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Abstract

A logic of orthogonality characterizes all “orthogonality consequences” of a
given class Σ of morphisms, i.e. those morphisms s such that every object or-
thogonal to Σ is also orthogonal to s. A simple four-rule deduction system is
formulated which is sound in every cocomplete category. In locally presentable
categories we prove that the deduction system is also complete (a) for all classes
Σ of morphisms such that all members except a set are regular epimorphisms and
(b) for all classes Σ, without restriction, under the set-theoretical assumption that
Vopěnka’s Principle holds. For finitary morphisms, i.e. morphisms with finitely
presentable domains and codomains, an appropriate finitary logic is presented,
and proved to be sound and complete; here the proof follows immediately from
previous joint results of Jǐŕı Rosický and the first two authors.

1 Introduction

The famous “orthogonal subcategory problem” asks whether given a class Σ of mor-
phisms of a category the full subcategory Σ⊥ of all objects orthogonal to Σ is reflective.
Recall that an object is orthogonal to Σ iff its hom-functor takes members of Σ to iso-
morphisms. In the realm of locally presentable categories for the orthogonal subcategory
problem

(a) the answer is affirmative whenever Σ is small – more generally, as proved by Peter
Freyd and Max Kelly [7], it is affirmative whenever Σ = Σ0∪Σ1 where Σ0 is small
and Σ1 is a class of epimorphisms,

and
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(b) assuming the large-cardinal Vopěnka’s Principle, the answer remains affirmative
for all classes Σ, as proved by the first author and Jǐŕı Rosický in [3].

The problem to which the present paper is devoted is “dual”: we study the orthogonality
consequences of classes Σ of morphisms by which we mean morphisms s such that every
object of Σ⊥ is also orthogonal to s. Example: if Σ⊥ is reflective, then all the reflection
maps are orthogonality consequences of Σ. Another important example: given a Gabriel-
Zisman category of fractions CΣ : A → A[Σ−1], then every morphism which CΣ takes to
an isomorphism is an orthogonality consequence of Σ. In Section 2 we recall the precise
relationship between Σ⊥ and A[Σ−1].

We formulate a very simple logic for orthogonality consequence (inspired by the cal-
culus of fractions and by the work of Grigore Roçu [12]) and prove that it is sound in
every cocomplete category. That is, whenever a morphism s has a formal proof from
a class Σ, then s is an orthogonality consequence of Σ. In the realm of locally pre-
sentable categories we also prove that our logic is complete, that is, every orthogonality
consequence of Σ has a formal proof, provided that

(a) Σ is small – more generally, completeness holds whenever Σ = Σ0 ∪ Σ1 where Σ0

is small and Σ1 is a class of regular epimorphisms

or

(b) Vopěnka’s Principle is assumed.

(We recall Vopěnka’s Principle in Section 4.) In fact the completeness of our logic for
all classes of morphisms will be proved to be equivalent to Vopeňka’s Principle. This
is very similar to results of Jǐŕı Rosický and the first author concerning the orthogonal
subcategory problem, see 6.24 and 6.25 in [3].

Our logic is quite analogous to the Injectivity Logic of [4] and [1], see also [12].
There a morphism s is called an (injectivity) consequence of Σ provided that every
object injective w.r.t. members of Σ is also injective w.r.t. s. Recall that an object
is injective w.r.t. a morphism s iff its hom-functor takes s to an epimorphism. Recall
further from [1] that the deduction system for Injectivity Logic has just three deduction
rules:

transfinite
composition

si (i < α)
t

if t is an α-composite of the si’s

pushout
s
t

if

s //

²² ²²
t

//
is a pushout

cancellation
u · t
t

2



We recall the concept of α-composite in 3.2 below.
In locally presentable categories the corresponding logic is complete and sound for

sets Σ of morphisms, as proved in [1]. But the Injectivity Logic is not complete for
classes Σ of morphisms – in a sharp contrast to the case of Orthogonality Logic. We
give an (absolute) counter-example at the end of our present paper.

Now both transfinite composition and pushout are sound rules for orthogo-
nality, too. In contrast, cancellation is not sound and has to be substituted by the
following weaker form:

weak
cancellation

u · t v · u
t

Further we have to add a fourth rule in case of orthogonality:

coequalizer
s
t

if
f //

g
//

t // is a coequalizer such
that f · s = g · s

We obtain a 4-rule deduction system for which the above completeness results (a) and
(b) will be proved.

The above logics are infinitary, in fact, transfinite composition is a scheme of
deduction rules, one for every ordinal α. We also study the corresponding finitary logics
by restricting ourselves to sets Σ of finitary morphisms, meaning morphisms with finitely
presentable domain and codomain. Both in the injectivity case and in the orthogonality
case one simply replaces transfinite composition by two rules:

identity
idA

and

composition s1 s2

t
if t = s2 · s1

This finitary logic is proved to be sound and complete for sets of finitary morphisms.
In fact, in [10] a description of the category of fractions Aω[Σ−1] (see 2.1) as a dual to
the theory of the subcategory Σ⊥ is presented; our proof of completeness of the finitary
logic is an easy consequence.

The result of Peter Freyd and Max Kelly mentioned at the beginning goes beyond
locally presentable categories, and also our preceding paper [1] is not restricted to this
context. Nonetheless, the present paper studies the orthogonality consequence and its
logic in locally presentable categories only.
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2 Finitary Logic and the Calculus of Fractions

2.1. Assumption Throughout the paper A denotes a locally presentable category in
the sense of Gabriel and Ulmer; the reader may consult the monograph [3]. A locally
presentable category is a cocomplete category A such that, for some infinite cardinal λ,
there exists a set

Aλ

of objects representing all λ-presentable objects up-to an isomorphism and such that a
completion of Aλ under λ-filtered colimits is all of A. The category A is then said to
be locally λ-presentable. Recall that a theory of a locally λ-presentable category A is a
small category T with λ-small limits1 such that A is equivalent to the category

Contλ(T )

of all set-valued functors on T preserving λ-small limits. For every locally λ-presentable
category it follows that the dual Aop

λ of the above full subcategory is a theory of A:

A ∼= Contλ(Aop
λ )

Morphisms with λ-presentable domain and codomain are called λ-ary morphisms.

2.2. Notation For every class Σ of morphisms of A we denote by

Σ⊥

the full subcategory of all objects orthogonal to Σ. If Σ is small, this subcategory is
reflective, see e.g. [7]. We denote, whenever Σ⊥ is reflective, by

RΣ : A → Σ⊥

a reflector functor and by ηA : A → RΣA the reflection map; without loss of generality
we will assume RΣηA = idRΣA = ηRΣA.

2.3. Observation If Σ⊥ is a reflective subcategory, then orthogonality consequences of
Σ are precisely the morphisms s such that RΣs is an isomorphism.

In fact, if s : A → B is an orthogonality consequence of Σ, then RΣA is orthogonal
to s, which yields a commutative triangle

A
s //

ηA ""DD
DD

DD
DD

B

u||zz
zz

zz
zz

RΣA

The unique morphism ū : RΣB → RΣA with ū · ηB = u is inverse to RΣs: this follows
from the diagram

A
s //

ηA ""DD
DD

DD
DD

B
u

||zz
zz

zz
zz ηB

""EE
EE

EE
EE

RΣA
RΣs

// RΣB
ūoo

1Limits of diagrams of less than λ morphisms are called λ-small limits. Analogously λ-wide pushouts
are pushouts of less than λ morphisms.
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Conversely, if s : A → B is turned by RΣ to an isomorphism, then every object X
orthogonal to Σ is orthogonal to s: given f : A → X we have a unique f̄ : RΣA → X
with f = f̄ · ηA, and we use f̄ · (RΣs)−1 · ηB : B → X. It is easy to check that this is the
unique factorization of f through s.

2.4. Remark The above observation shows a connection of the orthogonality logic with
the calculus of fractions of Peter Gabriel and Michel Zisman [8], see also Section 5.2 in
[5].

Given a class Σ of morphisms in A, its category of fractions is a category A[Σ−1]
together with a functor

CΣ : A → A[Σ−1]

universal w.r.t. the property that CΣ takes members of Σ to isomorphisms. (That is, if
a functor F : A → B takes members of Σ to isomorphisms, then there exists a unique
functor F̄ : A[Σ−1] → B with F = F̄ · CΣ.)

The category of fractions is unique up-to isomorphism of categories whenever it
exists, and it does exist if Σ is small, see [5], 5.2.2.

2.5. Example (see [5], 5.3.1) For every reflective subcategory B of A, R : A → B the
reflector, put Σ = {s |Rs is an isomorphism}. Then B = Σ⊥ ' A[Σ−1]. More precisely,
there exists an equivalence E : A[Σ−1] → Σ⊥ such that E · CΣ = R = RΣ.

2.6. Example (see [6]) In the category Ab of abelian groups consider the single mor-
phism

Σ = {Z→ 0}
where Z is the group of integers. Then clearly

Σ⊥ = {0}.
Observe that

Ab[Σ−1] 6∼= {0}
because the coreflector F : Ab → Abt of the full subcategory Abt of all torsion groups
takes Z → 0 to an isomorphism, but F is the identity functor on Abt. This of course
implies that CΣ : Ab → Ab[Σ−1] is monic on Abt.

2.7. Definition (see [8]) A class Σ of morphisms is said to admit a left calculus of
fractions provided that

(i) Σ contains all identity morphisms,
(ii) Σ is closed under composition,
(iii) for every span

s //

f
²²

with s ∈ Σ

there exists a commutative square

s //

f
²²

f ′
²²

s′
//

with s′ ∈ Σ
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and

(iv) for every parallel pair f, g equalized by a member s of Σ there exists a member
s′ of Σ coequalizing the pair:

s //
f //

g
//

s′ //

2.8. Theorem (see [10] IV.2) Let Σ be a set of finitary morphisms of a locally finitely
presentable category A. If Σ admits a left calculus of fractions in the subcategory Aω,
then Σ⊥ is a locally finitely presentable category whose theory is dual to Aω[Σ−1].

More precisely: Let CΣ : Aω → Aω[Σ−1] be the canonical functor from Aω into the
category of fractions of Σ in Aω, see 2.4. Then there exists an equivalence functor

I : Contω(Aω[Σ−1]op) → Σ⊥

such that for the inclusion functor E : Aω → A and the Yoneda embedding Y :
Aω[Σ−1] → Contω(Aω[Σ−1]op) the following diagram

Aω
CΣ //

Ä _

E

²²

Aω[Σ−1]
Ä _

Y
²²

Contω(Aω[Σ−1]op)

I
²²

A RΣ // Σ⊥

(2.1)

commutes.

2.9. Corollary Let Σ admit a left calculus of fractions in Aω. Then the orthogonality
consequences of Σ in Aω are precisely the finitary morphisms s such that CΣs is an
isomorphism.

In fact, since I · Y is a full embedding, we know that CΣs is an isomorphism iff
(I · Y · CΣ)s is one, thus, this follows from Observation 2.3.

2.10. Example (refer to 2.6) For Σ = {Z→ 0}, the smallest class Σ0 in Ab (resp., in
Abω) containing Σ and admitting a left calculus of fractions is the class of all (resp.,
all finitary) morphisms which are identities or have codomain 0. One sees easily that
Ab[Σ−1

0 ] = {0} = Abω[Σ−1
0 ] = Σ⊥

0 = Σ⊥.

2.11. Remark In a finitely cocomplete category A for every set Σ of finitary morphisms
there is a canonical extension of Σ to a set Σ′ admitting a left calculus of fractions in
Aω: let Σ′ be the closure in Aω of

Σ ∪ {idA}A∈Aω
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under
(a) composition
(b) pushout

and
(c) “weak coequalizers” in the sense that Σ′ contains for every pair f, g : A → B, a

coequalizer of f, g whenever f · s = g · s for some member s of Σ′.
We will see in Observation 2.16 below that Σ and Σ′ have the same orthogonality
consequences.

2.12. Theorem (see [5], 5.9.3) If a set Σ admits a left calculus of fractions, then the
class of all morphisms taken by CΣ to isomorphisms is the smallest class Σ′ containing
Σ and such that given three composable morphisms

t // u // v //

with u · t and v · u both in Σ′, then t lies in Σ′.

2.13. Remark Apply the above theorem to Σ′ of Remark 2.11: if Σ′′ denotes the closure
of Σ′ under “weak cancellation” in the sense that from u · t ∈ Σ′′ and v · u ∈ Σ′′ we
derive t ∈ Σ′′, then Σ′′ is precisely the class taken by CΣ to isomorphisms. This leads
us to the following

2.14. Definition The Finitary Orthogonality Deduction System consists of the following
deduction rules:

identity
idA

composition
s1 s2

s2 · s1
if s2 · s1 is defined

pushout
s
t

if

s //

²² ²²
t

//

is a pushout

coequalizer
s
t

if
g

//
f //

t
// is a coequalizer

and f · s = g · s

weak cancellation
u · t v · u

t

We say that a morphism s can be proved from a set Σ of morphisms using the Finitary
Orthogonality Logic, in symbols

Σ ` s

provided that there exists a formal proof of s from Σ using the above five deduction
rules (in Aω).
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2.15. Remark A formal proof of s is a finite list

t1, t2, . . . , tk

of finitary morphisms such that s = tk and for every i = 1, . . . , k either ti ∈ Σ, or ti is the
conclusion of one of the deduction rules whose assumptions lie in the set {t1, . . . , ti−1}.

For a locally presentable category the Finitary Orthogonality Logic is the application
of the relations ` and |= to finitary morphisms of A.

2.16. Observation In every finitely cocomplete category the Finitary Orthogonality
Logic is sound: if a finitary morphism s has a proof from a set Σ of finitary morphisms
then s is an orthogonality consequence of Σ. Shortly:

Σ ` s implies Σ |= s.

It is sufficient to check individually the soundness of the five deduction rules. Every
object X is clearly orthogonal to idA; and it is orthogonal to s2 · s1 whenever X is
orthogonal to s1 and s2. The soundness of the pushout rule is also elementary:

s //

²² ²² ∃!

»»1
11

11
11

11
11

11

t //

∀ ''NNNNNNNNNNNNN

ÃÃ@
@

@
@

X

Suppose t is a coequalizer of f, g : A → B and let f · s = g · s. Whenever X is
orthogonal to s, it is orthogonal to t. In fact, given a morphism p : B → X,

A′ s // A
g

//
f //

B
t //

p

²²

B′

~~}
}

}
}

X

then from p ·f ·s = p ·g ·s it follows that p ·f = p ·g (due to X ⊥ s) and thus p uniquely
factors through t = coeq(f, g).

Finally, let X be orthogonal to u · t and v · u,

A
t //

p
ÃÃ@

@@
@@

@@
B

r′
²²Â
Â
Â

r

²²

u // C
q

~~~~
~~

~~
~

v // D

w′
wwn n n n n n nw

wwnnnnnnnnnnnnnn

X

then we show X ⊥ t. Given p : A → X there exists q : C → X with p = q · (u · t).
Then r = q · u fulfils p = r · t. Suppose r′ fulfils p = r′ · t. We have, since X ⊥ v · u, a
unique w : D → X with r = w · v · u and a unique w′ with r′ = w′ · v · u. The equality
w · v · u · t = w′ · v · u · t implies w · v = w′ · v, thus,

r = w · v · u = w′ · v · u = r′.
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2.17. Theorem In locally finitely presentable categories the Finitary Orthogonality
Logic is complete for sets Σ of finitary morphisms:

Σ |= s implies Σ ` s.

Proof Let s be an orthogonality consequence of Σ and let Σ̄ be the set of all finitary
morphisms that can be proved from Σ; we have to verify that s ∈ Σ̄. Due to the first
four deduction rules, Σ̄ clearly admits a left calculus of fractions in Aω. Hence CΣ̄s is, by
Corollary 2.9, an isomorphism. Theorem 2.12 implies (due to weak cancellation)
that s ∈ Σ̄.

2.18. Example demonstrating that we cannot, for the finitary orthogonality logic, work
entirely within the full subcategory Aω: let us denote by

Σ |=ω s

the statement that every finitely presentable object X ∈ Σ⊥ is orthogonal to s. Then
it is in general not true that, given a set of finitary morphisms Σ, then Σ |=ω s implies
Σ ` s.

Let A = Rel(2,2) be the category of relational structures on two binary relations α
and β. We denote by

∅ the initial (empty) object,
1 a terminal object (a single node which is a loop of α and β),
T a one-element object with α = ∅ and β a loop

and, for every prime p ≥ 3, by
Ap the object on {0, 1, . . . , p− 1} whose relation β is a clique (that is, two elements
are related by β iff they are distinct) and the relation α is a cycle of length p with
one additional edge from 1 to 0:

p− 2

{{vvv
vv

vv
vv

3

p− 1

$$II
II

II
II

II
2

]]<<<<<<<<

0
//
1

@@¢¢¢¢¢¢¢¢
oo

. . .

Consider the set Σ of finitary morphisms given by

Σ = {t, u} ∪ {∅ → Ap; p ≥ 3 a prime}

where t : T → 1 and u : 1 + 1 → 1 are the unique morphisms. Orthogonality of a
relational structure X to Σ implies that every loop of the relation β is a joint loop of
both relations (due to t) and such a loop is unique (due to u). Moreover, the given
object X has a unique morphism from each Ap. If X is finitely presentable (i.e., in this
case, finite), then one of these morphisms f : Ap → X is not monic; given i 6= j with
f(i) = x = f(j), then x is a loop of β in X (recall that β is a clique in Ap), thus, X has a
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unique joint loop of α and β, in other words, a unique morphism 1 → X. Consequently,
X is orthogonal to ∅ → 1. This proves

Σ |=ω (∅ → 1).

However ∅ → 1 cannot be deduced from Σ in the Finitary Deduction System because
the object

Y =
∐

p ≥ 3
p prime

Ap

is orthogonal to Σ but not to ∅ → 1. In fact, Y has no loop of β, thus, Y is orthogonal
to t and u. Furthermore for every prime p ≥ 3 the coproduct injection ip : Ap → Y is
the only morphism in hom(Ap, Y ). In fact, due to the added edge 1 → 0 a morphism
f : Ap → Y necessarily takes {0, 1} ⊆ Ap onto {0, 1} ⊆ Aq for some q. Since p and q are
primes and f restricts to a mapping of a p-cycle into a q-cycle, it is obvious that p = q.
And it is also obvious that Ap has no endomorphisms mapping {0, 1} into itself except
the identity – consequently, f = ip.

3 General Orthogonality Logic

3.1. Remark (i) Recall our standing assumption that A is a locally presentable cat-
egory. We will now present a (non-finitary) logic for orthogonality and prove that it
is always sound, and that for sets of morphisms it is also complete. We will actually
prove the completeness not only for sets, but also for classes Σ of morphisms which are
presentable, i.e., for which there exists a cardinal λ such that every member s : A → B
of Σ is a λ-presentable object of the slice category A ↓ A. The completeness of our logic
for all classes Σ of morphisms is the topic of the next section.

(ii) We recall the concept of a transfinite composition of morphisms as used in homo-
topy theory. Given a ordinal α (considered, as usual, as the chain of all smaller ordinals),
an α-chain in A is simply a functor C from α to A. It is called smooth provided that C
preserves directed colimits, i.e., if i < α is a (ii) limit ordinal then Ci = colimj<i Cj.

3.2. Definition Let α be an ordinal. A morphism h is called an α-composite of mor-
phisms hi(i < α), where α is an ordinal, provided that there exists a smooth α-chain
Ai(i ≤ α) such that h is the connecting morphism A0 → Aα and each hi is the connecting
morphism Ai → Ai+1 (i < α).

3.3. Examples (1) An ω-composite of a chain

A0
h0 // A1

h1 // A2
h2 // . . .

is, for any colimit cocone ci : Ai → C (i < ω) of the chain, the morphism c0 : A0 → C.
(2) A 2-composite is the usual concept of a composite of two morphisms.
(3) Any identity morphism is the 0-composite the 0-chain.

3.4. Definition The Orthogonality Deduction System consists of the following deduc-
tion rules.
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transfinite
composition

si (i < α)
t

if t is an α-composite of the si’s

pushout
s
t

if

s //

²² ²²
t

//
is a pushout

coequalizer
s
t

if
f //

g
// t

// is a coequalizer and
f · s = g · s

weak
cancellation

u · t v · u
t

We say that a morphism s can be proved from a class Σ of morphisms in the Or-
thogonality Logic, in symbols

Σ ` s

provided that there exists a formal proof of s from Σ using the above deduction rules.

3.5. Remark (1) The deduction rule transfinite composition is, in fact, a scheme
of deduction rules: one for every ordinal α.

(2) A proof of s from Σ is a collection of morphisms ti (i ≤ α) for some ordinal α
such that s = tα and for every i ≤ α either ti ∈ Σ, or ti is the conclusion of one of the
deduction rules above whose assumptions lie in the set {tj}j<i.

(3) The λ-ary Orthogonality Deduction System is the deduction system obtained
from 3.4 by restricting transfinite composition to all ordinals α < λ. We obtain
the λ-ary Orthogonality Logic by applying this deduction system to λ-ary morphisms,
see 2.1. In the λ-ary Orthogonality Logic the proofs are also restricted to those of length
α < λ.

Example: if λ = ω we get precisely the Finitary Orthogonality Logic of Section 2.

3.6. Examples Other useful sound rules for orthogonality consequence can be derived
from the above deduction system. Here are some examples:

(i) The 2-out-of-3 rule: in a commutative triangle

A
t

ÄÄ~~
~~

~~
~

s

ÂÂ@
@@

@@
@@

B u
// C

any morphism can be derived from the remaining two. In fact

{t, u} ` s by composition,
{u, s} ` t by weak cancellation (put v = id),

and to prove
{t, s} ` u by weak cancellation (put v = id)
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form a pushout of t and s:

A
t //

s

²²

B

s̄
²²

u

ºº0
0

0
0

0
0

0
0

C
t̄ //

idC
''PPPPPPPP D

r

ÃÃ@
@

@
@

C

We obtain a unique morphism r as indicated. Observe that due to r · t̄ = id the diagram

D
t̄·r //

id
// D

r // C

is a coequalizer with the parallel pair equalized by t̄. Thus we have

t s
pushout

t̄ s̄
coequalizer

r

composition
u = r · s̄

(ii) A coproduct t + t′ : A + B → A′ + B′ can be derived from t and t′. This follows
from the pushouts along coproduct injections (denoted by ½):

A t //
²²

²²

A′
²²

²²
A + B

t+idB

// A′ + B

B t′ //
²²

²²

B′
²²

²²
A′ + B

idA′ +t′
// A′ + B′

Thus we have

t t′
pushout

t + idB idA′ +t′

composition
t+t′ = (idA′ +t′)·(t+idB)

(iii) More generally:
∐

i∈I ti can be derived from {ti}i∈I . This follows easily from (ii)
and transfinite composition.
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(iv) In a commutative diagram

A1

f

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

s1

²²
g

ÃÃA
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

A′
1

p

~~~~
~~

~~
~ q

ÃÃ@
@@

@@
@@

A2
s2 //

ḡ

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

B A′
2

q̄ ÃÃA
AA

AA
AA

A
A′

3

p̄~~}}
}}

}}
}}

A3
s3oo

f̄

}}||
||

||
||

||
||

||
||

||
||

P ′

P

t

OO

where the outer and inner squares are pushouts, the morphism t (a colimit of the natural
transformation with components s1, s2, s3) can be derived from {s1, s2, s3}. This follows
from (ii) and the following pushout

A1 + A2 + A3

[ḡf,ḡ,f̄ ]

²²

s1+s2+s3 // A′
1 + A′

2 + A′
3

[q̄p,q̄,p̄]

²²
P t

// P ′

(v) More generally: For any small category D, given diagrams D1, D2 : D → A and
given a natural transformation between them

sX : D1X → D2X for X ∈ objD
then its colimit t : colim D1 → colim D2 can be derived:

{sX}X∈objD ` t.

This is analogous to (iv) above: express colim Di as a coequalizer of a coproduct in the
standard way (see [11]), then t is a pushout of a coproduct of components of the given
natural transformation.

(vi) The following (strong) cancellation property

u · t
t

holds for all epimorphisms t. In fact, the square

u·t //

t
²²

id
²²

u
//
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is a pushout, thus, from u · t we derive u via pushout, and then we use (i).
(vii) A wide pushout t = s̄i · si of morphisms si (i ∈ I)

A
si

~~~~
~~

~~
~

t

²²

Ai

s̄i ÃÃ@
@@

@@
@@

B

can be derived from those morphisms :

{si}i∈I ` t

If I is finite, this follows easily from pushout, identity and composition. For I
infinite use transfinite composition.

(viii) coequalizer has the following generalization: given parallel morphisms gj :
A → B (j ∈ J) such that a morphism s : A′ → A equalizes the whole collection, then
the joint coequalizer t : B → B′ of the collection fulfils

s ` t.

In fact, for every (j, j′) ∈ J × J a coequalizer tjj′ of gj and gj′ fulfils s ` tjj′ . By (vii),
we have s ` t since t is a wide pushout of all tjj′ .

3.7. Observation In every cocomplete (not necessarily locally presentable) category
the Orthogonality Logic is sound: for every class Σ of morphisms a morphism s which
has a proof from Σ is an orthogonality consequence of Σ:

Σ ` s implies Σ |= s

The verification that transfinite composition is sound is trivial: given a smooth
chain C : α → A and an object X orthogonal to hi : Ci → Ci+1 for every i < α,
then X is orthogonal to h : C0 → Cα. In fact, for every morphism u : C0 → X there
exists a unique cocone ui : Ci → X of the chain C with u0 = u: the isolated steps are
determined by X ⊥ hi and the limit steps follow from the smoothness of C. It is easy
to see that uα : Cα → X is the unique morphism with u = uα · h.

3.8. Definition (see [9]) A morphism t : A → B of A is called λ-presentable if, as an
object of the slice category A ↓ A, it is λ-presentable.

3.9. Remark (i) This is closely related to a λ-ary morphism: t is λ-ary (i.e., A and B
are λ-presentable objects of A) iff t is a λ-presentable object of the arrow category A→,
see [3].

(ii) Unlike the λ-ary morphisms (which are the morphisms of the small category Aλ)
the λ-presentable morphisms form a proper class: for example all identity morphisms
are λ-presentable.

(iii) A simple characterization of λ-presentable morphisms was proved in [9]:
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f is λ-presentable ⇔ f is a pushout of a λ-ary morphism
(along an arbitrary morphism).

(iv) The λ-ary morphisms are precisely the λ-presentable ones with λ-presentable
domain (see [9]). That is, given f : A → B λ-presentable, then

A λ-presentable ⇒ B λ-presentable.
(v) For every object A the cone of all λ-presentable morphisms with domain A is

essentially small. This follows from (iii), or directly: since A ↓ A is a locally presentable
category, it has up to isomorphism only a set of λ-presentable objects.

3.10. Example A regular epimorphism which is the coequalizer of a pair of morphisms
with λ-presentable domain is λ-presentable. That is, given a coequalizer diagram

K
f //

g
// A

t // B

then
K is λ-presentable ⇒ t is λ-presentable.

In fact, given a λ-filtered diagram in A ↓ A with objects di : A → Di and with
a colimit cocone ci : (di, Di) → (d,D) = colimi∈I(di, Di), then for every morphism
h : (t, B) → (d,D) of A ↓ A we find an essentially unique factorization through the
cocone as follows:

K
f //

g
// A

t //

di

ºº0
00

00
00

00
00

00
00

d

ÃÃA
AA

AA
AA

A B

h
²²

D

Di

ci

OO

The morphism d = h · t merges f and g. Observe that ci merges di · f and di · g for
any i ∈ I. Since K is λ-presentable and D = colim Di is a λ-filtered colimit in A, it
follows that some connecting map dij : (di, Di) → (dj, Dj) of our diagram merges di · f
and di · g. This implies dj · f = dj · g, hence, dj factors through t:

dj = k · t for some k : B → Dj.

Then k : (t, B) → (dj, Dj) is the desired factorization. It is unique because t is an
epimorphism.

3.11. Definition A class Σ of morphisms is called presentable provided that there exists
a cardinal λ such that every member of Σ is a λ-presentable morphism.

3.12. Example Every small class is presentable. In this case there even exists λ such
that all members are λ-ary morphisms. This follows from the fact that every object of
a locally presentable category is λ-presentable for some λ, see [3].
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3.13. Remark We will prove that the Orthogonality Logic is complete for presentable
classes of morphisms. This sharply contrasts with the following: if A is a locally finitely
presentable category and Σ is a class of finitely presentable morphisms, the Finitary
Orthogonality Logic need not be complete:

3.14. Example (see [4]) Let A be the category of algebras on countably many nullary
operations (constants) a0, a1, a2, . . . Denote by I = {an}n∈N an initial algebra, by 1
a terminal algebra, and by ∼k the congruence on I merging just ak and ak+1. The
corresponding quotient morphism

ek : I → I/ ∼k

is clearly finitely presentable, and so is the quotient morphism

f : C → 1

where C = {0, 1} is the algebra with a0 = 0 and ai = 1 for all i ≥ 1. It is obvious that

{e1, e2, e3, . . . } ∪ {f} |= e0.

Nevertheless, as verified in [4], e0 cannot be proved from {e1, e2, e3, . . . } ∪ {f} in the
Finitary Orthogonality Logic. Observe that this does not contradict Theorem 2.16: the
morphism f above is not finitary.

3.15. Construction of a Reflection Let Σ be a class of λ-presentable morphisms in
a locally λ-presentable category A. For every object A of A a reflection

rA : A → Ā

of A in the orthogonal subcategory Σ⊥ is constructed as follows:
We form the diagram DA : DA → A of all λ-presentable morphisms s : A → As

provable from Σ with domain A. Let Ā be a colimit of DA with the colimit cocone
s̄ : As → Ā. We show that the morphism

rA = s̄ · s : A → Ā (independent of s)

is the desired reflection.
The precise definition of DA is as follows: we denote by Σ̄λ the class of all λ-

presentable morphisms s with Σ ` s. Let DA be the full subcategory of the slice
category A ↓ A on all objects lying in Σ̄λ. By 3.9 (v) the diagram

DA : DA → A, DA( A
s // As ) = As

is essentially small.

3.16. Proposition For every object A the diagram DA is λ-filtered and rA : A → Ā is
a reflection of A in Σ⊥; moreover, Σ ` rA.
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Proof (1) The diagram DA is λ-filtered: From coequalizer and 3.6(vii), Σ̄λ is
closed under coequalizers of Σ̄λ-equalized λ-small sets of morphisms and under λ-wide
pushouts. This assures that A ↓ Σ̄λ is closed under λ-small colimits in A ↓ A, thus the
category DA is λ-filtered.

(2) We prove
Σ ` rA

and
Σ ` s̄ for all s in DA.

This follows from 3.6(v) applied to the natural transformations from the constant
diagram of value A to DA with components s : A → As: Its colimit is rA. Hence, by
3.6(v), we have Σ ` rA.

Now observe that the rule 2-out-of-3, 3.6(i), also yields that Σ ` s̄ for all s in DA.
(3) Given a morphism t : R → Q in Σ we prove that every morphism f : R → Ā has

a factorization through t.

R∗ t∗ //

u

²²
g

§§±±
±±
±±
±±
±±
±±
±±
±±

Q∗

v

²²

g̃

··*
**

**
**

**
**

**
**

**
**

**
**

R
t //

f

²²

Q

f̄
²²

As
s̄ //

t̃
**UUUUUUUUUUUUUUUUUUUUUUUU Ā

t̂ // P̂

P̃

q
__????????

By 3.9(iii) there exists a λ-ary morphism t∗ : R∗ → Q∗ such that t is a pushout of t∗

(along a morphism u). Due to (1) and since R∗ is a λ-presentable object, the morphism

f · u : R∗ → Ā = colim As

factors through one of the colimit morphisms:

f · u = s̄ · g for some s : A → As in DA and some g : R∗ → As.

We denote by t̂ a pushout of t∗ along f · u. We further denote by

t̃ a pushout of t∗ along g.

This leads to the unique morphism

q : P̃ → P̂ with q · t̃ = t̂ · s̄ and q · g̃ = f̄ · v.

By (2) we know that Σ ` s̄. Consequently, composition yields

Σ ` q · t̃
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since q · t̃ = t̂ · s̄, and Σ ` t̂ by pushout. Next, we observe that

Σ ` q

by 3.6(iv): apply it to the pushouts P̃ and P̂ and the natural transformation with
components idR∗ , s̄ and idQ∗ . Now the 2-out-of-3 rule yields

Σ ` t̃.

Moreover, t̃ is λ-presentable since t∗ is λ-ary, see 3.9(iii). Therefore, the morphism

p = t̃ · s : A → P̃

is also λ-presentable, and Σ ` p by composition. Thus,

p : A → P̃ is an object of DA.

The corresponding colimit morphism p̄ : P̃ → Ā fulfils

rA = p̄ · p.
Further, since t̃ is a connecting morphism of the diagram DA from s to p, it follows that

s̄ = p̄ · t̃.
Consequently,

(p̄ · g̃) · t∗ = p̄ · t̃ · g = s̄ · g = f · u
and the universal property of the pushout Q of t∗ and u yields a unique

h : Q → Ā with f = h · t and p̄ · g̃ = h · v.

This is the desired factorization of f through t.
(4) Ā lies in Σ⊥: We prove the uniqueness of the factorization. Given h, k : Q → Ā

equalized by t, we prove h = k.

R∗ t∗ //

u

²²

Q∗

v

²²
k∗ ÃÃA

AA
AA

AA
A h∗

ÃÃA
AA

AA
AA

A

R
t // Q

h
²²

k
²²

As
c∗ //

s̄

~~||
||

||
||

C∗

r̄

tti i i i i i i i i i i i

~~~
~

~
~

Ā
c // C

Since Q∗ is λ-presentable, the morphisms h · v, k · v : Q∗ → Ā both factor through some
of the colimit morphisms of the λ-filtered colimit Ā = colim DA:

h · v = s̄ · h∗ and k · v = s̄ · k∗ for some h∗, k∗ : Q∗ → As.

Form coequalizers
c = coeq(h, k) and c∗ = coeq(h∗, k∗)
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From h · t = k · t coequalizer yields

Σ ` c

and then (2) above and composition yields

Σ ` c · s̄.
From the equality (c · s̄) · h∗ = (c · s̄) · k∗ we conclude that c · s̄ factors through c∗. Since
c∗ is an epimorphism, 3.6(vi) yields

Σ ` c∗.

Moreover, c∗ is a λ-presentable morphism since c∗ = coeq(h∗, k∗) and Q∗ is λ-presentable,
see Example 3.10. The morphism

r = c∗ · s : A → C∗

is thus also a λ-presentable morphism with Σ ` r, in other words (r, C∗) is an object of
DA, and

c∗ : (s, AS) → (r, C∗) is a morphism of DA.

This implies that the colimit maps fulfil

s̄ = r̄ · c∗.
We are ready to prove h = k: by the universal property of the pushout Q we only need
showing h · v = k · v:

h · v = s̄ · h∗ = r̄ · c∗ · h∗
and analogously k · v = r̄ · c∗ · k∗, thus c∗ · h∗ = c∗ · k∗ finishes the proof.

(5) The universal property of rA: Let f : A → B be a morphism with B orthogonal
to Σ. Thus B is orthogonal to all morphisms s with Σ ` s, see 3.7.

A
f //

s
²²

rA

ÂÂ

B

As

fs

>>}}}}}}}

s̄
²²

Ā

g

GG±±±±±±±±±±±±±±±

For every object s : A → As of DA let fs : As → B be the unique factorization through s.
These morphisms clearly form a compatible cocone of DA, and the unique factorization
g : Ā → B fulfils, for any object s of DA,

f = fs · s = g · s̄ · s = g · rA.

Conversely, suppose g′ · rA = f , then g = g′ because for every object s of DA we have

g′ · s̄ = fs = g · s̄;
this follows from B ⊥ s due to (g′ · s̄) · s = f = fs · s.
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3.17. Theorem The Orthogonality Logic is complete for all presentable classes Σ of
morphisms: every orthogonality consequence of Σ has a proof from Σ in the Orthogo-
nality Deduction System. Shortly,

Σ |= t implies Σ ` t.

Proof Given an orthogonality consequence t : A → B of Σ, form a reflection rA : A → Ā
of A in Σ⊥ as in 3.15. Then Σ |= t implies that Ā is orthogonal to t, thus we have
u : B → Ā with rA = u · t. Since Σ ` rA, by 3.15(2), we conclude

Σ ` u · t.
Now we have that Σ |= u · t (= rA) and Σ |= t, and this trivially implies that Σ |= u.
Thus by the same argument with t replaced by u there exists a morphism v such that

Σ ` v · u.

The last step is weak cancellation :

u · t v · u
t

3.18. Corollary The Orthogonality Logic is complete for classes Σ of morphisms of the
form

Σ = Σ0 ∪ Σ1, Σ0 small and Σ1 ⊆ RegEpi.

Proof Let λ be a regular cardinal such that A is locally λ-presentable, and all mor-
phisms of Σ0 are λ-presentable. We will substitute Σ1 with a class Σ̃1 of λ-presentable
morphisms as follows: for every member s : A → B of Σ1 choose a pair f, g : A′ → A
with s = coeq(f, g). Express A′ as a λ-filtered colimit of λ-presentable objects Ai with
a colimit cocone

ai : Ai → A′ (i ∈ Is).

Form a coequalizer si : A → Bi of f ·ai, g ·ai : Ai → B for every i ∈ Is. Then we obtain
a filtered diagram with the objects Bi (i ∈ Is) and the obvious connecting morphisms.
The unique bi : Bi → B with s = bi · si form a colimit of that diagram. Moreover, an
object X is orthogonal to s iff it is orthogonal to si for every i ∈ Is:

Ai
ai // A′

g
//

f //
A

u

ÂÂ

si

²²

s // B

v

||

¿
»

·
±

ª
£

z

Bi

vi

²²

bi

??~~~~~~~~

X

Let Σ̃1 be the class of all morphisms si for all s ∈ Σ1 and i ∈ Is. Then the class

Σ̃ = Σ0 ∪ Σ̃1
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consists of λ-presentable morphisms, see Example 3.10, and Σ⊥ = Σ̃⊥. Given an or-
thogonality consequence t of Σ, we thus have a proof of t from Σ̃, see Theorem 3.17. It
remains to prove

s ` si for every s ∈ Σ and i ∈ Is;

then Σ̃ ` t implies Σ ` t. In fact, since si is an epimorphism, apply 3.6(vi) to s = bi · si.

3.19. Remark Since all λ-ary morphisms form essentially a set (since Aλ is small), the
λ-ary Orthogonality Logic (see 3.5) is complete for classes of λ-ary morphisms – the
proof is analogous to that of Theorem 2.16.

4 Vopěnka’s Principle

4.1. Remark The aim of the present section is to prove that the Orthogonality Logic
is complete (for all classes of morphisms) in all locally presentable categories iff the
following large-cardinal Vopěnka’s principle holds. Throughout this section we assume
that the set theory we work with satisfies the Axiom of Choice for classes.

4.2. Definition Vopěnka’s Principle states that the category Rel(2) of graphs (or bi-
nary relational structures) does not have a large discrete full subcategory.

4.3. Remark (1) The following facts can be found in [3]:
(i) Vopěnka’s Principle is a large-cardinal principle: it implies the existence of mea-

surable cardinals. Conversely, the existence of huge cardinals implies that Vopěnka’s
Principle is consistent.

(ii) An equivalent formulation of Vopěnka’s Principle is: the category Ord of ordinals
cannot be fully embedded into any locally presentable category.

(2) The following proof is analogous to the proof of Theorem 6.22 in [3].

4.4. Theorem Assuming Vopěnka’s Principle, the Orthogonality Logic is complete for
all classes of morphisms (of a locally presentable category).

Proof (1) Every class Σ can be expressed as the union of a chain

Σ =
⋃

i∈Ord

Σi (Σi ⊆ Σj if i ≤ j)

of small subclasses – this follows from the Axiom of Choice. We prove that every object
A has a reflection in Σ⊥ by forming reflections

ri(A) : A → Ai

in Σ⊥
i for every i ∈ Ord, see 2.2. These reflections form a transfinite chain in the slice

category A ↓ A: for i ≤ j the fact that Σi ⊆ Σj implies the existence of a unique
aij : Ai → Aj forming a commutative triangle

A
ri(A)

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ rj(A)

ÂÂ@
@@

@@
@@

Ai aij

// Aj
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We prove that this chain is stationary, i.e., there exists an ordinal i0 such that ai0j is an
isomorphism for all j ≥ i0 – it will follow immediately that ri0(A) is a reflection of A in
Σ⊥.

(2) Assuming the contrary, we have an object A and ordinals i(k) for k ∈ Ord with
i(k) < i(l) for k < l such that none of the morphisms

ai(k),i(l) with k < l

is an isomorphism. We derive a contradiction to Vopěnka’s Principle: the slice category
A ↓ A is locally presentable, and we prove that the functor

E : Ord → A ↓ A, k 7→ ri(k)(A)

is a full embedding. In fact, for every morphism u such that the diagram

A
ri(k)(A)

}}{{
{{

{{
{{ ri(l)(A)

!!CC
CC

CC
CC

Ai(k) u
// Ai(l)

commutes, we have k ≤ l and u = ak,l. The latter follows from the universal property
of ri(k)(A). Thus, it is sufficient to prove the former: assuming k ≥ l we show k = l. In
fact, the morphism u is inverse to ai(l),i(k) because

(u · ai(l),i(k)) · ri(l)(A) = ri(l)(A) implies u · ai(l),i(k) = id

and analogously for the other composite. Our choice of the ordinals i(k) is such that
whenever ai(l),i(k) is an isomorphism, then k = l.

(3) Every orthogonality consequence t : A → B of Σ has a proof from Σ. The
argument is now precisely as in Theorem 3.17: we use the above reflections rA and the
fact that Σ ` rA (see Proposition 3.16 and the above fact that rA = ri0(A) for some i0).

4.5. Example (under the assumption of the negation of Vopěnka’s Principle). In the
category

Rel(2,2)

of relational structures on two binary relations α, β we present a class Σ of morphisms
together with an orthogonality consequence t which cannot be proved from Σ:

Σ |= t but Σ 6` t.

We use the notation of Example 2.18. The negation of the Vopěnka’s Principle yields
graphs

(Xi, Ri) in Rel(2)

for i ∈ Ord, forming a discrete category. For every i let Ai be the object of Rel(2,2)
on Xi whose relation α is Ri and β is a clique (see 2.16). Our class Σ consists of the
morphisms t, u of 2.18 and

∅ → Ai for all i ∈ Ord.
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We claim that the morphism
t : ∅ → 1

is an orthogonality consequence of Σ. In fact, let B be an object orthogonal to Σ and
let i be an ordinal such that Ai has cardinality larger than B. We have a (unique)
morphism h : Ai → B, and since h cannot be monic, the relation β of B contains a loop
(recall that β is a clique in Ai). This implies that B has a unique joint loop of α and β,
therefore, B ⊥ t.

To prove
Σ 6` t

it is sufficient to find a category A in which
(i) Rel(2,2) is a full subcategory closed under colimits

and
(ii) some object K of A is orthogonal to Σ but not to t.

From (ii) we deduce that t cannot be proved from Σ in the category A, see Observation
3.6. However, (i) implies that every formal proof using the Orthogonality Deduction
System 3.4 in the category Rel(2,2) is also a valid proof in A. Together, this implies
Σ 6` t in Rel(2,2).

The simplest approach is to choose A = REL(2,2), the category of all possibly
large relational systems on two binary relations, i.e., triples (X, α, β) where X is a class
and α, β are subclasses of X ×X. Morphisms are class functions preserving the binary
relations in the expected sense. This category contains Rel(2,2) as a full subcategory
closed under small colimits, and the object

K =
∐

i∈Ord

Ai

is not orthogonal to t : ∅ → 1 since none of Ai contains a joint loop of α and β. However,
it is easy to verify that K is orthogonal to Σ.

A more “economical” approach is to use as A just the category Rel(2,2) with the
unique object K added to it, i.e., the full subcategory of REL(2,2) on {K}∪Rel(2,2).

4.6. Corollary Vopěnka’s Principle is equivalent to the statement that the Orthogonality
Logic is complete for classes of morphisms of locally presentable categories.

5 A counterexample

The Orthogonality Logic can be formulated in every cocomplete category, and we know
that it is always sound, see 3.6. But outside of the realm of locally presentable categories
the completeness can fail (even for finite sets Σ):

5.1. Example We start with the category CPO⊥ of strict CPO’s: objects are posets
with a least element⊥ and with directed joins, morphisms are strict continuous functions
(preserving ⊥ and directed joins). This category is well-known to be cocomplete. We
form the category

CPO⊥(1)
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of all unary algebras on strict CPO’s: objects are triples (X,≤, α), where (X,≤) is a
strict CPO and α : X → X is an endofunction of X, morphisms are the strict continuous
algebra homomorphisms. It is easy to verify that the forgetful functor CPO⊥(1) →
CPO⊥ is monotopological, thus, by 21.42 and 21.16 in [2] the category CPO⊥(1) is
cocomplete.

We present morphisms s1, s2 and t of CPO⊥(1) such that an algebra A is orthogonal
to

(a) s1 iff its operation α has at most one fixed point
(b) s2 iff its operation α fulfils x ≤ αx for all x
and
(c) t iff α has precisely one fixed point.

We then have
{s1, s2} |= t

In fact, if an algebra A fulfils (b), we can define a transfinite chain ai (i ∈ Ord) of its
elements by

ao =⊥
ai+1 = αai,

and
aj =

∨
i<j ai for all limit ordinals j.

This chain cannot be 1–1, thus, there exist i < j with ai = aj and we conclude that ai

is a fixed point of α. The fixed point is unique due to (a), thus, A is orthogonal to t.
On the other hand

{s1, s2} 6` t

The argument is analogous to that in Example 4.6: The category A of possibly large
CPO’s with a unary operation contains CPO⊥(1) as a full subcategory closed under
small colimits. And the following object K is orthogonal to s1 and s2 but not to t:

K = (Ord,≤, succ)

where ≤ is the usual ordering of the class of all ordinalds, and succ i = i + 1 for all
ordinals i.

Thus, it remains to produce the desired morphisms s1, s2 and t. The morphism s1

is the following quotient

•x
ª
α

•y
ª
α

⊥• α
// • α

// . . .

s1 //

•x=y

ª
α

⊥• α
// • α

// . . .

where both the domain and codomain are flat CPO’s (all elements except ⊥ are pairwise
incomparable). The morphism s2 is carried by the identity homomorphism

x• α
// • α

// . . .

⊥• α
// • α

// . . .
id //

x• α
// • α

// . . .

⊥• α
// • α

// . . .
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where the domain is flat and the codomain is flat except for the unique comparable pair
not involving ⊥ being x < αx. Finally, t is the embedding

⊥• α
// • α

// . . . t //

•
ª
α

⊥• α
// • α

// . . .

with both the domain and the codomain flat.

6 Injectivity Logic

As mentioned in the Introduction, for the injectivity logic the following Injectivity De-
duction System was formulated in [1]:

transfinite composition (see 3.4)
pushout (see 3.4)

cancellation
u · t
t

We proved there that it is sound and complete for sets Σ of morphisms. In contrast
to Theorem 4.4 this deduction system fails to be complete for classes of morphisms in
general, independently of set theory:

6.1. Example Let Rel(2) be the category of graphs. For every cardinal n let Cn denote
a clique (2.16) on n nodes. Then the morphism

t : ∅ → 1

is an injectivity consequence of the class

Σ = {∅ → Cn; n ∈ Card}.

In fact, given a graph X injective w.r.t. Σ, choose a cardinal n > cardX. We have a
morphism f : Cn → X which cannot be monomorphic. Consequently, X has a loop.
This proves that X is injective w.r.t. t.

The argument to show that t cannot be proved from Σ is completely analogous to 5.1:
the category REL(2) of potentially large graphs contains Rel(2) as a full subcategory

closed under small colimits. The object K =
∐

n∈Card

Cn is injective w.r.t. Σ but not

injective w.r.t. t. Therefore, t does not have a formal proof from Σ in the Injectivity
Deduction System above applied in REL(2). Consequently, no such formal proof exists
in Rel(2).

Instead of REL(2) we can, again, use the full subcategory on Rel(2)∪ {K} for our
argument.
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[3] J. Adámek and J. Rosický: Locally presentable and accessible categories, Cambridge
University Press, 1994.
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[9] M. Hébert, K-Purity and orthogonality, Theory Appl. Cat. 12, no. 12 (2004), 355-
371.
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