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Part 0. Introduction 
0.1 Algorithms 
An Algorithm is a procedure consisting of a sequence of primitive steps to do a certain task. 
The word Algorithm comes from the name of Abu Ja’afar Mohamed ibn Musa Al Khowarizmi 
(c. 825 A.D.), a renowned scientist and mathematician who lived in the ninth century A.D. 
 
An Algorithm is supposed to solve a general, well-specified problem. We may consider an 
algorithm as a function f that takes input X and maps it to an output Y with certain properties:  
f : X → Y. The algorithm f is called correct if and only if for every possible input X, it outputs 
Y with the correct properties. 
 
Generally, algorithms use two types of resources: Time and Space. An algorithm is called 
efficient if it uses as few as possible of such resources. We judge the efficiency of an algorithm 
or compare between the efficiencies of two different algorithms solving the same problem 
using Algorithm Analysis, i.e. the methods we use to analyze the resource usage of given 
algorithms (time and space). 
 
In Algorithm Design, our goal is to design efficient algorithms. Here, we must be aware of two 
issues. The first issue is that designing an algorithm for a specific problem depends on the 
nature of the problem and, for it to be efficient; it must make advantage of the nature of the 
input and of the desired output. The second issue is that we do not have a “design manual”; 
rather, we can pose a set of design methodologies or guidelines and learn efficient designs by 
experience.  
 

 
1. Algorithm analysis provides a means to distinguish between what is practically possible 

and what is practically impossible. 
2. Efficient algorithms lead to efficient programs that make better use of computer resources. 
3. Efficient programs sell better. 
4. Programmers who write efficient programs are preferred. 
 

 

 The reasons why we study this subject include: 
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Part 1. Complexity Bounds 
1.1 Algorithm Strategy: 
An Algorithm is supposed to solve a general, well-specified problem. The solution must follow 
a strategy that would be implemented in the form of steps to reach the solution. The following 
examples show how a strategy can be mapped into an algorithm: 
 
1.1.1 Sorting Problem: 
 
In this problem, the input is a random sequence of elements {a0 , a1 , a2 , …, an-1} and the 
desired output is a permutation (re-ordering) of the input, {a’0 , a’1 , …, a’n-1} such that a’0 ≤ 
a’1 ≤ …≤ a’n-1. An instance of this problem might be sorting an array of names or sorting an 
array of integers. For an algorithm to be complete, it must be able to solve all instances of the 
problem. One possible strategy to solve this problem is as follows: 

“From those elements that are currently unsorted, find the smallest and place it next in the 
sorted list”. 
 
Such strategy leads to the following algorithm: 
 

ALGORITHM SORT (a[0 .. n-1]) 
for i = 0 to n-2 do 

• find smallest element in sub-array ai to an-1 
• swap that element with that at the start of the sub-array 

 

This algorithm is called “Selection Sort” 

1.1.2 The Greatest Common Divisor (GCD): 

Reduction of fractions like 14/35 and 15/20 can be done by dividing both the numerator and 
the denominator by the GCD of the two. The greatest common divisor (GCD) of two integers 
m and n is the greatest integer that divides both m and n with no remainder. Thus, the problem 
is: 
Given integers m and n such that m ≥ n > 0, find the GCD of m and n. 
A famous algorithm to solve this problem is Euclid's algorithm. It is named after the ancient 
Greek mathematician Euclid who described it around 300 B.C. It is based on the following 
strategy: 

“The GCD of two numbers does not change if the larger number is replaced by its difference 
with the smaller number. For example, 6 is the GCD of 42 and 12 and it is also the GCD of 30 
and 12. Repeating this replacement gives successively smaller pairs of numbers until the two 
numbers become equal. When that occurs, they are the GCD of the original two numbers”. 

Such strategy leads to the following algorithm: 
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ALGORITHM GCD (m , n) 
while n > 0 do 

r ← m mod n;  
m ← n;  
n ← r;  

return m  
 

The above algorithm can also be recursively implemented: 
 

ALGORITHM RGCD (m , n) 
if (m mod n == 0)  return n     
 else  return gcd (n, m mod n) 

 
According to Donald Knuth (The Art of Computer Programming, Vol. 2), "The Euclidean 
algorithm is the granddaddy of all algorithms, because it is the oldest nontrivial algorithm that 
has survived to the present day”. 
 
1.1.3 Finding All Primes less than N: 

An integer n is prime iff n ≥ 2 and n's only factors are 1 and itself. Our problem is to determine 
all the primes between a certain set of numbers. One possible solution to this problem is the 
Sieve of Eratosthenes, which is a method used to compute all primes less than N.  It was 
invented back in around 240 BC by the Greek mathematician and astronomer Eratosthenes of 
Cyrene (276 BC - 194 BC), who was also the former director of the famed Library of 
Alexandria (Also see http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes). A very recent 
article (Sept 28, 2016) on how this algorithm is still of great interest appears in: 
http://www.sciencealert.com/an-ancient-greek-algorithm-could-be-the-key-to-finding-new-
prime-numbers 

The strategy of the Sieve of Eratosthenes algorithm is as follow:  

“Iteratively mark as non-prime all the multiples of each prime, starting with the first prime 
number, 2. The multiples of a given prime are generated as a sequence of numbers starting 
from that prime, with constant difference between them that is equal to that prime”. 

To implement this strategy, we use an array of size N+1: a0, a1, a2, ...ai,....., aN and the 
objective is to set ai = 1 if i is a prime, and to zero if it is not. This leads to the following 
algorithm: 

ALGORITHM SIEVE (a[0..N]) 
set a0 = a1 = 0 
set all other a’s to 1  
for i = 2 to N/2 do 
 for j = 2 to N / i do 
  k = i * j;   set ak = 0; 
for i = 1 to N do  

if ( ai ) display i ; 
 

http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Eratosthenes.html
http://www-groups.dcs.st-and.ac.uk/history/Mathematicians/Eratosthenes.html
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
http://www.sciencealert.com/an-ancient-greek-algorithm-could-be-the-key-to-finding-new-prime-numbers
http://www.sciencealert.com/an-ancient-greek-algorithm-could-be-the-key-to-finding-new-prime-numbers
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1.2 Cost of running an Algorithm: 
1.2.1 Time and Space Cost 

The running cost of an algorithm measures the extent of usage of computer resources to 
perform the desired task. Two main costs are considered; Time Resources and Space 
Resources. 

Time cost depends on the type and number of operations executed and on the used hardware 
(machine speed). Space cost comes from the size of the data used as well as on the size of code 
of the algorithm. 

Technological advances in space resource expansion (RAM, HDD, etc.) has proved to be much 
faster than expansion in machine speeds. That is why we focus primarily on time cost as far as 
algorithm analysis is concerned. 

1.2.2 Number of Operations 

In quantifying time cost of an algorithm, it is clear that different times will be consumed by the 
same algorithm if we run it on two machines with different hardware speeds. Instead, we can 
eliminate hardware properties by measuring time cost by the number of operations done by the 
algorithm. In this case, we are to evaluate a function T(n) representing the number of operations 
as a function of the problem size (n), i.e. the size of the data used or the number of iterations 
needed. For a given algorithm, we can evaluate T(n) for a given type of operations by adding 
all such operations executed by the algorithm. For example, T(n) may represent the number of 
comparisons, or the number of arithmetic operations done by the algorithm, etc. 
 
 1.2.3 Types of Operations to Count 

We consider each of the “atomic” operation to be one operation. By ”atomic” operations we 
mean arithmetic operations like + , - , % , * , / etc., relational operations like > , <, >= , etc. and 
Boolean operations like ! , && , ||, etc. We also consider memory access [ ] as one operation. 
However, “sort”, selection constructs, repetition constructs and function calls are not 
considered as atomic and must be evaluated as composite processes.  
 

1.2.4 Examples for Computing the Number of Operations 

Example (1): Computing the Factorial 

The factorial of a non-negative integer (n) is defined as:  

1

1 0

0
! n

i

for n
n

i for n
=
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∏  
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An algorithm to compute n! is: 

ALGORITHM FACTORIAL (n) 
f = 1; 
if (n > 0)  
    for i = 1 to n do  
 f ← f * i ; 
return f; 

 

We want to find T(n) = number of multiplications done by the algorithm to compute n!. To do 
this, we observe that one multiplication is done inside the for loop and hence, 

1
1( )

n

i
T n n

=

= =∑  

We call this algorithm “exact” because T(n) is always equal to n. 

Example (2): Location of Maximum Element in an Array 

Consider a randomly ordered array a[0..n-1] of size (n) elements. An algorithm to find the 
location of the maximum element is: 
 

ALGORITHM LOC_OF_MAX (a[0..n-1]) 
m = 0; 
for i = 1 to n-1 do  

if (ai > am) m = i ; 
return m; 

 

We want to find T(n) = number of comparisons done by the algorithm. To do this, we observe 
that one comparison is done inside the for loop and hence, 

1

1
1 1( )

n

i
T n n

−

=

= = −∑  

We also call this algorithm “exact” because T(n) is always equal to n - 1. 

We notice two important features from the above two examples: 

1. In calculating the number of chosen operations, the loops iterating on the operation 
have loop indices incrementing by +1 from a lower bound (LB) to an upper bound 
(UB). This allows us to model the loop as a summation from the LB to the UB. This is 
also an example of the mathematical modeling of repetition constructs in algorithm 
analysis. More on such mathematical modeling of constructs will be discussed later. 

2. Both algorithms are “tightly bound’ in the sense that T(n) is exact and is independent 
of the data so long as the problem size is kept at a value n. 
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Example (3): Linear Search 

Consider the problem of searching for a “target” element in a randomly ordered array A[0..n-
1] of n elements. We want to find the location in the array of the element matching “target”. 
The algorithm should return -1 in case there is no matching. Using linear search, the algorithm 
would be: 
 

ALGORITHM LINEAR_SEARCH (A[0..n-1], target) 
for i = 0 to n-1 do 

if (Ai == target) return i ; 
 return -1; 

 
We want to find T(n) = number of comparisons done by the above algorithm. Notice that in 
case of successful matching at location (i), the number of comparisons done is T(n) = i + 1, 
leading to a “Best Case” at location i = 0, with T(n) = 1 comparison. Notice also that if 
successful matching occurs at the last location i = n-1, or if no matching occurs at all, then T(n) 
= n comparisons leading to a “Worst Case”. We now realize that the above algorithm is not 
exact, i.e., it is “loosely bound”, since T(n) can be any number between 1 and n. 
 
1.3 Best Case, Worst Case and Average Case: 
From the above examples, we may distinguish between algorithms as tightly bound (exact) in 
case T(n) = f(n) always, or as loosely bound when the cost T(n) for a fixed problem size (n) 
changes with the data values. In the latter case, T(n) = f(n) in the best case and T(n) = g(n) in 
the worst case, where f(n) ≠ g(n).  
 
For some of the loosely bound algorithms, we may find it informative to compute an average 
case for T(n). However, such average case analysis requires a knowledge of the probabilities 
of the different patterns of the data sets of a given size n. As an example, let us revisit the linear 
search algorithm given that the probabilities for successful match at all locations are known. A 
rather simple situation exists if the probabilities are all equal; in other words, the probability of 
successful match at location (i) is p(i) = 1/n so that the sum of all probabilities from i = 0 to i 
= n-1 is equal to 1. Recalling that the number of comparisons done for a successful match at 
location (i) is T(i) = i +1, then 
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Notice that only in this special case, we could have reached the same result by taking the 
average between the best and worst case costs. This over-simplification would not have been 
possible if the probabilities were not equal over the whole range of locations.  
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1.4 Asymptotic Notations and Bounds 
The number of operations T(n) as a function of problem size (n) can generally be used to 
quantify the efficiency of an algorithm. However, in order to simplify the process of comparing 
the efficiencies of different algorithms, we use the algorithm “complexity” representing a 
functional form of T(n). For this purpose, we use the asymptotic notation to express the 
complexity of algorithms as the problem size becomes very large (i.e. their limiting behavior): 
 

lim ( ) ( ( ))
n

T n f n
→∞

= Ψ   

 
In the above notation, Ψ represents a type of a “bound” and f(n) is some functional form 
(simpler than T(n)) like n , log n , etc. The equal sign in the above relation is equivalent to 
saying “is of complexity” and the type of bound is typically one of the three bounds Θ , Ω , 
and O. Big-Θ  represents the tight bound for exact algorithms, and for loosely bound 
algorithms, Big-Ω represents the lower bound (best case) while Big-O represents the upper 
bound (worst case). 
 
The use of the bounds Θ , Ω , and O allows us to easily compare between different algorithms 
solving the same problem. For example, algorithm A may be of complexity O(n) and algorithm 
B has a complexity O(n2). Since n < n2 for all n > 1, then we can judge that algorithm A is more 
efficient than algorithm B since it has lower complexity. 
 
1.5 Formal Definition of Bounds 

1.5.1 Tight Bound Θ 

To express the complexity of exact algorithms, we say that 
T(n) = Θ (f(n)). Formally this means that there exist positive 
constants c1, c2 and n0 such that  

 c1 f(n) ≤ T(n) ≤ c2 f(n)   for all n ≥ n0 
 
This actually means that f(n) is both a lower bound and an upper bound of T(n). Examples for 
such complexity are the algorithms for computing the factorial and finding the location of the 
maximum in an array. In both these examples, c1 = c2 = n0 = 1 and f(n) = n. Hence T(n) = Θ 
(n).  
 
1.5.2 Upper Bound O 

The upper bound Big-O expresses the complexity in the worst case. 
Formally, 
T(n) = O(f(n)) iff  there exist positive constants c and n0 such that  

 
T(n) ≤ c f(n)    for n ≥ n0 

 
This means that T(n) grows at most as fast as f(n). The linear search 
example given before is an algorithm with a worst case of T(n) = n 
and hence its upper bound complexity is T(n) = O(n). 
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Exercise: 

Find positive constants c and n0 to prove that 

T(n) = (n+1)2 = O(n2), 

i.e. to show that (n+1)2 ≤  cn2   for n ≥ n0 

  

1.5.3 Lower Bound Ω 

The lower bound Big- Ω expresses the complexity in the best case. 
Formally, 
T(n) = Ω (f(n)) iff  there exist positive constants c and n0 such that  
 

T(n) ≥ c f(n)    for n ≥ n0 
 
This means that T(n) grows at least as fast as f(n). The linear search 
example given before is an algorithm with a best case of T(n) = 1 
and hence its lower bound complexity is T(n) = Ω (1). 
 
 
1.6 Constants do not matter 
When the number of operations is T(n) = c f(n)  we still say that T(n) is O(f(n)) or Ω (f(n)) or 
Θ (f(n)). This is because constants can be compensated by hardware and software properties. 
Notice that all bounds are expressed by a functional dependence f(n) within a constant factor 
c. Different hardware, compilers, operating systems and languages produce different constant 
factors. That is why we always drop such constants when we derive the complexity from the 
number of operations. In this case, the complexity is meant to express the rate of growth of the 
algorithm cost with increasing problem size. 
Examples are: 
 

Number of Operations Bound Complexity Expression 
T(n) = 4 Best Case T(n) = Ω (1) 
T(n) = 6 n2 Worst case  T(n) = O (n2) 
T(n) = 3 n Tight (Exact) T(n) = Θ (n) 

 
Recall that the equal sign in the expression for the number of operations means “equals”, while 
in the complexity expression it reads “is of complexity”. More examples are as follows: 

1. T(n) ≤ 5.5 n3    for n ≥ 2   hence  T(n) = O(n3) 
2. T(n) ≥ 30 n      for n ≥ 1   hence T(n) = Ω(n) 
3. T(n) = 6 log2 n  for n ≥ 2   hence T(n) = Θ (log n) 
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1.7 Important Remarks 
1. In algorithm complexity comparisons, lower bound complexities (Big-Ω) are not very 

useful since they cannot express worst cases. 
 

2. The Big-O complexity is usually used to describe the general behavior of an algorithm. 
We can still use it to represent the complexity even for tightly bound algorithms without 
any loss of generality. Also, we usually compare algorithms based on the upper bound 
(Big-O) complexity since it expresses the worst case behavior. 
 

3. The functional form f(n) of worst case complexity obtained from the number of 
operations should be the least growing function satisfying the formal definition of the 
Big-O. For example, if the number of operations in the worst case is T(n) = 5 n, then it 
is technically correct that T(n) = O(n), T(n) = O(n2), and T(n) = O(2n), etc. This 
indicates that there is a whole set of functions satisfying the upper bound formal 
definition. However, the least growing function satisfying the upper bound is the first 
one, so that the proper complexity in this case is T(n) = O(n).  
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Exercises 
 
1. Consider a randomly ordered array a[0..n-1] of size (n) elements and the following 

algorithm: 
 

ALGORITHM FUN (a[0..n-1]) 
x = a0 ; 
for i = 1 to n-1 do  

if (ai < am) x = ai ; 
return x; 

 

What does this algorithm do?  
Find T(n) = number of comparisons done by the algorithm in the best and worst cases. 
Is this algorithm tightly bound (exact) or loosely bound. 
 

2. Find positive constants c and n0 to prove that 
T(n) = (n+1)2 = O(n2)  
i.e. what are c and n0 such that 
(n+1)2 ≤  cn2   for n > n0 

 
3. The running times of certain algorithms are found to be as follows: 

T(n) = 10       (best case)   
T(n) = 6 log n2  (worst case)   
T(n) = 5 n3    (always) 

What are the corresponding complexities of these algorithms? 
 

4. The running times of certain algorithms are found to have the following bounds: 
T(n) ≤ 5            for n ≥ 2 
T(n) ≥ 2 n         for n ≥ 1 
T(n) = 6 log n   for n ≥ 2 

What are the corresponding complexities of these algorithms? 
 
5. The number of comparisons done by an algorithm is characterized by the asymptotic 

behavior: 
          n

n
limT( n ) n n
→∞

≤ ≤ ≤216 4 4 2  for n ≥ 4 

What is the complexity of this algorithm? 
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Part 2. Types of Algorithm Complexities 
2.1 Rules for Big-O 
We recall that the Big-O complexity will be used to describe the general behavior of an 
algorithm and we can still use it to represent the complexity even for tightly bound algorithms 
without any loss of generality. In addition, we usually compare algorithms based on the upper 
bound (Big-O) complexity since it expresses the worst case behavior. 
 
Since an algorithm may be a composite of different sub-algorithms with possibly different 
complexities, we need a set of rules to determine the overall complexity of an algorithm. The 
following is such a set of rules we apply for the Big-O: 
 
1. Constant factors may be dropped: 

For a constant k > 0, O(k f(n)) = O(f(n)) 
For example, both 2 n3 and 5 n3 are O(n3) 
 

2. Constant complexities are less than powers: 
O(k) < O(nk)  for all k > 0. Notice that by the first rule, O(k) can be re-written as O(1). 
 

3. The growth rate of a sum of terms is the growth rate of its fastest growing term: 
O(f(n)) + O(g(n)) = max(O(f(n)) ,O(g(n))) 
For example, f(n) = 2n = O(n), g(n) = 0.1 n3 = O(n3),  
Hence O(f(n)) + O(g(n))= max(O(n) , O(n3)) = O(n3) 
 

4. The product of big-O’s is the big-O of the products: 
O(f(n)) * O(g(n)) = O(f(n) * g(n)) 
For example, T1(n) = O(n), T2(n) = O(n2) so that T(n) = T1 (n) * T2 (n) = O(n3) 
 

5. Logarithms grow slower than powers: 
O(loga n) <  O(nk)  for all a > 1 and k > 0 
For example, O(log n) < O(n) 
 

6. All logarithms grow at the same rate: 
loga n =  Θ (logb n)  for all a , b > 1 
For example, log2 n = Θ (log3 n).  
 

7. The growth rate of a polynomial of degree m is O(nm) 
For example T(n) = 2 – 4n + 3n2 + 2n3 = O(n3) 
It follows that if a < b then O(na) < O(nb) 
 

8. Exponential functions grow faster than powers 
O(nk) < O(bn) for all k ≥ 0 and b > 1 
For example, O(n3) < O(2n) 
 

2.2 Some Proofs 
All the statements of the above rules for the Big-O can be proved either by induction on n or 
by algebraic manipulation.  
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To prove a statement S(n) by induction on n, we follow two steps: 
1. Base case: verify that S(n) is correct for the smallest possible value, i.e., n = 1. 
2. Induction step: 

- Assume that S(n) holds for an arbitrary input of size n and then 
- Prove that it also holds for n + 1 (Algebra) 

 
Consider Rule 5 above and take as an example a = 2 and k = 1 so that our statement is  
O(log n) <  O(n). To prove this statement, we take the base case of n = 1 which verifies that 
the statement is correct since 0 < 1. For the induction step, we know that (n+1) ≤ 2 n for all n 
> 0. Hence, log (n+1) ≤ log (2n). But log (2n) = 1 + log n, so that log (n+1) ≤ log n + 1. 
Assuming that our statement is correct for n, it follows that log (n+1) ≤ (n + 1), proving the 
statement. 
 
We now consider proving Rule 6 that all logarithms grow at the same rate. Take as an example 
proving that log2 n = Θ (log3 n). Since log2 n = log3 n / log3 2 = (Const) log3 n, then the rule 
is proved. 
 
Finally, let us consider Rule 7 stating that the growth rate of a polynomial of degree m is O(nm).  
Such polynomial can be represented as: 

0 0 0 0

0

| | But | | | |

The largest value of 1 when ) and | |  constant ( )

Hence,

( ) ,

(

( ) ( ) ( )

m m m m
i i i m i m

i i i i
i i i i

m
i m

i
i

m m

T n a n a n a n n a n

n i m a c

T n cn and T n O n

−

= = = =

−

=

= ≤ =

= = =

≤ =

∑ ∑ ∑ ∑

∑  

 
Exercises 

1. Prove by induction on n that n2 < 2n  
2. Prove by induction on n that 2n < n!  for n ≥ 4 
3. Prove by induction on n that 2

1
2 1( ) ( )

n

i
S n i n

=

= − =∑  for n > 0 

4. Prove by induction on n that ∑ +=
=

n

1i
2/)1n(ni  for n > 0 

 

2.3 Comparing Complexities 
2.3.1 Dominance 

When we compare complexities based on the Big-O or when Big-O’s are summed, we usually 
look for the “dominant term”. Consider two terms f(n) and g(n), to determine who dominates 
who, we follow a simple procedure as follows: 

1. If lim(n->∞) f(n)/g(n) = ∞ then f(n) dominates (i.e. grows faster) 
2. If lim(n->∞) f(n)/g(n) = 0 then g(n) dominates. 
3. If lim(n->∞) f(n)/g(n) = constant then both grow at the same rate.  
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Examples are: 
1. if a > b then na dominates nb since lim(n->∞) na /nb = lim(n->∞) n a-b = ∞ 
2. n2 dominates (3n+2) since lim(n->∞) (3n+2)/n2 = lim(n->∞)(3/n)+ lim(n->∞)(2/n2) = 0 
3. (n log n) and (n log n3) grow at the same rate since (n log n3) = (3 n log n) so that  

lim(n->∞) (n log n) / (3 n log n) = 1/3 = constant 
 

In finding the limit lim(n->∞) f(n)/g(n) we sometimes need to use L’Hopital’s rule which states 
that the asymptotic relationship of f(n) to g(n) is the same as the asymptotic relationship of the 
derivatives (with respect to n) of f(n) and g(n), i.e.,  

lim(n->∞) f(n)/g(n) = lim(n->∞) f’(n)/g’(n) 
 

For example, f(n) = n log n + n  and g(n) = n2.  
lim(n->∞) f(n)/g(n) = lim(n->∞) (n logn + n)/ n2  = lim(n->∞) (2 + log n)/(2 n) =  
= lim(n->∞)(1/n) + lim(n->∞)(log n /(2n)) = 0 + lim(n->∞)(1/(2n))= 0 + 0 = 0 
 
Hence, g(n) dominates f(n) 
 
Exercises 

1. Determine the dominant term in the expression T(n) = n2 log n + n (log n)2 
2. Determine which grows faster: 

• log n or     n1/2 
• n 2n    or    (n + log n) 2n-1 

 
2.3.2 Common Types of Complexities 
 
The following table shows the common complexities in the order of their growth rate. 
 
Complexity Meaning 
O(1) Constant 
O(log n) Logarithmic 
O(na ) for a < 1 Sub-Linear 
O(n) Linear 
O(n log n) Super-Linear 
O(na)  for a > 1 Polynomial 
O(n2) Quadratic 
O(n3) Cubic 
O(an)  for a > 1 Exponential 
O(n!) Factorial 
O(nn) Extremely Fast Growing 
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2.4 Complexities of Some Practical Algorithms 
In the following, we highlight the complexities of some known practical algorithm: 
 

1. Linear Search and Binary Search: 
Linear Search in an array has a linear complexity O(n) while Binary Search is 
logarithmic, i.e., O(log n). Therefore, Binary Search is faster since O(log n) < O(n). 

2. Sorting: 
Selection sort has a complexity of O(n2) while Quicksort is O(n log n). Quicksort is 
much faster since O(n log n) < O(n2). 

3. Brute–Force matrix multiplication has a cubic complexity O(n3) 
4. The number of sub-sets in a set of n items is 2n. For example, in a set of 3 items{a,b,c}, 

the subsets are: {}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. A Brute-Force algorithm to 
list all these sub-sets will have to do 2n listing operations, with a complexity of O(2n), 
i.e., exponential complexity.  

5. The number of permutations of a sequence of n items is n!. For example, for a sequence 
of 3 items {abc}, the possible permutations are: {abc},{acb},{bac}, {bca}, {cab} and 
{cba}, i.e., 3! = 6 permutations. To list all such permutations, we require O(n!) 
operations, i.e. factorial complexity. 
 
 

2.5 Polynomial and Intractable Algorithms 
An algorithm is said to have Polynomial Time complexity if it is O(na) for some constant a ≥ 
0. Examples are O(1), O(n), O(n log n), O(n2.). Such algorithms can solve problems in 
reasonable time. However, some problems are Intractable because as the problem size becomes 
large, it is not possible to solve them in reasonable time. As examples, we mention algorithms 
of complexities O(2n), O(n!) and O(nn).   
 
In order to visualize “unreasonable time”, let us consider the problem of listing all subsets of 
a set of n items, which has a complexity of O(2n). For some moderate n, say n = 100 and using 
a fast machine that would do one listing operation in one nanosecond (10-9 sec), we need a total 
time 
 
t = 2100 x 10-9 seconds = 1.267 x 1021 seconds = 4.03 x 1013 Years!.  
 
That needed time would be greater than several times of the whole age of the Universe! 
 
Some complexities are even worse as O(2n) < O(n!) < O(nn). For example, we show that: 
O(2n) < O(n!). Taking logs on both sides, we now compare O(n) with O(n log n).  
Since lim(n->∞) (n log n) / n = ∞, we conclude that O(2n) < O(n!). 
  



CSCE 321/2202 Analysis and Design of Algorithms Prof. Amr Goneid 
Fall 2019 
__________________________________________________________________________________ 
 

 5 
 

Exercises 
 
1. Prove by induction on n that:  

• n2 < 2n  
• 2n < n!   for   n ≥ 4 

 
2. Prove by induction on n that for n > 0  

2

1

1

2 1

1 2

n

i

n

i

S n i n

S n i n n

=

=

= − =

= = +

∑

∑

( ) ( )

( ) ( ) /
 

 
3. Prove that: 

• if a > b then na dominates nb 
• n3 dominates (3n2 + 2n log n) 
• n3 dominates (n2 log n) 

 

4. Using L’Hopital’s rule, determine which of the functions f(n) and g(n) grows faster (justify 
your answer fully): 

 
f(n) = n(k+α) + nk (log n)2   or     g(n) = k n(k+α)     with the constants k , α > 0 
f(n) = n1/2 (log n)2    or     g(n) = (2 + n) log n 
f(n) = n 3n   or      g(n) = (n2 + n1/2) 2n 

 
5. For the following pair of functions, find which grows faster: 

 
f(n) = n3   or  g(n) = n log n 
f(n) = n 0.001    or g(n) = log n 
f(n) = 2n+1        or g(n) = 2n 
f(n) = 2n      or g(n) = 22n 

 
6. For the following pair of functions, find which has smaller complexity: 

f(n) = 100 n4   or  g = n5 
f(n) = log(log n3)  or  g = log n 
f(n) = n2   or  g = n log n 
f (n) = 50 n5 + n2 + n or  g = n5 
f(n) = en   or  g = n! 

 
7. Arrange the following functions according to their order of growth from the lowest to the 

highest (show the steps used in the arrangement): 
(n − 2)!,   5 log(n + 100)10,   22n,   0.001n4 + 3n3 + 1,   ln2 n,   n1/3,   3n. 
 

8. Suppose that we have a chessboard of size N x N and we want to place N queens on the 
board such that no two queens occupy the same square. Show that the number of possible 
placements is O((N2)!)  
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Part 3 Time Complexity Calculations 
 

3.1 Algorithm Performance Measurement 
 

In algorithm analysis, we are interested in quantifying the extent of usage of the computer time 
resources. This may be achieved by one of the following methods: 

a) Clocking method by direct measurement of run time of the code, or 
b) Counting method by counting the number of operations done by the algorithm as it 

actually runs, or  
c) Mathematical modeling of the algorithm to obtain some functional form g(n) for the 

dependence of the number of operations T(n) on problem size n.  
 
Methods (a) and (b) are empirical approaches to algorithm analysis. Method (a) may be more 
useful for real-time applications and requires coding and actual running of the algorithm on a 
machine to measure the time of execution. Method (b) also requires coding and actual running 
of the algorithm on a machine after inserting counters for relevant operations. However, using 
one of these two methods requires the following: 

1. Choice of the bound (lower bound or upper bound) 
2. Choice of clocking or counting domains in the algorithm (which part to clock or where 

to insert counters for the selected operations) 
3. Choice of the data sets that reflect the bounds 
4. Choice of the data sizes (what are the values of n for the data sets) 

 
Such choices add constraints to the process of algorithm analysis as it sometimes becomes 
difficult to predict performance at problem sizes not included in the experiments. In the 
following, we give examples of methods (a) and (b). 
 
3.1.1 Example of Clocking Method 
 
Consider an algorithm A(Data (n)), using a chosen data set Data(n) of chosen size n. A clocking 
method would be: 
 
ALGORITHM Clocking 
Set repetition count m; 
Set data size n;  Set data set Data (n) 
tacc = 0; 
Repeat on m { 
 start time t1 = GetTime(); 
 Invoke A(Data(n)); 
 end time t2 = GetTime(); 
 tacc = tacc + (t2 - t1); 
} 
tav = tacc / m; 
 
The result obtained is the running time of the algorithm, taken as an average over m 
experiments.  
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3.1.2 Examples of Counting Method 
 
Example (1): 
Consider an algorithm to compute the average value in a 2-D array A[0..n-1][0..n-1] of floating 
point elements with size n x n. The following counting code gives the number of floating point 
arithmetic operations T(n) done by the algorithm for a particular size n: 
 
ALGORITHM Aver2D 
int count = 0; 
float s = 0.0;  float A[n][n]; 
for (i = 0; i < n; i++) 
 for (j = 0, j < n; j++) 
  { s = s + A[i][j];  count++;} 
float Average = s / (n * n); count++; 
 
Example (2): 
Consider the Insertion Sort algorithm to sort an array a[0..n-1] of size n elements. The 
following code counts the number of data shifts T(n) as a function of size n: 
 
ALGORITHM Insertsort (int a[ ], int n) 
{ 

int i , v , j ; 
for (i =1; i < n; i++) 
{ 

v = a[i]; j = i; 
while (j > 0 && a[j-1] > v) 
  { a[j] = a[j-1]; j--; count++;}; 
a[j] = v; 

} 
} 
 
The following table shows the counting results obtained by running this code for n between 5 
and 200. Three cases are considered, a best case where the input data is already sorted in 
ascending order (T1(n)), an average case where the array is randomly ordered (T2(n)) and the 
worst case when the array is already sorted in descending order (T3(n)). 
 

n 5 10 20 50 100 200 
T1(n) 0 0 0 0 0 0 
T2(n) 3 18 78 586 2609 10,052 
T3(n) 10 45 190 1225 4950 19,900 

n(n-1)/2 10 45 190 1225 4950 19,900 
 
The table shows that the number of data shifts is always zero as expected in the best case and 
the average is somewhat between the worst and best cases. What is significant is that some 
functional dependence g(n) = n(n-1)/2 coincides exactly with the worst case for all n 
considered. If we want to find the worst case cost at say n = 500, then without knowledge of 
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g(n) we have to run the code at that size. However, with g(n) given, we can simply predict that 
at n = 500, the number of data shifts is exactly 500 x 499 / 2 = 124,750. 
 
Another advantage of seeking a functional dependence of the number of operations is that when 
T(n) is directly proportional to some g(n), and one timing experiment is conducted at a given 
size N, then it is possible to predict the time of execution of the algorithm at other times n 
without running the algorithm. To see this feature, consider the following example: 
 
Example on run time prediction: 
 
The number of operations of a sorting algorithm is directly proportional to g(n) = n log n. Direct 
time measurement gives 1 ms to sort 1000 items. Find how long it will take to sort 1,000,000 
items. 
 
To predict the run time at n = 1,000,000, we know that T(n) α n log n, or, T(n) = C n log n, 
where C is a constant. The value of C can be determined from the direct time measurement at 
N = 1000 since C = 1 ms / N log N. Hence, the time taken for size n is (n/N) (log n / log N) = 
(106 / 103) (log 106 / log 103) = 2 x 103 ms = 2 seconds 
 
Finding a functional dependence g(n) for the number of operations in an algorithm is the result 
of algorithm analysis using method (c) of mathematical modeling. Details of this modeling 
method are discussed in the following sections. 
 
3.2 Mathematical Modeling of the Number of Operations 
  
We have seen that the number of operations done by an algorithm gives a good measure of the 
extent of usage of the computer time resources. This enabled us to set up complexity bounds 
from which the asymptotic behavior of an algorithm can be described. Therefore, the starting 
step is to obtain a functional dependence of T(n) on the problem size n for different bounds. 
 
3.2.1 A General Scheme 
 
Given an algorithm in actual code, or preferably in a high-level description (pseudocode), the 
following describes a general scheme for the algorithm mathematical modeling: 

1. Identify the problem size (n). 
2. Choose type of operation to count (e.g., arithmetic, comparison, etc.) 
3. Identify basic constructs in the algorithm such as sequential blocks, selection 

constructs, repetition constructs and functional constructs 
4. Assign  a number of chosen operations to each of these constructs 
5. Form a mathematical description of the sum of operations T(n) in the different 

constructs 
6. Obtain an explicit functional dependence g(n) for the number of operations T(n) 

 
When we obtain T(n) = g(n) by this modeling process, it becomes possible to apply bound rules 
and to use the asymptotic notation to express the complexity of algorithms as the problem size 
becomes very large (i.e. their limiting behavior): 
 

lim ( ) lim ( ) ( ( ))
n n

T n g n f n
→∞ →∞

= = Ψ   
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In the above notation, Ψ represents a type of the bound (Θ , Ω , O) and f(n) is some functional 
form of the complexity. Generally, f(n) is a simpler form of g(n) and is derived from g(n) by 
applying bound rules (e.g., rules for the Big-O) 
  
3.2.2 Number of Operations for Different Constructs 
 

a) Simple Statements 
T(n) = number of specified operations in the statement. 
For example, in the statement z = 2 * x + y, T(n) = 2 arithmetic operations. 
 

b) Code blocks 
T(n) = sum of sub-blocks T(n)’s 
 

c) Function Calls 
Treated as a whole algorithm. 
 

d) if Statements 
With a condition (C) and a statement block (S), let Tc(n) and Ts(n) be the number of 
operations for C and S, respectively. Now, consider the statement 
  
if (C) S;  
 
The best case (from the cost point of view) is when C is false, and the worst case when 
it is true. Hence 
  
T(n) = Tc(n)      (best case); 
T(n) = Tc(n) + Ts(n)  (worst case) 
 
Also, for the statement 
 
if (C) S1; else S2; 
 
we have 
 
T(n) = Tc(n) + min (Ts1(n), Ts2(n)) (best case) 
T(n) = Tc(n) + max (Ts1(n), Ts2(n)) (worst case) 
 
Example: 
 
if ( x == fun(n))   call module1;  else call module2; 
 
Given that fun (n) does n comparisons, module1 costs n + 2 comparisons and module2 
costs n2 + 1 comparisons, what will be the number of comparisons done in the best and 
worst cases? 
 
Here, we find that: 
 
T(n) = 1+ n + n + 2 = 2n + 3 = Ω (n)  (best case) 
T(n) = 1 + n +  n2 + 1= 2 + n +  n2 = O(n2)  (worst case) 
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e) while loops 
Consider the statement: 
 
while (C) S; 
  
In this case, we have 
 
T(n) = Tc(n) + sum over the number of iterations of the loop of (Tc(n) + Ts(n)) 
 
Example (1): 
Consider the following segment 
 
i = 0;  
while (i  <= n)     

{ Fun(i,n); i++; } 
 

We want to find the number of comparisons done by the above segment given that 
Fun(i, n) costs (3i + log n) comparisons. 
We notice that the while loop will compare i with n and iterate for i = 0,1,2…,n before 
doing another comparison to exit the loop.  In each of the n+1 iterations, Fun(i, n) 
makes 3i + log n comparisons. In this case, 

2

0
3 1 1 3 2 1 1 1 1( ) ( log ) ( / ) ( ) ( )(log ) ( )

n

i
T n i n n n n n O n

=

= + + + = + + + + + =∑   

 
Example (2): 
Consider the following segment 
 
D = n;  
while (D > 0)     

{ Fun(n); D = D/2; } 
 
We notice that the loop will iterate log n + 1 times before exit. Given that Fun (n) 
makes n arithmetic operations, then in each iteration the cost will be (n + 1). Hence, 
the total number of such operations done by the loop will be, 
 T(n) = (n+1)( log n + 1) = O(n log n) 
 

3.2.3 Number of Operations with For Loops 
 

1. Loop Variable Increment is Additive and Equals ±1 
 

Consider a for loop with a loop variable (i) over a segment F(i): 
 
for (i = 1; i ≤ n; i++)  F(i); 
 
To compute the number of operations done by the loop, it is convenient to model it 
as a summation over the loop variable (i). If the number of operations done by F(i) is 
T(i) then: 
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1
( ) ( )

n

i
T n T i

=

=∑  

Implicit in this model is that the loop variable increment (or decrement) is 1. For 
example, if in the above loop F(i) costs T(i) = 2i operations, then 

1 1
( ) ( ) 2 ( 1)

n n

i i
T n T i i n n

= =

= = = +∑ ∑  

Exercise:  Redo the above example for the loop   
 
for (i = n; i ≥ 1; i--) F(i);   
 
when F(i) costs T(i) = 3i + n operations.   

 
 

2. Loop Variable Increment is Additive and Equals a Constant C 
 

Consider the loop increment to be additive with a constant C with |C| > 1. An example 
with C = +2 is: 
 
for (i = 0; i ≤ n; i += 2) F(i); 

 
In this case, i = 0, 2, 4, 6, …n.  Here we cannot use the straight summation with +1 
increment. Therefore, we transform the loop variable (i) into another variable (k) 
using the following transformation: 
 
k = i / C ↔  i = C k 
 
For the above example C = +2 and k = 0, 1, 2, 3, …, n/2 . The loop is transformed 
to: 
 
for (k = 0; k ≤ n/2; k++) F(i); 

 
Notice that although now the loop variable (i) is transformed to the new variable (k), 
the segment inside the loop is still dependent on the old variable (i). Therefore, we 
have to express that segment in terms of the new variable (k). For example if F(i) 
costs T(i) = 2i operations, then in terms of the new variable T(k) = 2(2k). 

 
In this case, the number of operations done by the loop will be: 

 
/2 /2 /2

0 1 1
( ) ( ) 2(2 ) 4 ( / 2 1)

= = =

= = = = +∑ ∑ ∑
n n n

k k k
T n T k k k n n  

 
Exercise:  Redo the above example for the loop:   
 
for (i =0; i < n; i + = 2) F(i);   
 
when F(i) costs T(i) = constant number of operations (B).  
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3. Loop Variable Increment is Multiplicative by a Constant C 

 
Consider the loop increment to be multiplicative by an integer constant C > 1.  
 
Example (1): 
Loop variable is incremented by multiplying by C = 2. 
 
for (u = 1; u < n; u *= 2) F(u); 
 
In this case, we assume that n = 2m , where m is an integer and m = log n.  We then 
use the transformation: 
 
j = log u ↔  u = 2 j 

 
For the above example, u = 1, 2, 4, 8, 16 ….2m-1 

The transformation gives j = 0, 1, 2, 3, ….m-1,   where m = log n, and the loop is 
transformed to: 

 
for (j = 0; j < m; j++) F(u); 
 
For example, if F(u) costs T(u) = u operations, then in terms of the new variable the 
cost T(j) = u =2 j. In this case, the number of operations done by the loop will be: 
 

1 1

0 0
( ) ( ) 2 2 1 1

m m
j m

j j
T n T j n

− −

= =

= = = − = −∑ ∑  

 
However, if F(u) costs T(u) = constant number of operations (B), then in terms of the 
new variable T(j) = B. In this case, the number of operations done by the loop will 
be: 

1 1

0 0
( ) ( ) log

m m

j j
T n T j B mB B n

− −

= =

= = = =∑ ∑  

 
Example (2): 
The loop variable is decremented by dividing by C = 2: 
 
for (t = n; t > 1; t /= 2 ) F(t) 
 
Using the transformation i = log t ↔  t = 2i, then for t = n, n/2, n/4, …..2, the 
corresponding new variable will be i = m, m-1, m-2,…….,1. The loop is then 
transformed to: 
 
for (i = m; i ≥1; i--) F(t); 
 
For example, if F(t) costs T(t) = t operations, then in terms of the new variable the 
cost T(i) = t = 2i. In this case, the number of operations done by the loop will be: 
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1
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+
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However, if F(t) costs T(t) = constant number of operations (B), then in terms of the 
new variable, T(i) = B. In this case, the number of operations done by the loop will 
be: 

1

1
( ) ( ) log

i m

i m i
T n T i B mB B n

=

= =

= = = =∑ ∑  

Exercise:  
Consider computing the number of double arithmetic operations T(n) done by the 
following piece of code, assuming that n = 2m: 
 
for ( int t = n; t > 1; t /= 2 ){  

  for ( int u = 1; u < n; u *= 2 ){  
for ( int v = 0; v < n; v += 2 ){  

   // constant number of double arithmetic operations (B) 
} 

} 
} 
Using the appropriate transformation of loop variables, show that: 
T(n) = (B/2) n (log n)2 

  
 

 
3.3 Examples on Modeling Some Practical Algorithms 
 
Here, we present four examples of modeling some practical algorithms leading to the 
computation of the number of operations and the complexity of each. In the last two examples, 
we show that taking advantage of the nature of the problem can lead to a significant reduction 
of the algorithm complexity. 
 
3.3.1 Uniqueness Test 
 
Consider a simple algorithm to check whether all the elements in a given array are distinct. The 
input is an array A[0…n-1] of elements and the algorithm returns “true” if all the elements in 
A are distinct and “false” otherwise. 
 
ALGORITHM UNIQUE_ELEMENTS (A[ 0.. n-1]) 
for i = 0 to n-2 do 
 for j = i+1 to n-1 do 
  if (A[i] == A[j]) return false; 
return true; 
 
The problem size is n and we take T(n) = number of comparisons. In the best case, the duplicate 
of A[0] is A[1] and one comparison is made so that T(n) = Ω (1). In the worst case, all elements 
are distinct and we have 
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2 1 2 1
2

0 1 0 1
1 1 1 2

n n n n

i j i i i
T( n ) ( n i ) i n( n ) / O( n )

− − − −

= = + = =

= = − − = = − =∑ ∑ ∑ ∑  

 
Hence, the above algorithm has quadratic complexity. 
 
3.3.2 Insertion Sort 
 
The general idea of the insertion sort is that for each element we find the slot where it belongs. 
The algorithm performs successive scans through the data. When an element is out of sequence 
(less than its predecessor), it is pulled out and then inserted where it should belong. Array 
elements have to be shifted to the right to make space for the insertion. A pseudocode for the 
insertion sort function is given as follows: 
 
ALGORITHM InsertSort (A[0..n-1 ]) 
{      for i =1 to n-1 do 
       { 
 j = pointer to element Ai; 
 v = copy of Ai; 
 while( j > 0 && Aj-1 > v) 
          { Move data right: Aj ← Aj-1  
            Move pointer left: j-- } 

Insert v at the last (j) location: Aj ← v; 
         } 
 } 
 
For this algorithm, we consider two types of operations, array data shifts and array elements 
comparisons. In the best case, the array is already sorted in ascending order. The while loop 
will do one comparison and will not iterate so that the number of data shifts is zero. Hence, in 
the best case, 
  
Tcomp(n) = n-1 = Ω (n) and Tshift(n) = 0.  
 
In the worst case, the input array is sorted in descending order and the while loop iterates (i) 
times with one comparison and one shift each time. Therefore, 
 

( )
1 1

1 1

2 2

11
2

n n

comp shift comp
i i

comp shift

n( n )T ( n ) T ( n ) i i

Hence T( n ) T ( n ) T ( n ) ( n n ) O( n )

− −

= =

−
= = = =

= + = − =

∑ ∑  

  
Therefore, the total complexity of insertion sort is linear in the best case and quadratic in the 
worst case. 
 
 
3.3.3 Cosine Function Evaluation 
 
The cosine of an angle x (radians) has the infinite expansion: 
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A truncated series expansion can be used to obtain a good approximation to cos(x) in the form: 
 

2 2 4 6 2

1
1 1

2 2 4 6 2
( )cos( ) ....
( )! ! ! ! ( )!

i nn

i

x x x x xx
i n=

−
= + = − + − +∑  

 
A straightforward function to evaluate cos(x , n) using up to the nth term is given below. 
 
ALGORITHM cosine1 (double x, int n) 
{  
    double y = -x * x;  double sum = 1.0; 
    for (int i = 1; i <= n; i++) 
 sum = sum + pow (y,i) / fact (2*i); 
    return sum; 
} 
 
To compute T(n) = number of arithmetic operations, we consider here the simple functions 
pow(y,i) to compute yi  and fact (2*i) to compute (2i)!. The function call pow(y,i) will do (i-1) 
multiplications and fact(k) uses k multiplications so that the call fact(2*i) will do (2i+1) 
multiplications. Then, inside the loop, we have to do (i-1) + (2i+1) + 2 = 3i + 2 arithmetic 
operations. Notice that there is also one multiplication outside the loop. In this case, 

2 2

1
1 3 2 1 3 2 1 2 1 3 5 1 5( ) ( ) ( / ) ( ) . . ( )

n

i
T n i n n n n n n

=

= + + = + + + = + + = Θ∑  

Therefore, the algorithm given above is quadratic in n. Such complexity is high for some 
applications with extensive computation of cos(x). The question now is can we do better by 
taking into consideration the nature of the series? 
 
Examining the above algorithm, we can readily see that the cause of the quadratic behavior is 
that computing the ith term costs O(i) operations. If we can do it in constant time, the complexity 
would become O(n), i.e. linear.  The way to do this is to compute the ith term from the (i-1)th 
term in constant time. Let the ith term be Si = yi / (2i)! and hence Si-1 = yi-1 / (2(i-1))! so that, 
Si = y / [(2i-1)(2i)] Si-1 for i > 0  with S0 = 1. The modified cosine function will be: 
 
ALGORITHM cosine2 (double x, int n) 
{  
    double y = -x * x;  double S = 1.0; double sum = S ; 
    for (int i = 1; i <= n; i++) 
 int m = 2 * i ; 
 S = y /((m-1) * m) * S; 

sum = sum + S; 
    return sum; 
} 
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In the above modified version of the algorithm, the loop body now costs only a constant number 
of operations (6 arithmetic operations) so that T(n) = 1 + 6n = Θ(n), i.e. linear complexity. 
 
 
Exercise: 
Implement an O(n) algorithm to compute the exponential function ex using the truncated series: 
 

2 3

0
1

2 3
.....

! ! ! !

i nn
x

i

x x x xe x
i n=

= = + + + +∑  

 
 
3.3.4 The Maximum Subsequence Sum 
 
Given a sequence of integers (possibly negative), {a1 , a2 ,..., an}, find a start index (i) and an 

end index (j), with j ≥ i that would maximize the sum max

j

k
k i

S a
=

= ∑ .  We consider the sum to 

be zero if all integers are negative. As an example, for the sequence -3, 10, -1, 7, -2, -5, we find 
the indices to be i = 2 and j = 4 with Smax = 16.  
 
As an example of a practical application of this problem, we may consider a time series of daily 
stock market gains (positive values) and losses (negative values) over say 5 years. We want to 
mark the period in time over which the sum is maximum. 
 
As a start, we consider the following straightforward algorithm: 
 
ALGORITHM MAXSUBSUM1 (a [1..n]) 
Smax = 0;  im = 0;  jm = 0; 
for i = 1 to n do 
 for j = i to n do 
  Sij = 0; 
  for k = i to j do 
   Sij = Sij + a[k]; 
  if (Sij > Smax) { Smax = Sij;  im = i;   jm = j;} 
return Smax, im, jm; 
 
To analyze this algorithm, let T(n) = number of arithmetic operations. In this case, we encounter 
one arithmetic operation (addition) inside the k-loop so that: 
 

1 1 1

3 2 3

1 1 1 2 1

With some algebra, 1 6 3 2

( ) ( ) ( / ) ( )

( ) ( / )( ) ( )

jn n n n n

i j i k i i j i i
T n j i i i

T n n n n O n
= = = = = =

= = − + = +

= + + =

∑∑∑ ∑∑ ∑  

 
Therefore, the above algorithm has cubic complexity. 
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A faster version of the algorithm can be obtained when we realize that the sum Sij need not be 
calculated from the start every time, rather, we can accumulate it as the end index (j) increases: 
 
ALGORITHM MAXSUBSUM2 (a [1..n]) 
Smax = 0;  im = 0;  jm = 0; 
for i = 1 to n do 
 Sij = 0; 
 for j = i to n do 
  Sij = Sij + a[j]; 
  if (Sij > Smax) { Smax = Sij;  im = i;   jm = j;} 
return Smax, im, jm; 
 
 
The above modification has removed the need for the innermost loop (the k-loop) and therefore: 
 

2

1 1 1
1 1 1 2( ) ( ) ( ) / ( )

n n n n

i j i i i
T n n i i n n O n

= = = =

= = − + = = + =∑∑ ∑ ∑  

 
We can now see that this small modification has reduced the complexity of the algorithm from 
cubic to quadratic. However, can we do better? 
 
We can proceed by the observation that any negative subsequence cannot be the prefix of the 
maximum subsequence desired. This means that when Sij is negative, we can jump to a new 
start i = j + 1 and proceed from there. The algorithm implementing this modification is: 
 
ALGORITHM MAXSUBSUM3 (a [1..n]) 
i = 1; Smax = 0;  im = 0;  jm = 0; Sij =0; 
for j = 1 to n do 
 Sij = Sij + a[j]; 
  if (Sij > Smax) { Smax = Sij;  im = i;   jm = j; } 
   else if (Sij < 0) { i = j + 1;  Sij =0; } 
return Smax, im, jm; 
 
In this modification of the algorithm, we need only the end index loop (the j-loop).  In the worst 
case, we find that: 
 

1
2 2( ) ( )

n

j
T n n O n

=

= = =∑  

 
We can see now that taking advantage of the nature of the problem has reduced the complexity 
of the algorithm to become linear. 
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Exercises 
 

1. Assume the processing time of an algorithm of Big-O complexity O(f(n)) be directly 
proportional to f(n). Let three such algorithms A, B, and C have time complexity O(n), 
O(n log n), and O(n2), respectively. During a test, each algorithm spends 8 seconds to 
process 27 data items. Derive the time each algorithm should spend to process 214 items. 
 

2. Given two arrays A and B of n integers both of which are sorted in ascending order.  
Write an algorithm to check whether or not A and B have an element in common. Find 
the worst case number of array element comparisons done by this algorithm as a 
function of n and its Big-O complexity. 
 

3. The discrete Fourier Transform of an image f(x,y) of size N x N pixels is computed as  
 v y ) / Nπj ( u x +2{ - exp(x,y) f)  / N1 = ( F ( u ,v )

1N-

0x

1N

0y

2 ∑ ∑
=

−

=
  

where u = 0 , 1 , … , N-1 , and v = 0 , 1 , … , N-1 , and  j = sqrt(-1). 
If f(x,y) is generally complex, and the evaluation of exp{…} costs one complex 
multiplication, how many complex multiplications are needed to compute the Fourier 
Transform of the whole image ? 
 

4. The sine of an angle x (in radians) can be computed using the n-term expansion: 
sin (x) = Σ1 ≤ i ≤ n   (-1)i+1  x2i-1 / (2i-1)! 
Write an O(n) algorithm that uses the above expansion to compute sin(x) for arbitrary 
values of n ≥ 1, with x of type float. 
 

5. The exponential function ex can be evaluated by the finite approximation: 
n

x i n

i
e f ( x ,n ) x / i ! x x / ! ..... x / n!

=

= = = + + + +∑ 2

0
1 2   

Design an O(n) algorithm to compute the above function. 
 

6. Suppose a sequence A of n integers should already be in ascending order. Thus for the 
sequence (6,2,9,5,8,7) there are 6 pairs that are out of sequence: 
(6,2) , (6,5) , (9,5) , (9,8) , (9,7) , (8,7) 
Implement an algorithm to return the number of these out-of-order pairs.   
Determine T(n) = number of array element comparisons.  
What is the Big-O of this algorithm? 
 

7. A floating point array P contains the historical stock market prices for a given stock for 
days 0 .. n-1. Design an algorithm to find days i and j (i < j) such that if you buy on day 
(i) and sell on day (j), you get the maximum possible profit. Find the number of floating 
point comparisons and arithmetic operations done by your algorithm in terms of n. Also, 
find the Big-O complexity of the algorithm. 
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Appendix (A) 
 

Useful Mathematical Relations 
 
Functional Relations 

               
             

Stirling's Theorem: for large 

1 2 3

2
2

2

x x log n y z yz y z y z

log n x
b a a

n

n ( x ) x x x x log( xy ) log x log y
n log( n ) x log n log n log n / log b

nn! n n
e

log n! c c log n n log n c n O( n log n )

log i

π

+• = • = • = • = +

• = • = • =

 • ≈  
 

• = + + − =

•
1

2

1 1

n

i

n n
i n

i i

log n! O( n log n )

i log i log i n log n O( n log n )

=

= =

= =

• = ≤ =

∑

∑ ∑

 

 
Finite Series 
 

• Arithmetic Series: ∑
−

=

1

0

n

i
(a + b i) = (n/2) {2a + (n-1)b} 

n n

i i
( n i ) i n( n ) /

−

= =

− = = +∑ ∑
1

0 1
1 2  

• Geometric Series: ∑
=

n

i 0
xi =  (xn+1 – 1)/(x-1) for x ≠ 1 

1 1
1

0 1 1
2 2 1 2 2 2 2 1 2 1( )

n n n
i n i n i n

i i i
i n

− −
−

= = =

= − = − = − +∑ ∑ ∑   

 
 
 
 
 
Sums of Powers of Natural Numbers 
 

• ∑
=

n

i 1
i  =  n(n+1)/2 

• ∑
=

n

i 1
i2  =  n(n+1)(2n+1)/6 

• ∑
=

n

i 1
i3  =  [n(n+1)/2]2 

n n
n i i n

i i
i ( n i ) ( n )

−
− +

= =

= − = − +∑ ∑
1

1

0 1
2 2 2 2 1
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• ∑
=

n

i 1
i4  =  n(n+1)(2n+1)(3n2 + 3n -1) / 30 

• ∑
=

n

i 1
i5  =  n2 (n+1)2 (2 n2 +2n -1) / 12 

 
 

Sums of Odd Numbers and their Powers 
 

• ∑
=

n

i 1
(2 i – 1) = n2 

• ∑
=

n

i 1
(2 i – 1)2 = n(4n2 – 1)/3 

• ∑
=

n

i 1
(2 i – 1)3 = n2 (2n2 – 1) 

 
 
Other Finite Series 
 

• ∑
=

n

i 1
i (i + 1)2 =  (1/12) n(n+1)(n+2)(3n + 5) 

• ∑
=

n

i 1
i . i! = (n+1)! – 1 

• ∑
=

n

i 2
1 /(i2 -1) = (3/4) – (2n+1)/[2n(n+1)] 

• ∑
=

n

i 1
1/ i ~  γ + ln n + 1/(2n)    for large n,  γ = 0.577 = Euler’s constant 

• ∑
=

n

i 1 1)1(
1

+
=

+ n
n

ii
  

 
 
Infinite Series and Products  
 

• ∑
∞

= 0k
akx = 1 / (1 – ax)  for (a > 1 and x < 0) or (0 < a < 1  and x > 0) 

• ∑
∞

= 0k
xk / k! = ex 

• ∑
∞

= 0k
xk = 1 / (1-x)  for |x| < 1 
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• ∑
∞

= 0k
(a + bk) xk = a /(1-x) + b x /(1 – x2)  for |x| < 1 

• ∑
∞

= 1k
(-1)k+1 / k = ln 2 

• ∑
∞

= 1k
(-1)k+1 / k2 = π2 /12 

• ∑
∞

= 1k
1 / (2k – 1)2 = π2 / 8 

• ∑
∞

= 1k
1 / (k 2k) = ln 2 

• ∑
∞

= 1k
1 / (k2 2k) = π2 /12  - (ln 2)2 /2 

• ∑
∞

= 0k
71828.2

!
1

== e
k

 

• ∑
∞

= 0k
36787.0/1

!
)1(

==
− e
k

k

 

• ∑
∞

= 1k
k /(k+1)! = 1 

• 
2
111

2
2 =





 −∏

∞

=k k
 

• 
x

x
k

k

−
=+∏

∞

= 1
1)1(

0

2   for |x| < 1 

 
 
General Solution of 1st Order Linear Recurrences 
 

             n nT( n ) a T( n - ) b , given T( ) or T( )= +1 0 1  
 

Solution: 
 

Successive substitution gives for the cases of T(0) given and T(1) given: 
 
 
 
 
 

n n n

i i j n
i i j i

n n n

i i j n
i i j i

T( n ) T( ) a b a b

T( n ) T( ) a b a b

−

= = = +

−

= = = +

= + +

= + +

∏ ∑ ∏

∏ ∑ ∏

1

1 1 1

1

2 2 1

0

1
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General D&Q Recurrence 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( ) ( ) ( )

1

0
2

1

0

1

0

log , :

(1) ( ) (1) ( / ) 1 (1)

(2) ( ) ( ) ( / ) ( )

( ) , :

 /

(3

  

) ( ) (1) ( )    

−

=

−
−

=

−

=

= +

=

= + >

= + >

=

= +

∑

∑

∑

c
m

m i i

i
m

m i i

i
x

m
m x i

x
i

With m n solutions are

T n T a a f n c for n with T given

T n T c a a f n c for n c with T c given

For f n bn solutions are
aT n a

T n aT

T bn
c

n c f n

2
1

0

1

 for T(1) given.

(4) ( ) ( ) ( )   for T(c) given

:
(5)

   
( ) (1) log 1 (1)

(6) ( ) ( ) (log 1) ( )

,

−
−

=

−

= +

= + >

= + −

=

>

∑
m

m x i
x

i

m x
c

m

x

x
c

aT n a T c bn
c

solutions are
T n T a bn n f

When a c
or n with T given

T n T c a bn n for n c with T c given


	Contents
	Part 0 Introduction
	Part 1 Bounds
	Part 2 Types of Complexities
	Part 3 Complexity Calculations
	APP(A)

