
Joint Estimation-Detection of Cyber Attacks in
Smart Grids: Bayesian and Non-Bayesian

Formulations
Ali Gaber†, Karim G. Seddik‡, and Ayman Y. Elezabi‡

†Department of Electrical Engineering, Alexandria University, Alexandria 21544, Egypt.
‡Electronics and Communications Engineering Department, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.

email: aligaber@alexu.edu.eg, kseddik@aucegypt.edu, aelezabi@aucegypt.edu

Abstract— Smart grid operations face a significant threat
from the presence of cyber attacks or bad data that may
contaminate the system observations. Therefore, in this paper,
we are interested in introducing a new strategy for detecting
the presence of bad data in smart grids and we also try to
simultaneously estimate it in order to be able to separate the bad
data from the system observations. We aim to obtain the attack
free observations which reflect the true state of the smart grid.
This can be done by defining a joint detection-estimation strategy
based on Bayesian and non-Bayesian settings where the costs in
general will be functions of the observation. We start with Bayes
approach and derive the detector (which, in general, may not be
a LRT) and then we set the problem by defining some maximum
constraint under the null hypothesis based on the derived detector
and minimize certain cost under the alternative hypothesis. Our
results reveal that the proposed model is applicable on some cases
that other models reported in previous works failed to deal with.

I. INTRODUCTION

Smart grid state estimation has become an important issue in
smart grid communications as it plays a key role in controlling
the performance of power grids. It can be considered as a
signal processing technique that makes use of the sensors and
smart meters readings and convert them into an estimate of the
system state [1]. System state is actually a term that describes
the magnitudes and phase angles of the grid buses currents and
voltages at different points. The state of these buses should be
monitored accurately in order to have full control over the
system operations. State estimation is also used to construct
a real-time model of the grid network [2], [3]. A necessary
function of state estimators is therefore to detect the existence
of attacks (injected bad data) and/or measurement errors, and
estimate this bad data in order to get rid of it.

Attack detection and estimation can be considered as a
combined detection and estimation problem, and this problem
has previously been treated in two different ways. The first
one is to treat each subproblem separately using appropriate
optimum test. For example, the detection subproblem can be
established using the Neyman-Pearson optimum test, and the
unknown parameter estimation subproblem can be established
using the optimum Bayesian estimator. However, this “dis-
joint” approach does not guarantee optimum results [4]. The
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second approach is using the generalized likelihood ratio test
(GLRT) which performs the detection and estimation simul-
taneously using the maximum likelihood (ML) estimator for
the estimation part. However, this method too does not result
in optimum performance as well since GLRT is generally a
heuristic approach [4].

For the joint estimation and detection approach, there is
little work in the literature, e.g. [4], [5], where, according to
specific formulations and cost criteria, optimum solutions are
obtained. In [4], [5], a purely Bayesian technique was reported
which enhances the quality of detection and estimation by
defining generalized cost functions. In [6], a technique is pre-
sented that combines between Bayesian and Neyman-Pearson
methodologies by replacing the error probabilities under the
two alternative hypothesis by estimation costs, restricting the
cost under the nominal hypothesis, and optimizing the cost
under the alternative hypothesis. In [7] the estimation cost
under the hypothesis of bad data is minimized subject to
constraints on false alarm and misdetection probabilities.

In this paper, we consider the joint detection-estimation
problem based on Bayesian- and Neyman-Pearson-like for-
mulations with application to smart grids. First, we consider
the Bayesian approach by defining the detector cost functions
as some measure of the estimation error. The cost functions
are, in general, functions of the observations. We derive the
optimum detector under this Bayesian formulation, which in
general is not a LRT. Then, we consider a Neyman-Pearson-
like formulation in which we minimize a generalized cost
under some hypothesis given a cost constraint under the other
hypothesis. Our formulation allows us to consider cases that
the formulation in [7], [8] is not able to deal with. As will
be explained later, there are singular cases in which the
formulation in [7], [8] cannot be applied, e.g. the important
case where the observations and the quantities to be estimated
are jointly Gaussian when we apply the mean-square error
(MSE) or minimum absolute-error (MAE) cost functions.

Note that the classical Neyman-Pearson approach considers the mini-
mization of the probability of misdetection under a probability of false
alarm constraint, which is different from our Neyman-Pearson-like approach
in which we consider minimizing a generalized cost function under one
hypothesis under a generalized cost constraint under the other hypothesis.
Hence, the Neyman-Pearson approach may be considered a special case of
our formulation with a specific choice of costs.



II. SYSTEM MODEL

Assume that we have a system with linear dynamics.
Therefore, the bad data injection can be modeled as follows:

yt = Hu+ xt + z, (1)

where yt is the observation vector, u is the state vector of the
system, H is the Jacobian matrix which indicates the dynamics
of the system, z represents the noise term and xt is the attack
vector injected in the grid.

The attacker target is to focus all its energy, the “bad” data
vector, in the range space of H and this occurs when the
system dynamics H are fully known to the attacker, but what
actually happens is that the attacker has partial information
about the elements of H so there will be a non-zero projection
of the bad data in the null space of H [7]. Then the bad data
xt can be decomposed into two projections one in the range
space of H and the other one in the null space of H. We will
focus on the non-zero projection of the bad data vector in the
null space of H and develop a joint detection and estimation
technique to mitigate its effect. All the information about the
bad data vector xt will be embedded in its projection on the
null space of the Jacobian matrix H, so the projection of the
observation vector on the null space of H, denoted by y, is
given by:

y = x+ n (2)

where x and n are the projections of xt and zt on the null
space of H, respectively.

Here our objective is to detect the existence of an attack
and estimate the bad data injected in the system due to this
attack. Therefore, our problem is a binary hypothesis testing
problem with H0 indicating the no bad data hypothesis and
H1 reflecting the bad data existence hypothesis. Thus, our
observation model will be:

H0 : y = n (3)
H1 : y = x+ n. (4)

We make the standard assumptions that the conditional dis-
tributions of y, under each hypothesis, denoted by f0(y)
under H0 and f1(y|x) under H1, are perfectly known and the
marginal distribution of x, denoted by g(x), is also perfectly
known.

III. PROBLEM FORMULATION

We start our analysis by defining a joint detection-estimation
strategy in a Bayesian setting where the cost of deciding
hypothesis i given that the true hypothesis is j can be denoted
as follows:

cij(y) = E[C(↵,x) |y, Hj ] (5)

where ↵ is the estimate of x that in general depends on the
decision i, and C(↵,x) is some cost criterion, e.g. mean-
square error. Therefore, the costs will be in general functions
of the observation vector y. We seek to define our joint
detection-estimation strategy in a Bayesian setting where we

derive a general expression for the detector decision rule and
then obtain an estimate of the bad data injected in the system.
We also formulate a second approach which is similar in some
sense to the Neyman-Pearson approach by minimizing the
expected cost under H1 subject to a constraint on the average
cost under H0.

A. Bayesian Approach

In this subsection we pose our joint detection-estimation
problem in a Bayesian setting, therefore this approach is
applicable when the prior probabilities of each hypothesis can
be obtained and when the costs have a meaningful assignment.
Here our objective is to derive a general formula of the detector
decision rule that minimizes the average cost which is given
by:

E[CD(y)] =
1X

i=0

1X

j=0

cij(y) Pr(D(y) = Hi, T = Hj) (6)

where T is the true hypothesis and D(y) is the detector
decision. Since the costs are non-negative, the expected cost
can be minimized by making the decision as follows:

c01(y) Pr(H1|y) + c00(y) Pr(H0|y)
H1

?
H0

c11(y) Pr(H1|y)+

c10(y) Pr(H0|y),
(7)

where each term represents the cost of the corresponding
decision.

The last equation can be simplified using Bayes rule to give
the well-known general formula of our detector but where the
costs are functions of the observation

P (y|H1)

p(y|H0)

c01(y)� c11(y)

c10(y)� c00(y)

H1

?
H0

⌘, (8)

where ⌘ is the decision threshold with optimum value equal
to P0

P1
in the Bayesian formulation, and p0 and p1 are the prior

probabilities of H0 and H1, respectively. It is obvious that this
test is, in general, not a LRT.

B. Neyman-Pearson-Like Approach

In this subsection we formulate our joint detection-
estimation problem as an optimization problem, where the
objective is to minimize the average cost under H1 under a
constraint on the average cost under H0. The problem can be
formulated as follows:

minE[C(↵,x)|H1]

s.t. E[C(↵,x)|H0] 6 ⇣. (9)

The average cost constraint under H0 can be written as
follows:

E[C(↵,x)|H0] =

Z

{y: D(y)=H0}
c00(y)P (y|H0)dy

+

Z

{y: D(y)=H1}
c10(y)P (y|H0)dy 6 ⇣. (10)
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where {y : D(y) = H0} and {y : D(y) = H1} are the
regions where the detector decides in favor of H0 and H1,
respectively. The optimum test in this case can be easily shown
to be the Bayesian test in (8) for some ⌘, where ⌘ in that case
will be determined by the constraint.

Note that the formulation in (9) is different from the
formulation in [7], [8] in which the joint estimation-detection
problem is formulated as a minimization of the estimation cost
under H1 and making a decision of H1 with false alarm and
miss-detection probabilities constraints. As will be explained
later, our formulation allows us to consider important cases
that can not be considered with the formulation in [7], [8], as
they form singular cases for the formulation in [7], [8].

IV. CASE STUDY

In this section we apply our Bayesian approach on two
different cost functions, namely, the mean square error (MSE)
and the absolute error (AE). We show that our model is able
to deal with some singular cases that the model reported in
[7] fails to deal with. For the Neyman-Pearson-like approach,
we consider the case where the costs under H0 are defined
in terms of the detection error probability and the costs under
H1 are defined in terms of the estimation error. This maps the
constraint on the average cost under H0 to be a false alarm
probability (Pfa) constraint.

The observation model for our case study can be formulated
as follows. Under H0, the observation vector y is an N ⇥ 1
noise vector and the variance of the i-th noise element is �2

i0

and the noise vector elements are assumed to be independent.
Therefore, the distribution of the vector y under H0, f0(y),
is given by:

f0(y) =
1

(2⇡)
N
2
QN

i=1 �i0

e
�

PN
i=1

y2
i

2�2
i0 , (11)

where the noise is assumed to have zero mean.
Under H1, y = x + n. The bad data vector is assumed to

be Gaussian and is independent of the noise, and thus x and
y are jointly Gaussian vectors. The conditional distribution of
x conditioned on a certain observation y and assuming that
the true hypothesis is H1 is given by:

f(x|y, H1) =
1

(2⇡)
N
2

��
C

x|y,H1

�� 1
2

e
(x�µ

x|y,H1
)TC

�1
x|y,H1

(x�µ
x|y,H1

)
,

(12)
where C

x|y,H1
is the conditional covariance matrix and

µ
x|y,H1

is the conditional mean vector and are given as
follows:

C
x|y,H1

= C
xx

�C
xy,H1C

�1
yy,H1

C
yx,H1 (13)

µ
x|y,H1

= µ
x

+C
xy,H1C

�1
yy,H1

(y � µ
y,H1) (14)

where C
xy,H1 is the cross-covariance matrix between x and

y under H1.

A. Bayesian Approach for Gaussian Data with MSE Costs

For MSE, the cost is given by c(↵,x) = ||↵� x||2 and the
general formulas of the costs will be given as

c00 = 0 (15)
c01(y) = E(||x||2|y, H1) (16)

c10(y) = kE(x|y, H1)k2 (17)
c11 = Trace

�
C

x|y,H1

�
(18)

where c01(y) is the cost of making a decision in favor of
H0 (i.e., ↵ = 0) while the true hypothesis is H1. Note that
c01(y) = E(||0 � x||2|y, H1). Similarly c10 is the cost of
making a decision in favor of H1 (i.e., ↵ = E(x|y, H1)) while
the true hypothesis is H0. Note that for the jointly Gaussian
case and MSE, c11 is not a function of y and therefore this
case cannot be addressed by the formulation presented in [7].

Note that for the case of MMSE, the term c01(y)�c11(y)
c10(y)�c00(y)

is equal to one so the decision rule is a likelihood ratio test
(LRT). For Gaussian noise and bad data with prior Gaussian
distribution, the decision rule will be given by:

�1

2
(y � µ

y,H1)
TC�1

yy,H1
(y � µ

y,H1) +
NX

i=1

y2i
2�2

i0

H1

?
H0

ln(⌘)� ln
NY

i=1

�i0 + ln |C
yy,H1 |1/2 (19)

B. Bayesian Approach for Gaussian Data with AE Costs

For AE, the cost function is defined as c(↵,x) =PN
i=1 |↵i � xi|. In this case, the decision rule will not be a

likelihood ratio test as we can readily show that if we substitute
in the term c01(y)�c11(y)

c10(y)�c00(y)
it will not be equal to one. Therefore

our detector will be:

�1

2
(y � µ

y,H1)
TC�1

yy,H1
(y � µ

y,H1) +
NX

i=1

y2i
2�2

i0

+ ln

✓
c01(y)� c11

c10(y)

◆
H1

?
H0

ln(⌘)� ln
NY

i=1

�i0 + ln |C
yy,H1 |1/2.

(20)
where it is difficult to obtain closed-form expressions for
the costs in the vector case. In this case, the minimum AE
estimator is the median of the conditional distribution of x on
y, which is equal to the conditional mean for the Gaussian
case. Note that in this case c11 is again not a function of the
observation y, and the formulation in [7] cannot address this
case either.

For the scalar case, and after some mathematical manipu-
lations, we have

c00 = 0 (21)

c01(y) =
2p
2⇡

�x|y,H1
e

µx|y,H1
2�x|y,H1 + µx|y,H1

✓
1� 2Q

✓
µx|y,H1

�x|y,H1

◆◆

(22)

Note that the MMSE estimator is the conditional mean estimator under
H1, which is applied throughout this subsection.
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c10(y) = µx|y,H1

✓
1� 2Q

✓
µx|y,H1

� µx|y,H0

�x|y,H0

◆◆
(23)

c11 =
2p
2⇡

�x|y,H1
(24)

where Q(.) is the Gaussian Q-function, µx|y,Hi
is the condi-

tional mean of x given y under the hypothesis Hi, and �2
x|y,Hi

is the conditional variance of x given y under Hi. Clearly, c11
is not a function of y.

C. Neyman-Pearson-Like Approach for scalar Gaussian Data

with MSE Costs

In this subsection we apply our model to the scalar Gaussian
case with MSE estimation cost and assume the costs under
H0 are defined in terms of the estimation error. According to
our cost assignment using MSE, c00(y) is equal to zero. The
constraint on the cost under H0 is given by

E[C(↵, x)|H0] =

Z

{y: D(y)=H1}
c10(y)P (y|H0)dy 6 ⇣.

(25)

In this case the optimum detector can be readily proved to
be given by

y2
H1

?
H0

� (26)

where � is related to the detector threshold ⌘ as follows:

� =

✓
ln(⌘)� ln

✓
�0

�1

◆◆
2�2

0�
2
1

�2
1 � �2

0

. (27)

The relation between the constraint ⇣ on the average cost
under H0 and the threshold of detection � can be obtained as
follows:

p
⇡

 
1� erf(

p
�/(2�2

0))

4(1/2�2
0)

3
2

!
+

p
�e(��/2�2

0)

2(1/2�2
0)

=

⇣

p
2⇡�0

2

✓
1 +

�2
0

�2
x

◆2

(28)

For a given ⇣ we can obtain � which is used to give
the minimum average cost under H1. It is worth mentioning
that the average cost under H0 is monotonically decreasing
in ln(⌘), and the average cost under H1 is monotonically
increasing in ⌘. This means that the optimal detector will select
a threshold � that always satisfies the constraint on average
cost under H0 in (25) with equality.

1) Cost assignment with false alarm probability constraint:

Our formulation allows us to set the costs in any general form.
One way to set the costs is to define the costs under H1 to be
estimation costs and the costs under H0 to be detection costs.
Clearly under H0, x is not present so it is more meaningful
to care more about detection errors under H0 which is not the
case under H1 where we care more about estimation errors.
We can reformulate our problem by defining the costs under
H0 as functions of the detection error as

c00 = 0

c10 = 1 (29)

and the costs under H1 as functions of the estimation error

c01(y) = E[C(0, x)|y,H1]

c11(y) = E[C(↵, x)|y,H1]. (30)

This modification allows us to be able to minimize the average
cost under H1 subject to a certain constraint on the probability
of false alarm, as in this case the average cost under H0 will
map to the false alarm probability Pfa. The constraint can be
written as follows:

E[C(↵, x)|H0] =

Z

y2Ĥ=H1

P (y|H0)dy = Pfa 6 ⇣ (31)

and then our problem will be as follows:

minE[C(↵, x)|H1]

s.t. Pfa 6 ⇣. (32)

For the case of scalar Gaussian MSE and by solving (31),
the relation between detector threshold � and ⇣ is found to be

� = �0Q
�1

✓
⇣

2

◆
. (33)

In this case � is given by the solution of the following
equation:

y2
✓
�2
1 � �2

0

2�2
0�

2
1

◆
+ 2 ln |y| = ln(⌘) + ln

 
�1

�0

✓
�2
x + �2

0

�2
x

◆2
!
.

(34)

Note that the formulation in [7] aims at minimizing the
cost c11 under a false alarm and miss-detection probabilities
constraints. The model in [7] considers the estimation error
in the case of c11 only, but our model is more general as we
propose a general expression for the costs in (5), and according
to the definition of the costs we can consider different types
of errors such as estimation error or detection error in many
cases.

Therefore the model in [7] can not deal with the Gaussian
model reported under different estimation error costs. If we try
to apply the model in [7] to our Gaussian model, we will find
that the probability of detection will have two discrete values,
either zero or one, and so is the probability of false alarm.
So Pdet and Pfa will be equal to each other and we will not
be able to trade off the detection quality by increasing Pmis

or (decreasing Pdet) to enhance the estimation quality as the
values Pmis can take are zero or one.

V. NUMERICAL RESULTS

In this section, we present our simulations. We let N be the
number of measuring units that transmit their measurements
to the system controller; this number of measuring units
corresponds to the length of the received observation vector
yt.

For the case of Bayesian approach with Gaussian measure-
ments and MSE cost, we run our simulations for N = 10
measuring units with p0 = 0.8 and p1 = 0.2. The bad
data variance is set to be 20 and the noise variance is set
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Fig. 1: Average MSE vs
ln(⌘) for N = 10 and p0 = 0.8 and p1 = 0.2.
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Fig. 2: Average cost under H0 is monotonically decreasing
with ln(⌘).

to be 1. The minimum average mean square error occurs at
ln(⌘opt) = ln( 0.80.2 ) = 1.38 as shown in Fig. 1, which is the
optimum threshold as derived above.

Next, we consider the case of Neyman-Pearson-like setting.
In the sequel, the bad data variance is set to be 10 and the
noise variance is set to be 1. First, we consider the scalar
Gaussian MSE model and run the simulations for ⇣ = 0.27
(which is the MSE cost constraint under the null hypothesis).
Again, in this case, and as expected, the optimum threshold as
derived above matches the optimum threshold obtained from
the simulation results as will be shown below.

As shown in Fig. 2, the average cost under H0 is monoton-
ically decreasing with ln(⌘), but the average cost under H1

in Fig. 3 is monotonically increasing with ln(⌘) as mentioned
above. Fig. 4 shows that if the average cost under H0 is lower
than ⇣ then the average cost under H1 will increase, therefore,
the minimum value of the average cost under H1 occurs when
the average cost under H0 equals ⇣, i.e. the constraint is
satisfied with equality.

Next, we consider the Neyman-Pearson-like case and re-
formulate our problem as in eqn. (32) to map the average
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Fig. 3: Average cost under H1 is monotonically increasing
with ln(⌘).
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Fig. 4: Average cost under H1 vs Average cost under H0.

cost under H0 to the false alarm probability (Pfa). We run
the simulations for ⇣ = 0.45 and as expected the optimum
threshold is ln(⌘opt) = �1.7 which is consistent with the
optimum threshold as derived above. Using the same reasoning
as before, we can deduce that the average cost under H1 is
monotonically increasing with ln(⌘) as shown in Fig. 5 and
from Fig. 6 we can see that the probability of false alarm
(Pfa) is monotonically decreasing with ln(⌘). and the relation
between the average cost under H1 and Pfa is shown in Fig.
7.

For the same problem stated in eqn. (32), we run the
simulation but for the vector case where N = 10 measuring
units and Pfa = 0.45. As expected from the analysis above,
the value of the optimum threshold is ln(⌘opt) = �4.9 and this
value gives the minimum average cost under H1 according to
our constraint on Pfa as shown in Fig. 8.

Note that we do not compare the performance of our
formulation with the formulation in [7], [8] for the following
two reasons. Firstly, the two formulations consider different
cost functions so comparing the two formulations, each will
be better than the other if compared based on the cost function
used in the former formulation. Secondly, and more impor-
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formulation.
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Fig. 8: Average cost under H1 vs ln(⌘) for the vector case
N = 10 measuring units.

tantly all the cases considered in our simulations represent
singular cases for the formulation in [7], [8] as explained
above.

VI. CONCLUSION

In this paper we have introduced a joint detection-estimation
strategy for the bad data injected in the smart grid system. We
have defined two approaches based on the Bayesian setting and
Neyman-Pearson-like formulation using general assignment of
the costs by setting a maximum constraint on the cost under
nominal hypothesis and optimize the cost under the alternative
hypothesis to trade off between the quality of estimation
and the accuracy of detection. Our formulation allows us
to consider some singular cases that the previous works in
the same track failed to deal with. These cases include the
important case where the observations and the quantities to
be estimated are jointly Gaussian when we apply the mean-
square error (MSE) or minimum absolute-error (MAE) cost
functions.
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