CSCE 2211 Applied Data Structures Prof. Amr Goneid
Spring 2024

CSCE 2211 Exercises
Exercises (2): Algorithm Analysis

Find positive constants ¢ and ng to prove that
T(n) = (n+1)* = O(n’)
i.e. what are ¢ and no such that
(n+1)’> < cn’ forn>no
Solution
Taking ¢ = 2, we find no such that (n+1)> < 2n°. Hence, n’ + 2n + 1 < 2n’ is equivalent to 2n
+ 1 < n? which is satisfied when n > ng = 2

Find the Big-O for the following number of operations:
1.T(n)=n’+100n logn+500 = O(n’)
2.T(n)=4"+n>=0(4")
3.T(n)=0.01nlogn+8logn=0(nlogn)
4.T(n)=1+3+9+27+...+3"" =(3"=1)/2=0(3")

The running times of certain algorithms are found to be as follows:
T(m) =10 (best case)

T(n) = 6 log n’ (worst case)

Tm) =5n° (always)

What are the corresponding complexities of these algorithms?

The running times of certain algorithms are found to have the following bounds:
Tn) <5 forn>2
T(n)>2n forn>1
T(n) =6logn forn>2

What are the corresponding complexities of these algorithms?
Solution

T(m) =0(1) T(n) =2Mn) T(n) = O (logn)

Consider a randomly ordered array a/0..n-1] of size (n) elements and the following algorithm:

ALGORITHM FUN (a/0..n-1])

X=ao;

fori=1ton-1do
if(ai<x)x=ai;

return x;

What does this algorithm do?
Find T(n) = number of comparisons done by the algorithm in the best and worst cases.
Is this algorithm tightly bound (exact) or loosely bound.

CSCE 2211 Applied Data Structures Prof. Amr Goneid
Spring 2024

The natural logarithm of (1+x), i.e. In (1+x) for (-1 < x < 1) can be evaluated by the
approximation:
px)=In(1+x)=x-x2/2+x3/3-x*/4+....... +x" /n
Consider the variable x to be of type float. The value of x! is computed by a function pow(x,i)
using (i -1) float multiplications. The algorithm is:
floatp=0; floats=-1.0;
for (inti=1;i<=n;it+) {s=-s; p=p+pow(x,i)/i*s;}
(a) What is the number of float arithmetic operations for a single iteration (i) of the loop?
(b) What is the total number of such operations T(n) done by the algorithm, and what is its
complexity (Big-O)?
(c) A faster algorithm is:
floatp=0; floats=-1.0;
for (inti=1;i<=n;it+) {s=-s *x; p=p+ts/i;}

Why is this algorithm faster than the direct one? (explain by comparing the two Big-
O’s).
{The sum of integers from 1 to n is equal to n(n+1)/2}

Answer:
(a) Number of float arithmetic operations for a single iteration (i) of the loop is 4 + (i
-1)=1i+3
(b) Tm)=1+sum fromi=1tonof (i+3)=1+n(n+1)/2+3n=0 (n?)
(¢) The number of float arithmetic operations inside loop is (4) , and the loop is done
(n) times so that T(m)=1+4 n=0 (n).
The second algorithm is faster because O (n) < O (n?).

The multiplication of two square matrices Anxn and Bnxn produces a matrix Cnxn = A *B whose
elements are given by:

n—1
Cy= L AuBy irj=0.n=1

Write the algorithm to receive 4, B, and return C using the above definition. Find the number
of arithmetic operations done by this algorithm as a function of n.

Answer:
Algorithm MatrixMult (A[n][n], B[n][n], C[n][n])
fori=0to n-1
forj=0ton-1
sum =10
for k=0to n-1 sum = sum + A[i][k] * B[k][j]
Clil[j] = sum

Analysis:

n—In—In-1

T(n)=3%3%2=2n"=0(n")

i=0j=0k=0

CSCE 2211 Applied Data Structures Prof. Amr Goneid
Spring 2024

Suppose program (A) takes 2%/16 units of time and program (B) takes 16n units:
1. For what values of (n) does program (A) take less time than (B)?
2. For each of these programs, how large a problem can be solved in 22° time units?

Solution:

1. At small n (say n = 4), algorithm (A) takes 1 time unit while algorithm (B) takes a
longer time of 256 units. At large n, algorithm (A) takes more time than (B) because
02" > O(n?). They would spend the same time at a value of n such that
2" /2 =2'n?, 2" =2%n?,

Taking Logs we getn =8+ 2logn
Excluding n = 1 then we must haven > 10

Trial and error givesn = 16

Hence program (A) will take less time than (B) forn < 16

2. Algorithm (A) takes 22° time units to solve a problem of size n = 24, and algorithm (B)
will take the same time to solve a problem of a bigger size of n = 256 because it is
faster.

