size. Using the Stackt
class, assign a stack to each peg to represent its disk content at any moment. Display
the stacks to see each move until all disks have been moved from peg A to peg C. For
a given N, display the number of moves needed.

Problem 2: A Simple Calculator Program (50 points)

Create a program that will read an infix expression from the user, convert the infix expression
into an equivalent postfix expression, then evaluate the postfix expression. To make the
problem simpler, use the following specifications:
e Operands are single digit integers only
e Infix expressions should support parentheses ‘(‘ and ‘)’ and only the arithmetic binary
operators of +, -, * ,/
e Infix expressions should follow the usual C++ precedence rules
e Use a stack of characters for the conversion from the infix string to the postfix string,
and a stack of double for the evaluation of the postfix expression
Your output should show:
1. The input infix string,
2. The converted postfix string,
3. The result of calculation.

For example:
Type your infix expression:
(5+3)*(6-4)/((4-2)%(3+1))

Converted Postfix string is: 53+64-*42-31+*/
Result is 2.0

Bonus (3 points) if your program can handle multiple digit integers, e.g., 23+30*4/15




