
CSCE 2211 Applied Data Structures Prof. Amr Goneid

Spring 2024

CSCE 2211 Exercises

Exercises (4): Self-Balancing Trees

1. Find the minimum number of nodes required to construct an AVL Tree of height h = 5.

Solution:

N(h) = N(h-1) + N(h-2) +1 for h > 2 with N(1) = 1 and N(2) = 2

N(3) = 4, N(4) = 7 so that N(5) = 12

2. Find the maximum height required to construct AVL Tree of 375 nodes.

Solution:

Using the formula h  floor (1.44 log n +0.5), then for n = 375, h (max) = 12

3. Find the maximum height required to construct AVL Trees of 1K nodes and 1M nodes.

4. Suppose the number of nodes in an AVL tree is (n 2n). Which complexity is True from the

following worst case search costs for an element in that tree:

(a) O(n log n) (b) O(n 2n) (c) O(n) (d) O(log n)

Explain the reasoning behind your choice.

Solution:

Choice (c) is True. Complexity is O(n).

Why?: The worst case cost of search in an AVL tree is O(log N), where N is the total

number of nodes. Since N = n 2n, then log N = log n + n log 2 = log n + n.

O(log N) = O(log n) + O(n) = O(n)

 __

5. Consider the sequence of keys: 60, 100, 20, 80, 120, 70. Show the steps of insertion in an

AVL tree of this sequence.

Solution:

After BST insertion of 60, 100, 20, 80, 120, the AVL tree is:

Insertion of 70,

CSCE 2211 Applied Data Structures Prof. Amr Goneid

Spring 2024

6. Insert the following sequence of keys into an AVL tree, starting with an empty tree (show

each step): 12, 24,14, 27, 35, 17,19, 22.

In the AVL tree you finally got, delete 27 (show the steps).

7. Insert the following sequence of keys into Red-Black tree, starting with an empty tree (show

each step): 2, 1, 4, 5, 9, 3, 6, 7

Solution:

8. Insert the following sequence of keys into Red-Black tree, starting with an empty tree (show

each step): 21, 11, 35, 51, 60

9. Indicate for each of the following statements if it is true or false (Justify your answers).

(a) The subtree of the root of a red-black tree is always itself a red-black tree.

(b) The worst-case time complexity of the insert operation into an AVL tree is O (log n),

where n is the number of nodes in the tree.

(c) The worst-case time complexity of the search operation into a Red-Black tree is O (log

n), where n is the number of nodes in the tree.

CSCE 2211 Applied Data Structures Prof. Amr Goneid

Spring 2024

Solution:

(a) FALSE. The root of a Red-Black must be black, by definition. It is possible for the

child of the root of a red-black tree to be red. Therefore, it is possible for the subtree of

the root of a red-black tree to have a red root, meaning that it cannot be a red-black tree.

So, the statement is false.

(b) TRUE. The work of all AVL tree operations is O(h) where h is the height of the tree.

AVL rotations ensure that h is O(log n). Therefore, insertion must be O(log n).

(c) TRUE. For a Red-Black tree, the height is h  2 log (n+1), then h = O(log n). The

queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in O(h).

Hence, all queries run in O(log n) time
