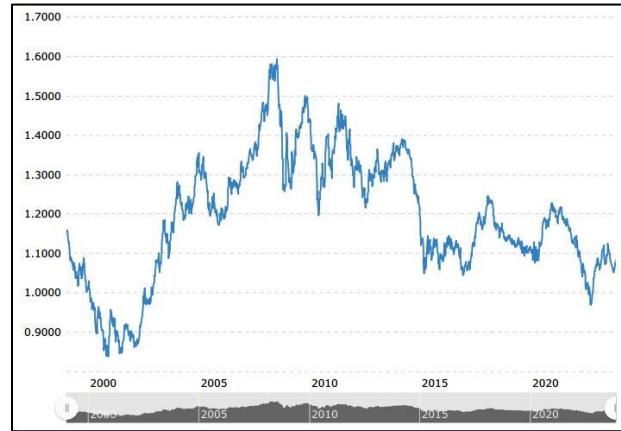

CSCE 2211 Spring 2024 Applied Data Structures
Assignment #5**Dr. Amr Goneid***Date: Mon April 15, Due: Thu April 25, 2024*

Analysis of Financial Time Series: EURO/USD Exchange Price

You are given the daily EURO/USD exchange rates over the period from January 4, 1999, to November 16, 2023 (at www.macrotrends.net). A follow-up link is:


<https://www.macrotrends.net/2548/euro-dollar-exchange-rate-historical-chart>)

The historical data are provided in the file “[euro-dollar.xlsx](#)”. The size of this dataset is $n = 6668$ data points.

An exchange rate point may be represented as $x(i)$, $i = 1 \dots n$. The average exchange rate over the given period is:

$$M = \frac{1}{n} \sum_{i=1}^n x(i)$$

A change $C(i) = x(i) - M$ is positive when the rate rises over M , and it is negative when it drops below that average. A graphical chart of the exchange rate time series is given in the figure.

Problem (1):

From the given data set, **we need to find the dates** of each of the N most positive changes (e.g., $N = 10$) as they represent the N highest exchange rates over the whole data set. Likewise, **we need to find the dates** of each of the N most negative changes (e.g., $N = 10$) as they represent the N lowest exchange rates over the whole data set.

This problem can be solved using ***Binary Heaps*** where a node represents the amount of change $C(i)$ of the exchange rate from the mean M at a given day. In this case, each item is composed of 2 elements: the date and the exchange rate change $C(i)$ from the average. Priority here is for the exchange rate change.

Problem (2):

We also need to find the start date and the end date of the **contiguous** period over which the **sum of rate changes** is maximum.

This problem is called the ***Maximum Subsequence Sum Problem***. The problem statement is as follows:

Given a sequence of numbers (possibly negative), $C(1), C(2), \dots, C(n)$, find the values of the indices (i, j) that maximizes the value of the sum:

$$S = \sum_{k=i}^j C(k) \quad (\text{This is zero if all values are negative}).$$

Example: Suppose the changes in exchange rate are given by the sequence $[C(1), C(2) \dots C(5)] = (-0.2, 1.1, -0.4, 1.3, -0.5, -0.2)$. Then, $S_{max} = C(2) + C(3) + C(4) = 2.0$ and $(i = 2 \text{ and } j = 4)$.

An efficient algorithm for the **Maximum Subsequence Sum Problem** is given in the course slides: <http://www1.aucegypt.edu/faculty/cse/goneid/csce2211/CSCE 2211 Part 3b Complexity.pptx>

Required Implementations:

1. Implement the ***Build_Max_Heap*** and ***Build_Min_Heap*** functions using the Heapify algorithm. **DO NOT USE ANY SORTING OPERATION**
2. Implement the **Maximum Subsequence Sum Algorithm**.
3. Implement and execute a program to find the ***N highest and N lowest exchange rate days*** over the whole data set (e.g. $N = 10$). Your Program should also find the ***start and end days*** of the **contiguous** period over which the **sum of rate changes** is maximum.
4. **Provide an analysis** of the algorithms used and the total complexity of your implementation as a function of the size of the data given.

Deliverables

1. C++ codes for all functions and the program used.
2. A text file containing the results obtained from the program runs. The file should also provide the analysis required.
