
CSCE 2211 Applied Data Structures Prof. Amr Goneid

Spring 2024

1

CSCE 2211 Spring 2024 Applied Data Structures

Assignment #2
Dr. Amr Goneid Date: Thu Feb 15, Due: Mon Feb 26, 2024

Part 1: The DEQ ADT (50 points)

We recall that the Stack and Queue ADT’s are sequential containers. For the Stack, both

adding and removing an element occur at the same end (Top), while for the Queue, adding an

element occurs at one end (Rear) and removal occurs at the other end (Front). As an ADT, the

Double-Ended Queue (DEQ) is also a sequential container that may function like a Queue or a

Stack at both ends. Therefore, it can be used either as a Stack or as a Queue.

The DEQ ADT can be implemented using a Simple Linked List (SLL) with the following

member functions:

• Costructor: Construct an empty DEQ

• Destructor: Destroy DEQ

• DEQisEmpty: Test if DEQ is empty

• Add_Front: Add an element at the front

• Add_Rear: Add an element at the rear

• Remove_Front: Remove the element at the front

• Remove_Rear: Remove the element at the rear

• View_Front: Retrieve the front element without removal

• View_Rear: Retrieve the rear element without removal

• DEQ_Length: Number of elements in the DEQ

Required Implementation:

Design and implement a template class DEQ using a SLL with a minimum of the above

member functions.

Add Add

Remove Remove

CSCE 2211 Applied Data Structures Prof. Amr Goneid

Spring 2024

2

Part 2: Simulation of a Waiting Queue of Planes in an Airport (50 points)

An airport has one landing runway.

When planes arrive near the airport,

they will have to join one queue. A

plane arriving near the airport at a

random time Tarrival, will be

instructed to join the queue and it

might have to wait (remain airborne)

in that landing queue a time Twait until

the runway becomes free and ready to

receive it.

Once a plane lands on the beginning

of the runway, that runway becomes

occupied for a fixed time Ts until the plane docks (This is the service time).

Use the DEQ template class you implemented in Part 1 above to develop a program to simulate

the airport queue operations with the objective of computing the average wait time in the

landing queue.

Assume the following:

• The time t (clock) unit is one minute.

• A fixed simulation period Tmax

• A fixed time Ts to complete landing (this is the service time).

• A random arrival time Tarrival with a fixed average inter-arrival time T

• No plane will leave the queue until it lands.

You might start your simulation using a “standard run” with:

 Tmax = 6 hours, Ts = 10 minutes, T = 6 minutes

After that, you might investigate the effect of varying arrival rates to simulate prime and slack

times of the day, or if the amount of time to complete landing is changed.

Allow your program to produce a “log” of the events of arrival and landing in each run (see

methodology of simulating a waiting queue in the file CSCE 2211 Queue Simulation).

https://www1.aucegypt.edu/faculty/cse/goneid/csce2211/CSCE%202211%20Queue%20Simulation.pdf

CSCE 2211 Applied Data Structures Prof. Amr Goneid

Spring 2024

3

Note on using the C++ Random Number Generator (RNG):

Many C++ programs use random numbers generated by a Random Number Generator (RNG).

The RNG in C++ is a function rand() that returns a random integer from 0 to 32,767 with

equal probability.

To obtain random floating point numbers 0 ≤ R < 1.0 with equal probability, use

 float R = rand() / float(32767);

To obtain random integers from 1 through n, use

int r = rand() % n + 1.

Generally, you may implement a function RandInt (i, j) that generates an integer between i and

j with equal probability. This is implemented simply as follows:

int RandInt (int i , int j)

{

 return rand() % (j-i+1) + i ;

}

To obtain a random sequence you need to first initialise the RNG using the time of the machine

as a seed. This is done so that we do not get the same sequence every time we run the program.

The following is an example of how to generate a random sequence of pairs of integers with

values between 1 and n:

#include <time.h>

int x , y, n ;

…………….

srand ((unsigned) time (NULL)); //Initialize RNG

repeat as needed // Loop over the sequence

{

 x = RandInt (1 , n); // Generate 1st number

 y = RandInt (1 , n); // Generate 2nd number

 ……………….. // Do something with x and y

}

One Method to build your own RNG

You may use a random congruence method to code your own RNG. Here is one algorithm to

generate a random sequence of Large Integers:

With x0 = some large int value representing the seed, then a random large integer sequence is

obtained as:

 xi+1 = (α xi + β) % m

α = 25173 β = 13849 m = 65536

The values of x will be between 0 and 65535. You may divide it by m to obtain a random

sequence of 0 ≤ R < 1.0 with equal probability.

