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Abstract—This paper studies the problem of cooperative com-
munications in cognitive radio networks where the secondary
user is equipped with finite length relaying queue as well as
finite length battery queue. The major hurdle towards fully
characterizing the stable throughput region stems from the sheer
complexity associated with solving the two-dimensional Markov
Chain (MC) model for both finite queues. Motivated by this,
we relax the problem and focus on two energy constrained
systems, namely, finite battery queue with infinite relay queue and
finite relay queue with infinite battery queue. We characterize
the stable throughput regions for the two proposed simpler
systems. For each proposed system, we investigate the maximum
service rate of the cognitive node subject to stability conditions.
Despite the complexity of the formulated optimization problems
attributed to their non-convexity, we exploit the problems’
structure to transform them into linear programs. Thus, we
manage to solve them efficiently using standard known linear
programming solvers. Our numerical results reveal interesting
insights about the role of finite data queues as well as energy
limitations on the network performance, compared to baselines
with unlimited energy sources and infinite data queues.

I. INTRODUCTION

One of the prominent challenges in wireless communication

networks is to efficiently utilize the spectrum. The cognitive

radio technology is one approach to tackle the hurdle of

spectrum scarcity. In cognitive radio networks, the unlicensed

users (secondary users (SUs)) are allowed to exploit the unused

spectrum by the licensed users (the primary users (PUs)) to

improve the utilization of the spectrum [1], [2]. Nevertheless,

the spectrum occupation by the SUs is tied with a minimum

quality of service guaranteed for the PUs.

Cooperative cognitive radio networks has recently attracted

considerable attention [3]–[5]. [3] introduced a full coopera-

tion protocol in a wireless multiple-access system for a system

composed of N users in which each user is a source and at the

same time a potential relay. [4] proposed a cooperative strategy

with probabilistic relaying. In this strategy, the SU is equipped

with two infinite length queues; one is for storing its own

packets and the other is for relaying the PU packets. If the PU’s

packet is not successfully decoded by the destination, whereas

it is successfully decoded by the SU, the SU admits the PU’s

packet with probability a. On the other hand, when the PU is

sensed idle, the SU serves its own data queue with probability
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b or the relaying queue with probability 1−b. Furthermore, [5]

characterized the throughput region when the relaying buffer

at the secondary user has finite length. In [4], [5], it was

implicitly assumed that the SU is equipped with unlimited

energy supply, i.e., the SU can access the channel whenever

the PU is inactive without any energy limitations. Differently

from [4], [5], in this work, we study the scenario when the

SU is equipped with limited energy source. Furthermore, we

investigate the effects caused by the finiteness of queue lengths

for both the relaying queue as well as the battery queue. It can

be contemplated that the proposed system model constitutes

an important step towards real systems.

Our main contribution in this paper is three-fold. First,

we show the challenges of fully characterizing the stable

throughput region when having finite relaying and battery

queues. Second, we characterize the stable throughput region

for two energy constrained systems, namely, finite battery

queue with infinite relay queue and finite relay queue with

infinite battery queue. Third, we formulate two optimization

problems to investigate the maximum achievable throughput

of the SU, subject to queue stability conditions, for the two

simpler systems. Despite the complexity of the formulated op-

timization problems caused by their non-convexity, we exploit

the problems’ structure to cast them as linear programs. This,

in turn, leads to efficiently solve the formulated optimization

problems using standard optimization tools. Our numerical

results reveal interesting insights about the effects of finite

relay and energy queues as well as the energy limitations on

the achievable stable throughput region.

II. SYSTEM MODEL

In this paper, we study cooperative cognitive radio network

as shown in Fig. 1. The network consists of a PU and a SU

transmitting their packets to a common destination d. The

PU is equipped with an infinite queue (Qp) for storing its

data packets. On the other hand, the SU is equipped with an

infinite queue (Qs) for storing its data packets and a finite

queue (Qsp) of length Lsp = N for storing packets overheard

from the PU. The arrival processes at the data queues, Qp

and Qs, are modeled as Bernoulli processes with means λp

and λs [6], respectively, where 0 ≤ λp, λs ≤ 1. The arrival

processes at both users are assumed to be independent of each

other, and are independent and identically distributed across
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Fig. 1. System model.

time slots. It is assumed that the SU is equipped with radio

frequency energy harvesting circuitry. The harvested energy

from the surrounding environment is stored in a finite battery

queue (QB) of length LB = M . In addition, the harvested

energy is assumed to be harvested in a certain unit and one

energy unit is consumed for one transmission attempt. The

energy harvesting process at the SU is modeled as a Bernoulli

process with mean δ, where 0 ≤ δ ≤ 1.

Time is slotted and one slot duration is equal to one packet

transmission time. It is assumed that the SU has perfect

sensing. Therefore, the system is collision-free since at most

one user transmits one packet each time slot. For a successful

transmission, the entire transmitted packet must be received at

the destination without error. In addition, the channel must not

be in outage, i.e., the received signal-to-noise ratio (SNR) at

the destination must not be less than a pre-specified threshold

required to successfully decode the received packet. Let fpd,

fsd and fps denote the probability of successful transmission

between the PU and destination, the SU and destination, and

the PU and SU, respectively. We assume that fpd < fsd
throughput the paper. This assumption characterizes the effec-

tive relaying role of the SU for the PU overheard packets in

cooperative cognitive radio networks. Moreover, it is assumed

that acknowledgement packets (ACKs) are sent either by the

destination for successfully-decoded packets from the PU or

SU, or by the SU for successfully-decoded overheard packets

from the PU. These ACKs are assumed to be instantaneous,

error-free and can be heard by all the nodes in the network.

The proposed channel access policy is as follows. It is

assumed that the PU has the priority to transmit a packet

whenever Qp is non empty. If the packet is successfully

decoded by the destination, the destination sends back an

ACK heard by both users (PU and SU). Therefore, the

packet is dropped from Qp and exits the system. If the

packet is not successfully decoded by the destination but

successfully decoded by the SU, Qsp either admits the packet

with probability ai,j or discards it with probability (1− ai,j),
i = 0, · · · ,M and j = 0, · · · , N . The packet admission

probabilities depend on the number of packets in QB and

Qsp, i.e., ai,j is the admission probability when QB has i

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig. 2. Discrete time two-dimensional MC model for Qsp and QB , where
M = N = 2.

packets and Qsp has j packets. This admission strategy, in

turn, constitutes the probabilistic admission relaying policy. If

the packet is buffered in Qsp, the SU sends back an ACK

to announce successful reception of PU’s packet. Thus, the

packet is dropped from Qp and the SU becomes responsible

of delivering the PU’s packet to the destination. Finally, if the

packet is neither successfully decoded by the destination nor

decoded by the SU or decoded but not admitted to Qsp, then

the packet is kept at Qp for retransmission in the next time

slot.

When the PU is idle, the SU’s packet transmission depends

on the battery and data queues status. If the battery queue is

empty, then the SU is unable to transmit a packet. On the

other hand, if the battery queue is not empty, the SU either

transmits a packet from Qs with probability bi,j or from Qsp

with probability (1 − bi,j), i = 0, · · · ,M and j = 0, · · · , N .

Also, we notice that the queue selection probability depends

on the number of packets in QB and Qsp. If the destination

successfully decodes the packet, it sends back an ACk heard

by the SU. Therefore, the packet is dropped from either Qs

or Qsp and exits the system. Otherwise, the packet is kept

at its queue for later retransmission. In the next section, we

characterize the stability conditions of all infinite queues in

the network.

III. STABLE THROUGHPUT REGION

In this section, we characterize the stable throughput region

of the proposed system model. The system is stable if all of its

queues are stable. Loyens’ theorem [7] provides the stability

condition for an infinite size queue. The theorem states that

if the queue arrival and service processes are stationary, the

queue is stable if and only if the packet arrival rate is strictly

less than the packet service rate. Note that QB and Qsp are

finite queues; therefore, the number of packets in each of them

will never grow to infinity since it is upper bounded by M and

N , respectively.

A packet leaves Qp if it is either successfully decoded by the

destination or successfully decoded by the SU and admitted

to the relaying buffer (Qsp). Therefore, the service rate of Qp

is given by
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µp = fpd + (1− fpd) fps

M
X

i=0

N
X

j=0

ai,jπi,j , (1)

where πi,j denotes the steady state probability that QB

has i packets and Qsp has j packets at a given time slot,

i = 0, 1, · · · ,M and j = 0, 1, · · · , N . Therefore, the stability

condition for Qp is given by

λp < fpd + (1− fpd) fps

M
X

i=0

N
X

j=0

ai,jπi,j . (2)

Similarly, a packet leaves Qs if Qp is empty which has a

probability of 1−
λp

µp

, QB is not empty or empty but there is

an energy packet arrival, Qs is selected for transmission which

happens with probability bi,j and the destination successfully

decodes the packet which has a probability of fsd. Thus, the

stability condition for Qs can be expressed as

λs <

✓

1−
λp

µp

◆

fsd

0

@

M
X

i=1

N
X

j=0

bi,jπi,j + δ

N
X

j=0

b0,jπ0,j

1

A .

(3)

It is worth nothing that the service rate of packets in both

queues Qs and Qsp depends on the state of the battery queue

(QB) at the secondary user and vise versa. This dependency, in

turn, leads to an interacting system of queues and complicates

the characterization of the stable throughput region. In sequel,

we use the Dominant System concept [8] in order to tackle

this problem such that we assume that Qs and Qsp have

dummy packets to transmit when they are empty and, hence,

the service rate of QB becomes only dependent on the PU’s

status. This system stochastically dominates our system since

the SU queues’ lengths in the dominant system are always

larger than that of our system if both systems start from the

same initial state, have the same arrivals and encounter the

same packet losses.

Now, our objective is to calculate the steady state distribu-

tion of QB and Qsp (πi,j) in order to fully characterize the

stable throughput region. And, hence, be ready to investigate

the optimal admission and selection probabilities (ai,j and bi,j)

in order to achieve the maximum SU’s service rate subject to

queue stability conditions. We start by showing the complexity

of fully characterizing the steady state distribution, which

arises from the nature of discrete time multidimensional MC

with diagonal transitions. Afterwards, we relax the assumption

of having both QB and Qsp with finite lengths, and study

two different settings, namely, finite battery queue with infinite

relay queue and finite relay queue with infinite battery queue,

with completely characterizing of their stable throughput re-

gions.

QB and Qsp can be modeled as a discrete time two-

dimensional MC. The MC is shown in Fig. 2 where state i, j
denotes that the number of packets in QB and Qsp are i and j,

respectively. The probability of moving from state i, j to state

i+1, j+1 is the probability that Qp is non empty, an energy

packet arrives at QB , the PU’s packet is not successfully

decoded at the destination, the SU successfully decodes the

packet and Qsp admits the packet. Hence, Pi,j→i+1,j+1 can

be expressed as

Pi,j→i+1,j+1 =
λp

µp

δ (1− fpd) fpsai,j . (4)

Similarly, the probability of moving from state i, j to state

i−1, j−1 is the probability that Qp is empty, there is no energy

packet arrival at QB , Qsp is selected for transmission and the

packet is successfully decoded at the destination. Therefore,

Pi,j→i−1,j−1 is given by

Pi,j→i−1,j−1 =

✓

1−
λp

µp

◆

(1− δ) fsd (1− bi,j) . (5)

Using the same rationale, the remaining transition probabil-

ities can be expressed as follows

Pi,j→i+1,j =
λp

µp

δ (fpd + (1− fpd) (1− fpsai,j)) , (6)

Pi,j→i,j+1 =
λp

µp

(1− δ) (1− fpd) fpsai,j , (7)

Pi,j→i,j−1 =

✓

1−
λp

µp

◆

δfsd (1− bi,j) , (8)

Pi,j→i−1,j =

✓

1−
λp

µp

◆

(1− δ) (bi,j + (1− bi,j) (1− fsd)) .

(9)

Indeed, the existence of diagonal transitions, i.e.,

Pi,j→i−1,j−1 and Pi,j→i+1,j+1, complicates the solution

of the balance equations along with the normalization

equation
Pi=M

i=0

Pj=N

j=0
πi,j = 1. Consequently, the product-

from solution of the MC is inapplicable and there is no

closed form expressions for the steady state probabilities. It

is worth mentioning that various approximation techniques

for solution of multidimensional MCs have been extensively

used in the literature [9], e.g., equilibrium point analysis

(EPA). However, these approaches depend on approximating

the stationary probability distribution of the MC by a unit

impulse located at a point in the state space where the

system is in equilibrium. Thus, they do not fit with our

objective of having closed form expressions for the steady

state probabilities to be able to optimally tune the admission

and selection probabilities to achieve the maximum SU’s

service rate subject to stability conditions. Motivated by this,

we relax the assumption of both QB and Qsp having finite

lengths. More specifically, we focus on two different energy

constrained systems, namely, finite battery queue with infinite

relay queue and finite relay queue with infinite battery queue,

in the following two subsections.
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A. Finite battery queue with infinite relay queue

Under this setting, we assume that QB remains with fi-

nite length M , but Qsp becomes an infinite queue. Note

that the admission and selection probabilities (ai and bi for

i = 0, · · · ,M ) become only dependent on the state of QB . It

is worth nothing that the stability conditions for Qp and Qs,

given by (2) and (3), will reduce to the following expressions

λp < fpd + (1− fpd) fps

M
X

i=0

aiπ
B
i , (10)

λs <

✓

1−
λp

µp

◆

fsd

 

M
X

i=1

biπ
B
i + δb0π

B
0

!

, (11)

respectively, where πB
i is the steady state probability that QB

has i energy packets at a given time slot. By applying Loyens’

theorem, the stability condition for Qsp can be derived as

follows. A packet is buffered at Qsp if Qp is not empty which

happens with probability
λp

µp

. In addition, the packet is not

successfully decoded by the destination which happens with

probability 1− fpd, whereas it is successfully decoded by the

SU which happens with probability fps and is admitted to Qsp

which has a probability of ai, i = 0, 1, · · · ,M . Thus, λsp is

given by

λsp =
λp

µp

(1− fpd) fps

M
X

i=0

aiπ
B
i . (12)

On the other hand, a packet leaves Qsp if Qp is empty

which happens with probability 1−
λp

µp

, QB is not empty or

empty but there is an energy packet arrival, Qsp is selected

for transmission which happens with probability 1 − bi, i =
0, 1, · · · ,M , and the packet is successfully decoded at the

destination which has a probability of fsd. Therefore, µsp and

the stability condition for Qsp are given respectively by

µsp =

✓

1−
λp

µp

◆

fsd

 

M
X

i=1

(1− bi)π
B
i + δ(1− b0)π

B
0

!

,

(13)

λsp < µsp. (14)

With the purpose of fully characterizing the stability region,

we shall now calculate the steady state probabilities of QB (πB
i

for i = 0, · · · ,M ). QB can be modeled as a discrete time

M|M|1|M. The MC is shown in Fig. 3 where state i denotes

that the number of packets in QB is i. Let λB
i and µB

i denote

the probability of moving from state i to state i + 1 and the

probability of moving from state i to state i− 1, respectively.

λB
i is the probability that Qp is not empty and an energy packet

arrives at QB . On the other hand, µB
i is the probability that

Qp is empty and there is no an arrival energy packet. Thus,

using the balance equations, the steady state probabilities of

QB are given by

0 1 M-1 M

B

0

B

1

B

M 2

B

M 1

B

1

B

2

B

M

B

M 1

Fig. 3. Discrete time MC model for QB in finite battery queue with infinite
relay queue system.

πB
i+1 =

δ
λp

µp
✓

1−
λp

µp

◆

(1− δ)

πB
i , (15)

where i = 0, 1, · · · ,M − 1. Applying the normalization

condition

M
X

i=0

πB
i = 1, (16)

along with (15), the steady state distribution of QB can be

completely characterized.

B. Finite relay queue with infinite battery queue

Under this setting, we assume that Qsp remains with finite

length N , but QB becomes an infinite queue. Although the

relay finiteness effects are studied in [5], it was implicitly

assumed that the system has no energy limitation, i.e., the

SU always has energy packets to transmit whenever it has

the opportunity to access the channel. On the contrary, in this

subsection, we focus on the more interesting practical scenario

of having a limited-energy system. The energy limitation is

characterized through the constraint that the energy arrival rate

at QB is strictly less than its service rate. Thus, the number of

energy packets inside QB will never grow to infinity and there

is always a non-zero probability of having an empty QB .

In this scenario, the admission and selection probabilities

(aj and bj for j = 0, · · · , N ) become only dependent on the

state of (Qsp). We set aN = 0 to prevent Qsp from admitting

any overheard PU’s packet when it is full, and b0 = 1 to

prevent allocating any transmission time slots for Qsp when

it is empty. The stability conditions for Qp and Qs, given by

(2) and (3), will reduce to the following expressions

λp < fpd + (1− fpd) fps

N
X

j=0

ajπ
sp
j , (17)

λs <

✓

1−
λp

µp

◆

fsd
δ

1−
λp

µp

N
X

j=0

bjπ
sp
j , (18)

4



0 1 N-1 N

sp

0

sp

1

sp

N 2

sp

N 1

sp

1

sp

2

sp

N

sp

N 1

Fig. 4. Discrete time MC model for Qsp in finite relay queue with infinite
battery queue system.

respectively, where πsp
j is the steady state probability that Qsp

has j packets at a given time slot. Note that the fraction

δ/

✓

1−
λp

µp

◆

in (18) represents the probability that QB is

capable of supporting the transmission of the SU’s packet,

and it is the sum of the two probabilities: the probability of

having non empty QB and the probability of having an empty

QB but there is an energy packet arrival. Finally, the energy

limitation constraint is given by

δ
λp

µp

<

✓

1−
λp

µp

◆

(1− δ) . (19)

Next, we shall now calculate the steady state distribution of

Qsp. Qsp can be modeled as a discrete time M|M|1|N. The

MC is shown in Fig. 4 where state j denotes that the number

of packets in Qsp is j. Let λsp
j and µsp

j denote the probability

of moving from state j to state j + 1 and the probability of

moving from state j to state j − 1, respectively. λsp
j is the

probability that Qp is not empty, the packet is not successfully

decoded by the destination, whereas it is successfully decoded

by the SU and is admitted to Qsp. On the other hand, µsp
j is

the probability that Qp is empty, QB is capable of supporting

the transmission of the SU’s packet as discussed in (18), Qsp

is selected for transmission and the packet is successfully

decoded at the destination. Thus, using the balance equations,

the steady state probabilities of Qsp are given by

πsp
j+1

=

λp

µp

fps (1− fpd) aj

fsdδ (1− bj+1)
πsp
j , (20)

where j = 0, 1, · · · , N − 1. Applying the normalization

condition

N
X

i=0

πsp
j = 1, (21)

along with (20), the steady state distribution of Qsp can be

completely characterized. In the next section, we formulate

the stable throughput region optimization problems for the two

systems studied in this section and discuss the solution for

them.

IV. SU’S THROUGHPUT MAXIMIZATION PROBLEM

In this section, our objective is to investigate the optimal

admission and selection probabilities to achieve the maximum

SU’s service rate for both considered energy constrained

systems, namely, finite battery queue with infinite relay queue

and finite relay queue with infinite battery queue. The maxi-

mum SU’s service rates are investigated subject to the stable

throughput regions characterized in Section III.

A. Finite battery queue with infinite relay queue

The SU’s service rate maximization problem for finite bat-

tery queue with infinite relay queue system can be formulated

as

P1 : max
ai,bi,π

B
i ,µp

✓

1−
λp

µp

◆

fsd

 

M
X

i=1

biπ
B
i + δb0π

B
0

!

s.t. λp < µp,

µp = fpd + (1− fpd) fps

M
X

i=0

aiπ
B
i ,

λsp < µsp,

0 ≤ πB
i , ai, bi ≤ 1, i = 0, · · · ,M,

(15), (16),
(22)

where λsp and µsp are given by (12) and (13), respectively.

It is worth nothing that P1 is a non-convex optimization

problem. However, we exploit the problem structure in order

to transform it into a linear program. More specifically, by

defining the new variables

xi = aiπ
B
i , yi = biπ

B
i , i = 0, · · · ,M, (23)

P1 reduces into a linear program for a given µp as follows.

First, we have the following constraints on the new defined

variables

0 ≤ xi, yi ≤ πB
i , i = 0, · · · ,M. (24)

Second, we can rewrite the constraint in (14) as

M
X

i=0

xi <
fsd (µp − λp)

λpfps (1− fpd)

 

M
X

i=1

(

πB
i − yi

)

+ δ
(

πB
0 − y0

)

!

.

(25)

Finally, by substituting with the new defined variables into

the objective function and the remaining constraints, P1 turns

out to be a linear program for a given µp and can be expressed

as follows

P1∗ : max
xi,yi,π

B
i

✓

1−
λp

µp

◆

fsd

 

M
X

i=1

yi + δy0

!

s.t. µp = fpd + (1− fpd) fps

M
X

i=0

xi,

0 ≤ πB
i ≤ 1, i = 0, · · · ,M,

(15), (16), (24), (25).

(26)
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From (10), the feasible values of µp over which the linear

program runs are given by max(λp, fpd) ≤ µp ≤ fpd +
(1− fpd) fps.

B. Finite relay queue with infinite battery queue

The SU’s service rate maximization problem for finite relay

queue with infinite battery queue system can be formulated as

P2 : max
aj ,bj ,π

sp

j
,µp

δfsd

N
X

j=0

bjπ
sp
j

s.t. λp < µp,

µp = fpd + (1− fpd) fps

N
X

j=0

ajπ
sp
j ,

δ
λp

µp

<

✓

1−
λp

µp

◆

(1− δ) ,

aN = 0, b0 = 1,

0 ≤ aj , bj , π
sp
j ≤ 1, j = 0, · · · , N,

(20), (21).

(27)

By inspecting P2, we can easily see that it is a non-convex

optimization problem. However, similar to P1, P2’s structure

can be exploited to transform it into a linear program. By

defining the new variables

xj = ajπ
sp
j , yj = bjπ

sp
j , j = 0, · · · , N, (28)

P1 reduces into a linear program for a given µp as follows.

First, we have the following constraints on the new defined

variables

0 ≤ xj , yj ≤ πsp
j , j = 0, · · · , N. (29)

Second, we can rewrite the constraint in (20) as

πsp
j+1

− yj+1 =
λpfps (1− fpd)

µpfsdδ
xj , j = 0, · · · , N − 1. (30)

Finally, by substituting with the new defined variables into

the objective function and the remaining constraints, P2 turns

out to be a linear program for a given µp and can be expressed

as follows

P2∗ : max
xj ,yj ,π

sp

j

δfsd

N
X

j=0

yj

s.t. µp = fpd + (1− fpd) fps

N
X

j=0

xj ,

xN = 0, y0 = πsp
0 ,

0 ≤ πsp
j ≤ 1, j = 0, · · · , N,

(21), (29), (30).

(31)

From (17) and (19), the feasible values of µp over which

the linear program runs are given by

max(
λp

1− δ
, fpd) ≤ µp ≤ fpd + (1− fpd) fps. (32)

V. NUMERICAL RESULTS

In this section, we provide numerical results showing the

merits of the formulated optimization problems and the asso-

ciated trade-offs. Motivated by the convexity of the proposed

linear programs, we use standard optimization tools, e.g., CVX

[10], to obtain the optimal solution. If not otherwise stated, we

use the following parameters fpd = 0.3, fps = 0.4, fsd = 0.8
and δ = 0.5. Our objective is to compare the performance of

our proposed cooperative cognitive radio network systems with

limited energy sources with that of the baseline cooperative

cognitive radio networks with non limited energy sources

introduced in [4], [5].

In Fig. 5, Our objective is to show the effect of the arrival

rate of the harvested energy packets at the SU on the stable

throughput region for finite battery queue with infinite relay

queue system (P1). Towards this objective, we fix M = 10
and plot the stable throughput region for different values of

δ (δ = 0.3, 0.5, 0.7 and 0.9). It is observed that as the

average arrival rate of the harvested energy packets increases,

the throughput region expands. This is attributed to the fact

that as the average arrival rate of harvested energy packets

increases, the likelihood that QB is empty decreases. This,

in turn, manages the SU to achieve larger service rate (µs)
for a given arrival data packets rate of the PU (λp). It is

further observed that the stable throughput region obtained by

P1 approaches to that of [4] with non limited energy sources

as δ increases.

Fig. 6 compares the achievable stable throughput region

of the baseline cooperative cognitive radio [4] with that of

P1 for different values of battery queue length (LB = 1, 3,

10 and 150). It is observed that the stable throughput region

obtained by P1 expands as M increases. Increasing M results

in having a lower probability for both QB is empty and SU’s

harvested energy packets losses. Therefore, the service rate

of the SU increases with M . However, even for large values

of QB length (M = 150), the maximum achievable service

rate by P1 is half that of the baseline sytem with no energy

limitations for λp = 0. This, in turn, highlights the impact of

the probabilistic arrival of energy packets at the SU (δ = 0.5).

In Fig. 7, we compare the stable throughput region achieved

by finite relay queue with infinite battery queue system (P2),

for different values of δ and N = 10, with the baseline

system with infinite length Qsp and no energy limitations

[4], and the system studied in [5] with finite length Qsp and

no energy limitations. It is observed that the practical energy

limitation constraint in P2 greatly influences the achievable

throughput region, compared to the scenario of no energy

limitations [5]. More specifically, from (32), the energy limi-

tation constraint restricts P2 feasibility to be only feasible for

λp < (1− δ) (fpd + (1− fpd) fps). This, in turn, leads to a

trade-off between achieving high SU’s service rate for small

values of λp and wide range of λp values over which P2 is

feasible (as a function of δ).

Fig. 8 compares the achievable stable throughput region of

P2 with that of [4], [5] for different values of Qsp length
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Fig. 5. The stable throughput region of finite battery queue with infinite relay
queue system for different values of average arrival energy packets per time
slot (δ).
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Fig. 6. The stable throughput region of finite battery queue with infinite relay
queue system for different values of QB length.

(Lsp = 1, 3, 10 and 150). Despite the increase of Qsp length,

we observe that the stable throughput regions achieved by N =
3, N = 10 and N = 150 are identical. This happens due to

the forced range of λp by the energy limitation constraint over

which P2 is feasible (λp < 0.29). In other words, the energy

limitation constraint prevents the stable throughput region’s

expansion caused by increasing Qsp length.

VI. CONCLUSION

In this paper, we studied cooperative cognitive radio net-

work where the secondary user is equipped with finite length

relaying queue as well as finite length battery queue. Motivated

by the complexity of fully characterizing the stable throughput

region, we relaxed the proposed system model and proposed

two energy constrained systems. The stable throughput regions

were characterized for our proposed systems. We formulated

the stable throughput region optimization problem for each

proposed system and showed how to solve it. Finally, we

compared the achievable throughput region by each proposed

system with that of the baseline system with unlimited energy

sources and infinite queues.
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Fig. 7. The stable throughput region of finite relay queue with infinite battery
queue system for different values of average arrival energy packets per time
slot (δ).
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Fig. 8. The stable throughput region of finite relay queue with infinite battery
queue system for different values of Qsp length.
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