# CSCE 2211 Spring 2024 Applied Data Structures Midterm Exam (Closed Book)

#### Dr. Amr Goneid

(70 Minutes) Date: Monday March 25, 2024

#### Important:

In all questions, show in detail all steps leading to your answer. <u>Points will be deducted</u> if you do not show these steps in detail <u>even if your answers are correct</u>.

#### **Question 1 (25 points)**

| • | Convert the following infix expressions to postfix notation:                |             |
|---|-----------------------------------------------------------------------------|-------------|
|   | $(\mathbf{A}+\mathbf{B})^*((\mathbf{D}+\mathbf{E})^*\mathbf{C})+\mathbf{A}$ | (10 points) |
|   | Answer: AB+CDE+**A+                                                         |             |
| • | Given that: $A = 6$ , $B = 2$ , $C = 2$ , $D = 1$ , $E = 2$                 |             |
|   | Evaluate the following postfix expression: <b>AB*CDE+*+C*</b>               | (15 points) |
|   | Answer: 36                                                                  |             |

#### **Question 2 (25 points)**

A. Arrange the following in <u>increasing</u> order of complexity:

$$n^{2} \log(3^{n}), \sqrt{n \log(2^{\sqrt{n}})}, (n+2) \log n^{8}$$
 (10 points)

**Solution:** 

 $\overline{n^2 \log(3^n)} = n^3 \log 3 = O(n^3)$   $\sqrt{n} \log(2^{\sqrt{n}}) = n \log 2 = O(n)$   $(n+2) \log n^8 = 8(n+2) \log n = 8n \log n + 16 \log n = O(n \log n)$ Then  $\sqrt{n} \log(2^{\sqrt{n}}) < (n+2) \log n^8 < n^2 \log(3^n)$ 

B. Consider the following algorithm to operate on an array *a*[1..*n*] of type double:

ALGORITHM Process (a [1..n], Smax, im, jm) double Smax = 0.0; int im = jm = 0; double Sij; for i = 1 to n do Sij = 0.0; for j = i to n do Sij = Sij + a[j]; if (Sij > Smax) { Smax = Sij; im = i; jm = j;}

(a) Find the exact number of double arithmetic operations done by the algorithm.

(b) What will be the complexity of the algorithm in terms of the array size (n)? (15 points)

#### **Solution:**

$$\overline{T(n)} = \sum_{i=1}^{n} \sum_{j=i}^{n} 1 = \sum_{i=1}^{n} (n-i+1) = \sum_{k=1}^{n} k = n(n+1)/2$$
$$T(n) = O(n^2)$$

# Question 3 (25 points)

(a) In a complete binary tree, all levels are completely filled, except the rightmost of the last level. Given that the total number of nodes in the tree is N = 97. Find the height of this tree. (10 points)

### **Solution:**

Let h be height of the tree. Since all levels from 1 to h-1 are completely filled, then the number of nodes in these levels is  $2^{h-1}$ -1. If N is the total number of nodes in the tree, then:  $2^{h-1}-1 < N \le 2^{h}-1$ . Adding 1 and taking logs, then  $h-1 < \log (N+1) \le h$ , or  $h-1 < \log (98) \le h$ i.e h-1 < 6.615)  $\le h$ . Therefore, h = 7.

(b) Consider a <u>Binary Search Tree</u> containing characters. When traversed in post-order, it gives the following sequence: H, C, A, N, U, S, R, M. Draw the tree. (16 points)
 Solution:



# Question 4 (25 points)

The 7 character keys (A, B, C, D, E, F, G) are inserted in a BST using <u>two different insertion</u> <u>orders</u>: (G, F, E, D, C, B, A), and (C, B, A, E, D, G, F).

• Draw the two resulting trees.

(10 points)

• Compute and compare the average search costs per key in the above two trees given that the search probability is the same for all keys. (15 points)

### Solution:

- The 1<sup>st</sup> tree is all left sided like a linked list.
  The 2<sup>nd</sup> tree has the following level order traversal: Level(1): C, Level(2): B, E, Level(3): A, D, G, Level(4): F
- Average Search Cost: 1<sup>st</sup> Tree: C = (1+2+3+4+5+6+7)/7 = 28/7 = 4 per key. Search Complexity is *O*(*n*)

2<sup>nd</sup> Tree: C = (1 + 2\*2 + 3\*3 + 1\*4)/7 = 18/7 = 2.57 per key. Search Complexity is  $O(\log n)$ 2<sup>nd</sup> Tree is more efficient for search because it is balanced.

Good Luck