
CSCE 2211  Applied Data Structures  Prof. Amr Goneid 

Spring 2024 

___________________________________________________________________________ 

CSCE 2211 Exercises 

Exercises (2): Algorithm Analysis 
___________________________________________________________________________ 

Find positive constants c and n0 to prove that 

T(n) = (n+1)2 = O(n2)  

i.e. what are c and n0 such that 

(n+1)2 ≤  cn2   for n > n0 

Solution 

Taking c = 2, we find n0 such that (n+1)2 ≤  2n2. Hence, n2 + 2n + 1 ≤  2n2  is equivalent to  2n 

+ 1 ≤  n2 which is satisfied when n > n0 = 2 

___________________________________________________________________________ 
Find the Big-O for the following number of operations: 

n n

n n n

.T( n ) n n log n O( n )

.T( n ) n O( )

.T( n ) . n log n log n O( n log n )

.T( n ) .... ( ) / O( )

   

  

  

        

3 3

3

1

1 100 500

2 4 4

3 0 01 8

4 1 3 9 27 3 3 1 2 3

 

___________________________________________________________________________ 

The running times of certain algorithms are found to be as follows: 

T(n) = 10       (best case)   

T(n) = 6 log n2  (worst case)   

T(n) = 5 n3   (always) 

What are the corresponding complexities of these algorithms? 

___________________________________________________________________________ 

The running times of certain algorithms are found to have the following bounds: 

T(n) ≤ 5            for n ≥ 2 

T(n) ≥ 2 n         for n ≥ 1 

T(n) = 6 log n   for n ≥ 2 

What are the corresponding complexities of these algorithms? 

Solution 

T(n) = O(1) T(n) = (n)  T(n) =  (log n) 

___________________________________________________________________________ 

Consider a randomly ordered array a[0..n-1] of size (n) elements and the following algorithm: 

 

ALGORITHM FUN (a[0..n-1]) 

x = a0 ; 

for i = 1 to n-1 do  

if (ai < x) x = ai ; 

return x; 

 

What does this algorithm do?  

Find T(n) = number of comparisons done by the algorithm in the best and worst cases. 

Is this algorithm tightly bound (exact) or loosely bound. 

___________________________________________________________________________ 

 

 



CSCE 2211  Applied Data Structures  Prof. Amr Goneid 

Spring 2024 

___________________________________________________________________________ 

The natural logarithm of (1+x), i.e. ln (1+x) for (-1 < x < 1) can be evaluated by the 

approximation: 

 p(x) = ln(1+x) = x - x2 / 2 + x3 /3 - x4 / 4 + …….+ xn /n 

Consider the variable x to be of type float. The value of xi is computed by a function pow(x,i) 

using (i -1) float multiplications. The algorithm is:  

 float p = 0; float s = -1.0; 

 for (int i = 1; i <= n; i++)  { s = -s ;    p = p + pow(x,i) / i * s ; } 

(a) What is the number of float arithmetic operations for a single iteration (i) of the loop? 

(b) What is the total number of such operations T(n) done by the algorithm, and what is its 

complexity (Big-O)?   

(c) A faster algorithm is: 

 float p = 0; float s = -1.0; 

 for (int i = 1; i <= n; i++)  { s = -s * x ;   p = p + s / i  ; } 

  

Why is this algorithm faster than the direct one? (explain by comparing the two Big-

O’s). 

 {The sum of integers from 1 to n is equal to  n(n+1) / 2} 

 

Answer: 

(a) Number of float arithmetic operations for a single iteration (i) of the loop is  4 + (i 

– 1) =  i + 3   

(b) T(n) = 1 + sum from i = 1 to n of (i + 3) = 1 + n(n+1)/2 + 3n = O (n2)   

(c) The number of float arithmetic operations inside loop is (4) , and the loop is done 

(n) times so that T(n) = 1 + 4 n = O (n).     

 The second algorithm is faster because O (n)  <   O (n2). 

___________________________________________________________________________ 

The multiplication of two square matrices An x n and Bn x n produces a matrix Cn x n = A*B whose 

elements are given by: 

1n....0j,i,BAC kj

1n

0k
ikij 





 

Write the algorithm to receive A , B, and return C using the above definition. Find the number 

of arithmetic operations done by this algorithm as a function of n. 

 

Answer: 

Algorithm MatrixMult (A[n][n], B[n][n], C[n][n]) 

   for i = 0 to n-1 

 for j = 0 to n-1 

  sum = 0 

  for k = 0 to n-1 sum = sum + A[i][k] * B[k][j] 

  C[i][j] = sum 

 

 

Analysis: 

 

)n(On22)n(T
33

1n

0i

1n

0j

1n

0k

  












 

________________________________________________________________________ 

 

 



CSCE 2211  Applied Data Structures  Prof. Amr Goneid 

Spring 2024 

___________________________________________________________________________ 

Suppose program (A) takes 2n/16 units of time and program (B) takes 16n2 units: 

1. For what values of (n) does program (A) take less time than (B)? 

2. For each of these programs, how large a problem can be solved in 220 time units? 

 

Solution: 

 

1. At small n (say n = 4), algorithm (A) takes 1 time unit while algorithm (B) takes a 

longer time of 256 units. At large n, algorithm (A) takes more time than (B) because 

O(2n) > O(n2). They would spend the same time at a value of n such that 

Taking Logs we get 

Excluding n  1 then we must have n  10

Trial and error gives n  16

n n
/ n , n ,

n log n

 

 

 



4 4 2 8 2
2 2 2 2 2

8 2
 

Hence program (A) will take less time than (B) for n < 16 

2. Algorithm (A) takes 220 time units to solve a problem of size n = 24, and algorithm (B) 

will take the same time to solve a problem of a bigger size of n = 256 because it is 

faster. 

 

________________________________________________________________________ 


