CSCE 2211 Applied Data Structures

Course Syllabus

1. Course number and name

CSCE 2211 Applied Data Structures

2. Credits and contact hours

3 credit hours – offered 2 X 75 min weekly

3. Prerequisites: CSCE 110/1101 Fundamentals of Computing II

Is a prerequisite for: CSCE 321/2202 Analysis and Design of Algorithms.

4. Instructor's or course coordinator's name

Course Coordinator/ Instructor: Dr. Amr Goneid

5. Text book & Resources:

Text book

"Data Structures and Algorithm Analysis in C++", by Mark A. Weiss, 4th edition, Pearson, 2013, ISBN-13: 978-0132847377

Other supplemental materials: Course Slides

Course Web Site: http://www1.aucegypt.edu/faculty/cse/goneid/csce2211

Language: C++

6. Specific course information

a. Course Description

In depth coverage of applied data structures needed by computing professionals. Includes but not limited to: Abstract data types and classes, analysis of algorithms, trees, binary search trees, dictionaries, self-balancing trees, B-Trees, red black trees, heaps, priority queues, sets, and graphs. Practical usage of the data structures is covered.

Prerequisites: CSCE 110/1101 Fundamentals of Computing II

Offered: in fall and spring semesters

b. Prerequisites or Co-requisites

CSCE 110/1101 Fundamentals of Computing II

c. Whether a required, elective, or selected elective course in the program:

Required

7. Learning Objectives

- Demonstrate knowledge and understanding of Data Models, Data Abstraction and ADTs and their role in problem solving and S/W development.
- Choose the appropriate data structure for modeling a given problem.
- Design and implement various ADTs in a high-level language (C++) using Object Oriented Concepts. Topics include but are not limited to: trees, binary search trees, dictionaries, self-balancing trees, B-trees, red black trees, heaps, priority queues, sets, and graphs.
- Compare alternative implementations of data structures with respect to performance.
- Demonstrate experience in the design of algorithms for solving problem that use the above data structures.
- Demonstrate knowledge of common applications for each data structure in the topic list.
- Practice basic algorithm analysis using complexity bounds (Big-Oh, Big-Theta and Big-Omega).

7. Brief list of topics to be covered

- Course Outline (1 Lecture)
- Data Modeling and ADTs (1 Lecture)
- Revision of Linear Data Structures (1 Lecture)
- Introduction to the Analysis of Algorithms (4 Lectures)
- Trees (General) (1 Lecture)
- Dictionaries and Binary Search Trees (3 Lectures)
- Self-Organizing Trees (3 Lectures)
- B-Trees (2 Lectures)
- Heaps and Priority Queues (3 Lectures)
- The Set Data Structure: Disjoint Sets (1 Lecture)
- Graphs (**5 Lectures**)

Grading Criteria:

• Assignments: 30%

• Midterms: 20%

• Term Project: 20%

• Term Paper: 10%

• Final: 20%