

Department of Computer Science and Engineering

CSCE 2211 Applied Data Structures

Prof. Amr Goneid

Spring 2024

CSCE 2211 Applied Data Structures

Prof. Amr Goneid

Course Resources

Instructor: Prof. Amr Goneid E-mail: goneid@aucegypt.edu Office: Rm 2152 SSE

Text book

"Data Structures and Algorithm Analysis in C++", by Mark A. Weiss, 4th edition, Pearson, 2013, ISBN-13: 978-0132847377

Other supplemental materials: Course Slides

Course Website: http://www1.aucegypt.edu/faculty/cse/goneid/csce2211

Language: C++

Course Goals

- Demonstrate knowledge and understanding of Data Models, Data Abstraction and ADTs and their role in problem solving and S/W development.
- Choose the appropriate data structure for modeling a given problem.
- Design and implement various ADTs in a high level language (C++) using Object Oriented Concepts. Topics include but are not limited to: trees, binary search trees, dictionaries, self-balancing trees, B-trees, red black trees, heaps, priority queues, sets, and graphs.
- Compare alternative implementations of data structures with respect to performance.
- Demonstrate experience in the design of algorithms for solving problem that use the above data structures.
- Demonstrate knowledge of common applications for each data structure in the topic list.
- Practice basic algorithm analysis using complexity bounds (Big-Oh, Big-Theta and Big-Omega).

Course Contents

- 1. Data Modeling and ADTs (2 Lecture)
 - a. Data Modeling
 - b. A Classification of Abstract Structures
 - c. Another Classification
 - d. Special Data Structures
 - e. Examples on Modeling
- 2. Revision of Linear Data Structures (1 Lecture)
 - a. Tables, Lists, vectors
 - b. Stacks and Queues
- 3. Introduction to the Analysis of Algorithms (4 Lectures)
 - a. Algorithms
 - b. Analysis of Algorithms
 - c. Time Complexity
 - d. Bounds and the Big-O
 - e. Types of Complexities
 - f. Rules for Big-O
 - g. Examples of Algorithm Analysis
 - h. Comparing Complexities
 - i. Polynomial and Intractable Algorithms
- 4. Trees (General) (1 Lectures)
 - a. General
 - b. Binary Trees
 - c. Tree Traversal
- 5. Dictionaries and Binary Search Trees (3 Lectures)
 - a. The Dictionary Data Structure
 - b. The Binary Search Tree (BST)
 - c. Search, Insertion and Traversal of BST
 - d. Removal of nodes from a BST
 - e. Binary Search Tree ADT
 - f. Tries (Prefix Trees), Suffix Trees
- 6. Self-Organizing Trees (3 Lectures)
 - a. AVL Trees
 - b. Red-Black Trees
 - c. Splay Trees
- 7. B- Trees (2 Lectures)
 - a. B-Trees as M-ary Search
 - b. Insertion in and removal from B-Trees
- 8. Heaps and Priority Queues (3 Lectures)
 - a. The Binary Heap
 - b. Insertion and Removal

- c. A Priority Queue Class
- d. Analysis of PQ Operations
- e. Heapify: A Modified Insertion Algorithm
- f. Heap Sort
- g. Fibonacci Heaps and Applications
- 9. The Set Data Structure: Disjoint Sets (1 Lectures)
 - a. Tree Representation
 - b. Basic Operations
 - c. Parent Array Representation
 - d. Simple Find and Simple Union
 - e. Disjoint Sets Class
 - f. Multisets
 - g. Applications

10. Graphs (5 Lectures)

- a. Basic Definitions
- b. Paths and Cycles
- c. Connectivity
- d. Other Properties
- e. Representation
- f. Examples of Graph Algorithms:
 - Graph Traversal
 - Shortest Paths
 - Minimum Cost Spanning Trees
 - Maximum Flow

Grading Criteria:

- Assignments: 30%
- Midterms: 20%
- Term Project: 20%
- Term Paper: 10%
- Final: 20%