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Abstract—The optimal resource allocation scheme in a full-
duplex Wireless Powered Communication Network (WPCN)
composed of one Access Point (AP) and two wireless devices
is analyzed and derived. AP operates in a full-duplex mode
and is able to broadcast wireless energy signals in downlink
and receive information data in uplink simultaneously. On the
other hand, each wireless device is assumed to be equipped
with Radio-Frequency (RF) energy harvesting circuitry which
gathers the energy sent by AP and stores it in a finite capacity
battery. The harvested energy is then used for performing uplink
data transmission tasks. In the literature, the main focus so
far has been on slot-oriented optimization. In this context, all
the harvested RF energy in a given slot is also consumed in
the same slot. However, this approach leads to sub-optimal
solutions because it does not take into account the Channel State
Information (CSI) variations over future slots. Differently from
most of the prior works, in this paper we focus on the long-
term weighted throughput maximization problem. This approach
significantly increases the complexity of the optimization problem
since it requires to consider both CSI variations over future
slots and the evolution of the batteries when deciding the
optimal resource allocation. We formulate the problem using
the Markov Decision Process (MDP) theory and show how to
solve it. Our numerical results emphasize the superiority of our
proposed full-duplex WPCN compared to the half-duplex WPCN
and reveal interesting insights about the effects of perfect as
well as imperfect self-interference cancellation techniques on the
network performance.

Index Terms—WPCN, energy transfer, RF energy, cellular
networks, green communications, energy harvesting, Markov
Decision Process, optimal policy.

I. INTRODUCTION

In the past few years, there has been an increasing research

interest in developing new strategies and technologies for

improving the devices lifetime in mobile networks (e.g., Wire-

less Sensor Networks (WSNs)). Among the others, Energy

Harvesting (EH) has emerged as one of the most appealing

and consolidated solutions. With EH, it becomes possible

to recharge the batteries of the devices using an external

ambient energy source (e.g., sunlight, wind, electromagnetic

radiation, vibrations, etc.). Nevertheless, ambient sources have

the drawback of being random, not controllable and, moreover,

they may not be always available depending on the time of the

day or the devices location. An interesting alternative is given
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by the Wireless Energy Transfer (WET) paradigm, in which

an energy rich source, e.g., an access point, transfers energy

wirelessly to the devices only when necessary. In contrast with

classic solutions, when the devices are battery-powered the

transmission scheduling problem becomes more challenging

and a correct management of the available energy is required

in order to achieve high performance.

Energy transfer is a groundbreaking technology with several

significant consequences in WSNs. First of all, plugs and

cables are no longer necessary, saving replacement times and

costs. Moreover, differently from the traditional ambient EH,

nodes do not need to generate energy locally but can be

supplied with energy efficiently generated elsewhere. Recently,

thanks to the development of WSNs and mobile battery-

powered devices, WET has experienced a renewed research

interest. A typical example where WET can be used is a

wireless body area network, in which on-body devices need to

communicate the gathered medical data to an external node. To

implement WET, three main techniques have been proposed in

the literature so far. Inductive coupling and strongly coupled

magnetic resonances [1] can be used with high efficiency at a

distance of few centimeters or meters, respectively. However,

since transmitter and receiver coils require to be aligned, these

technologies are more suitable for fixed scenarios. Instead,

RF energy transfer, which is the focus of this paper, can

operate at larger distances and does not require a precise

alignment between devices, and thus is more versatile and

can be applied to a larger number of scenarios. Several

different aspects of WET have been studied by both industry

and academia, e.g., in terms of antenna design [2] but also

in terms of communication protocols. In this last area, the

main topics introduced so far are SWIPT, energy cooperation

and WPCNs. SWIPT (Simultaneous Wireless Information and

Power Transfer) aims to find the tradeoffs between simulta-

neous energy transfer and information transmission [3]. Time

and power splitting approaches are considered for this problem

according to the current technology limitations [4]–[10]. A

different area analyzes the energy cooperation paradigm, in

which devices exchange their available energy to improve the

system performance and achieve fairness [11]–[13]. Finally,

WET allows the development of WPCNs, in which an energy

rich node feeds a communication network.

In a WPCN, the devices far away from the energy rich node

experience, on average, worse channels in both uplink and



downlink, leading to a doubly near-far effect (more energy is

required in both directions). A common approach to solve this

problem is to use a “harvest-then-transmit” scheme, in which

the downlink (energy transfer) and uplink (data transmission)

phases are temporally interleaved [14]. It is also possible to

exploit data cooperation to increase the throughput of the

system [15]. However, this approach is suitable only for a

smaller set of scenarios in which the terminal devices are

closely placed. Moreover, it induces higher computational

complexity to derive the scheduling policy. [16] described

a harvest-then-cooperate protocol, in which source and relay

work cooperatively in the uplink phase for the source’s in-

formation transmission. The authors also derived approximate

closed-form expressions for the average throughput of the

proposed protocol. [17] studied the case of devices with energy

and data queues and described a Lyapunov approach to derive

the stochastic optimal control algorithm which minimizes the

expected energy downlink power and stabilizes the queues.

The long-term performance of a single-user system for a

simple transmission scheme was presented in closed form

in [18]. [19] modeled a WPCN with a Decentralized Partially

Observable Markov Decision Process (Dec-POMDP) and min-

imized the total number of waiting packets in the network.

[20] showed that energy beamforming can be used to increase

the system performance. The concept was extended in [21]

for massive multiple-input-multiple-output technologies. A

WPCN with heterogeneous nodes (nodes with and without RF

energy harvesting capabilities) was studied in [22] and it was

shown how the presence of non-harvesting nodes improves the

network performance compared to traditional WPCNs [14].

[23] introduced a generalized problem setting for WPCNs,

compared to prior work, e.g., [14], [22], in which all the nodes

are jointly equipped with batteries and RF energy harvesting

circuitry. This is an important step towards more realistic

future wireless networks as RF energy harvesting technology

gradually penetrates the wireless industry.

Most of previous works describe a half-duplex system in

which the uplink and downlink phases cannot be performed

simultaneously. Instead, in this work we focus on the full-
duplex case [24], [25]. [24] optimized the time allocations

for WET and data transmission for different users in order to

maximize the weighted sum throughput of the uplink transmis-

sions. The authors considered perfect as well as imperfect self-

interference cancellation at the access point and showed that,

when self-interference cancellation is performed effectively,

the performance of the full-duplex case outperforms that of

half-duplex. A survey of recent advances and future perspec-

tives in the WPCNs field can be found in [26]. In this work we

study a pair of energy harvesting devices which gather energy

from a common access point in the downlink phase and use

it to upload data packets. The received energy and the uplink

data packets are transmitted in the same frequency, and are

both affected by flat fading. AP is equipped with two antennas

and is able to perform self-interference cancellation in order

to receive data and transfer energy simultaneously, whereas

the two devices have only one antenna. Differently from

previous work [27], [28] where we analyzed the half-duplex

case, better performance can be achieved in the full-duplex

scenario. In particular, we numerically characterize how the

throughput region of the two devices expands. Moreover, we

compare the full-duplex and half-duplex cases as a function

of different design parameters. Our focus is on the long-term
throughput optimization problem and not on the classic slot-

oriented optimization [15], [20]. In this case, the batteries of

the two devices are not discharged in every slot, but energy

can be stored for future use (e.g., more energy will be used if

the channel conditions are good, and vice-versa).

The paper is organized as follows. Section II describes the

model of the system. The long-term optimization problem

is stated in Section III. We present our numerical results in

Section IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

We study a WPCN composed of one Access Point (AP)

and two wireless devices, namely, D1 and D2. AP is equipped

with a stable energy supply, whereas each terminal device Di,

i ∈ {1, 2}, is equipped with an RF energy harvesting circuitry

and no other energy sources. Di harvests the energy broadcast

by AP in the downlink phase and stores it in a battery with

capacity Bi,max joules. The stored energy is then used for

uplink data transmission. Each wireless device is assumed to

be equipped with only one antenna, thus, at a given time

instant, it can either harvest wireless energy in downlink or

transmit data in uplink. On the other hand, AP is equipped

with two antennas and can operate in a full-duplex mode: since

the WET and the data transmission are performed in the same

frequency band, one antenna is dedicated to WET and the

other to data reception. This, in turn, highlights the practical

issue, associated with full-duplex communication systems, of

self-interference at the AP side. Self-interference at AP arises

from the fact that the wireless energy signals transmitted

by AP in downlink are also received by the other AP’s

antenna and, hence, interfere with the uplink data transmission

signals. In practice, the self-interference power is significantly

larger compared to the power of the desired data signals.

Therefore, self-interference cancellation techniques are a key

aspect in implementing full-duplex communication systems.

One of our objectives is to show the effect of perfect as well

as imperfect self-interference cancellation techniques on the

network performance.

The time horizon is divided into slots of length T and

slot k = 0, 1, . . . corresponds to the time duration [kT, (k +
1)). The complex random variables gi and hi represent the

downlink channel coefficient from AP to Di and the uplink

channel coefficient from Di to AP, respectively. The power

gains in downlink and uplink are obtained as gi = |gi|2
and hi = |hi|2. In addition, we denote the effectiveness

of self-interference cancellation techniques by a scalar gain

γ ∈ [0, 1] [24], [29]. More specifically, if γ = 1 no self-

interference cancellation is adopted, while if γ = 0 AP cancels

self-interference perfectly. The details of the methods used

for self-interference cancellation are beyond the scope of this

work (see [30]–[32] for further details). It is assumed that

all downlink and uplink channels are affected by quasi-static

flat fading, i.e., all channels remain constant over a time slot



Figure 1: Slot time allocation.

but change independently from one slot to another. Moreover,

it is assumed that AP has perfect knowledge of all channel

coefficients at the beginning of each slot.

As shown in Figure 1, the slot duration is divided into three

portions of time denoted by τi, i ∈ {0, 1, 2}. AP keeps broad-

casting wireless energy signals over the entire slot duration.

Let Pi denote the average transmit power by AP within τi. It

is assumed that Pi ≤ Pmax, where Pmax < ∞ is a technology

parameter which denotes the maximum allowable power that

can be used by AP to transmit wireless energy signals. The

first portion of time, τ0, is devoted to downlink wireless energy

transfer, so that each device could harvest a certain amount of

energy and charge its battery. The importance of devoting the

first portion of the slot duration to wireless energy transfer

only is to address the scenario in which both batteries are

empty at the beginning of a given slot. Afterwards, during the

remaining time T −τ0, the portions of time denoted by τ1 and

τ2 are assigned to D1 and D2, respectively, for uplink data

transmission. Hence, the slot portions satisfy:

τ0 + τ1 + τ2 ≤ T. (1)

It is assumed that Pi is sufficiently large such that the

harvested energy at each device due to the uplink informa-

tion transmissions by the other and to the receiver noise is

negligible. Therefore, the amount of energy per slot harvested

by Di is given by

Ci = ηigi

2∑
j=0
j �=i

τjPj , (2)

where ηi denotes the efficiency of the energy harvesting

circuitry [33]. The value of ηi depends on the efficiency of

the harvesting antenna, the impedance matching circuit and

the voltage multipliers.

In order to characterize the maximum achievable throughput

by the system, we assume that the transmission data queues

are always non empty, i.e., D1 and D2 always have data to

transmit (this assumption can be extended as in [34]). Thus,

the energy level of Di is updated according to (the energy

gathered in a given slot can be exploited only in later time

slots)

Bi ← min{Bi,max, Bi − Ei + Ci}, (3)

where Ei = τiρi ∈ [0, Bi,max] is the amount of energy

consumed by Di for uplink data transmission and ρi ≤ ρi,max

represents the uplink transmission power, where ρi,max de-

notes the maximum allowable uplink transmit power of Di.

The min-operation is used to consider the effects of the

devices’ finite capacity batteries. In addition, the arguments of

the min are always non-negative since Ei ≤ Bi. The battery

evolution depends on the choices of all parameters Pi, τi and

ρi, which are the objective of our optimization problem.

According to Shannon’s formula, the achievable uplink

throughput of Di is given by

R (τi, ρi, Pi, hi) = τi log

(
1 +

hiρi
σ2 + γPi

)
, (4)

where σ2 denotes the noise power at AP and γPi is the

effective self-interference power after performing imperfect

self-interference cancellation techniques at AP.

In the literature on full-duplex WPCNs [24], [25], the

optimal time and power allocations were chosen in order to

maximize the sum throughput of the slot-oriented case. Thus,

the total amount of harvested energy by each wireless device,

in a given slot, had to be consumed in the same slot for uplink

data transmission. This policy leads to sub-optimal solutions

since it determines the optimal resource allocation subject

only to the current CSI and does not take into account the

CSI variations over future slots. In this work, our objective is

to characterize the optimal policy to maximize the weighted

sum throughput. Towards this objective, we focus on the long-

term maximization. The MDP and the associated optimization

problem are presented in the next section.

III. OPTIMIZATION PROBLEM

In this section, we introduce the optimization problem and

describe how to solve it. The throughput of the system can be

defined as the weighted sum-throughput of the two devices

Gμ = αG1,μ + (1− α)G2,μ, (5)

where α ∈ [0, 1] is a constant which accounts for the

importance of D1 or D2 and μ is the policy, i.e., the strategy

which establishes the transmission parameters of both devices.

For different values of α, different operating points can be

found. For example, if α = 0 or α = 1, then only one device is

considered. Differently, α can be chosen in order to guarantee

G1,μ = G2,μ (fair-throughput) as in [27], or to maximize the

sum-throughput (α = 0.5). Our focus is on the long-term

undiscounted optimization, thus Gi,μ is defined as

Gi,μ=lim inf
K→∞

1

K + 1

K∑
k=0

E[Rμ(τi,k,ρi,k,Pi,k,hi,k)|B(0)
1 ,B

(0)
2 ],

(6)

where we explicitly stated the time dependencies k, B
(0)
1 and

B
(0)
2 are the battery levels in slot 0, Rμ(·) is the reward defined

in Equation (4) obtained with a policy μ and the expectation

is taken with respect to the channel conditions and the policy.

Formally, our goal is to find the Optimal Policy (OP) μ�

such that

μ� = arg max
μ

Gμ. (7)



To find OP, we adopt a dynamic programming approach and

model the system as a Markov Decision Process [35]. The state

of the system is given by (b1, b2, g1, g2, h1, h2), where bi is

the current battery level defined in (3) expressed in energy
quanta and gi, hi are the channel gains defined in Section II.

We use the notion of “energy quantum” to indicate the basic

amount of energy, defined as the ratio Bi,max/bi,max, where

bi,max is the maximum amount of energy quanta storable

at device Di. For every state of the system, the policy μ
specifies the transfer powers P0, P1, P2, the duration τ0, τ1,

τ2 and the uplink transmission powers ρ1, ρ2. μ is evaluated

offline according to the channel statistics and is known to AP

(centralized scenario). At the beginning of every time slot, AP

informs the nodes about the current policy. Also, in order to

derive an upper bound to the performance, we assume that

the state of the system is known to AP1. In summary, the

optimization problem can be formulated as follows

max
μ

lim inf
K→∞

1

K + 1

K∑
k=0

E[Rμ(τi,k,ρi,k,Pi,k,hi,k)|B(0)
1 , B

(0)
2 ],

(8a)
s.t.:

τi,kρi,k ≤ Bi,k = bi,k
Bi,max

bi,max
, i ∈ {1, 2}, (8b)

2∑
i=0

τi,k ≤ T, (8c)

τi,k ≥ 0, 0 ≤ Pi,k ≤ Pmax, i ∈ {0, 1, 2}, (8d)

0 ≤ ρi,k ≤ ρi,max, i ∈ {1, 2}. (8e)

(8b) imposes that Di does not use more energy than its stored

amount. (8c) coincides with Constraint (1). (8d) and (8e)

define the upper and lower bounds for all the optimization

variables.

A. Dynamic Programming Problem

We now describe the details of the MDP problem we set up.

We model the system with a discrete multidimensional Markov

Chain (MC). Every state of the system (b1, b2, g1, g2, h1, h2)
corresponds to a different MC state. In order to use standard

optimization techniques like the Value Iteration Algorithm

(VIA) or the Policy Iteration Algorithm (PIA), we discretize

the battery levels and the channel gains. Even if it may

be possible to minimize the discretization levels in order to

simplify the numerical evaluation, we adopt a simple approach

and divide the batteries uniformly in bi,max+1 levels and the

channels in intervals with the same probability (according to

the fading pdfs).

The probability of moving from state s �
(b1,b2,g1,g2,h1,h2) to s′ � (b′1,b

′
2,g

′
1,g

′
2,h

′
1,h

′
2) given a

certain policy μ is

P
μ
s→s′ =

1

nch
P (b′i = bi − τiρi + ci, i = {1, 2}|s, μ) (9)

1This can be obtained by piggybacking the state of the batteries in the
uplink packets and estimating their evolution.

=
P (b′1=b1−τ1ρ1+c1|s,μ)P (b′2=b2−τ2ρ2+c2|s,μ)

nch
(10)

ci �
⌊
ηigibi,max

Bi,max

2∑
j=0
j �=i

τjPj

⌋
, (11)

where nch represents the total number of channel realiza-

tions and 1/nch is the probability of observing the pair

(g′1, g
′
2, h

′
1, h

′
2), which is independent of μ and thus can be

separated from the other terms. b′i = bi − τiρi + ci repre-

sents the discretized version of Equation (3) and the floor is

used because of the discrete number of energy levels. Note

that we decomposed P (b′i = bi − τiρi + ci, i = {1, 2}|s, μ)
in two separate probabilities because, given the policy μ, the

two batteries evolve independently.2 The probability can be

reduced to

P
μ
s→s′ =

1

nch
χ {b′i = bi − τiρi + ci, i = {1, 2}} (13)

where χ{·} is the indicator function. Practically, the MC tran-

sition probabilities are deterministic because all the random

effects are already included in the MC state.

B. Cost-to-go Function

Problem (8) can be solved using dynamic programming

techniques. In this context, a policy μ can be interpreted

as a vector of functions of the state of the system μ =
μ(b1, b2, g1, g2, h1, h2), where the entries of μ are

μ(b1,b2,g1,g2,h1,h2) =

⎡
⎣τi(b1,b2,g1,g2,h1,h2), i={0,1,2}

ρi(b1,b2,g1,g2,h1,h2), i={1,2}
Pi(b1,b2,g1,g2,h1,h2), i={0,1,2}

⎤
⎦,

(14)

where we explicitly wrote the dependencies of all the variables

on the state of the system. Using VIA, Problem (8) can be

solved using the cost-to-go function

J (I)
μ (s) = max

P0,P1,P2
τ0,τ1,τ2
ρ1,ρ2

E

[
αRμ(τ1, ρ1, P1, h1) (15)

+ (1− α)Rμ(τ2, ρ2, P2, h2)+
∑
s′

P
μ
s→s′J

(I−1)
μ (s′)

]

where (I) represents the I-th iteration of VIA [36]. (15) can be

iteratively solved for every state of the system until conver-

gence. Every optimization step is subject to the constraints

of (8). From the last iteration of VIA, indicated with the

symbol “(inf)”, the objective function Gμ can be computed

as Gμ = J
(inf)
μ (s0), where s0 is the initial state of the system.

2(10) holds when b′1 < b1,max and b′2 < b2,max. Otherwise, if for example
b′1 = b1,max, P

(
b′1=b1−τ1ρ1+c1|s,μ

)
should be replaced with

P
(
b′1≥b1,max−τ1ρ1+c1|s,μ

)
(12)
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IV. NUMERICAL RESULTS

In this section, we provide numerical results showing the

merits of the proposed full-duplex WPCNs and the asso-

ciated trade-offs. The channel power gains are modeled as

gi = hi = 1.25 × 10−3ν2i d
−β
i for i ∈ {1, 2}, where di

denotes the distance between Di and AP, and β is the pathloss

exponent. νi is the Rayleigh short term fading coefficient, and

therefore ν2i is an exponentially distributed random variable

with unit mean. Furthermore, we use a unit slot duration

(T = 1). If not otherwise stated, we consider the following

parameters Pmax = 2 watts, d1 = 5 m, d2 = 10 m,

σ2 = −125 dBm/Hz, η1 = η2 = 0.8, ρi,max = Ei,max/T ,

β = 2, α = 0.5 and the bandwidth is set to 1 MHz. The battery

sizes have a significant impact on the network performance.

In order not to use a large amount of discretization levels,

we consider battery sizes comparable with the amount of

harvested energy, which represents the most interesting case to

analyze (when larger batteries are considered, the performance

of the system saturates). In particular, since the amount of

harvested energy depends upon the path loss, the battery sizes

are modeled as Ei,max = 1.25 × 10−3d−β
i ζi for i ∈ {1, 2},

where ζi is expressed in joules. If not otherwise stated, we

use ζ1 = 0.1 joules and ζ2 = 1 joules. Our objective is to

compare the performance of a full-duplex WPCN with perfect

and imperfect self-interference cancellation techniques with

the half-duplex case [27] in which AP broadcasts downlink

wireless energy signals only during τ0.

In Figure 2, we compare the achievable throughput region of

a full-duplex WPCN with perfect self-interference cancellation

with that of a half-duplex WPCN. The achievable throughput

region is characterized by obtaining the optimal long-term

rewards of both D1 and D2 for different values of α ∈ [0, 1].
A number of observations can be made. First, the achievable

throughput region of the full-duplex WPCN is larger than that

of the half-duplex case since the latter can be obtained as a spe-

cial case of the full-duplex scenario by setting P1 = P2 = 0.

Second, the full-duplex WPCN outperforms the half-duplex

WPCN in terms of the maximum sum-throughput and the max-

min throughput. In particular, the maximum sum throughput
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Figure 3: Long-term reward vs. pathloss exponent.

of full-duplex and half-duplex WPCNs are 0.66 Mbps and

0.59 Mbps, respectively. In addition, the max-min throughput

values of full-duplex and half-duplex WPCNs are 0.27 Mbps

and 0.25 Mbps, respectively. Note that the maximum sum-

throughput can be obtained by setting α = 0.5. On the other

hand, the max-min throughput is defined as the maximum

common throughput that can be achieved by both devices

for enhanced fairness and its associated α can be obtained

via a bisection search [27]. Third, both full-duplex and half-

duplex WPCNs achieve the same long-term rewards for both

devices when α = 0 (neglect D1) or α = 1 (neglect D2).

In these two cases, represented in Figure 2 by the points

(0, 0.27) and (0.52, 0), no portions of the slot duration for

uplink data transmissions are allocated to the neglected device.

Therefore, the network behaves as if it only consisted of one

device, for which both full-duplex and half-duplex schemes

are the same (a device cannot harvest energy and transmit

data simultaneously).

In Figure 3, we compare the long-term reward of half-

duplex and full-duplex WPCNs as a function of the pathloss

exponent β. The full-duplex WPCN is plotted for different

values of the effectiveness of self-interference cancellation

techniques, γ (γ = 0, −110, −100 and −70 dB). The

battery sizes are chosen according to a reference β of 2, i.e.,

Ei,max = 1.25 × 10−3d−2
i ζi for i ∈ {1, 2}. It is observed

that the long-term reward of all studied systems monotonically

decreases as β increases. This happens because the channel

power gains become worse as β increases. Hence, the amount

of harvested energy by each device becomes lower and more

energy is required for uplink data packet transmissions. When

β < 3, it can be observed that the full-duplex WPCN with

perfect self-interference cancellation (γ = 0) achieves the

highest long-term reward, whereas both half-duplex and full-

duplex WPCNs with imperfect self-interference cancellation

(γ = −70 dB) achieve the lowest long-term reward. For

full-duplex WPCN with perfect self-interference cancellation,

the self-interference power at AP is zero. Therefore, AP can

broadcast energy with the maximum allowed power Pmax

without affecting the signal to interference plus noise (SINR)
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Figure 4: Long-term reward vs. Pmax.

ratio of Equation (4) and the highest long-term reward is

achieved. On the other hand, for larger values of γ (e.g.,

γ = −70 dB) the self-interference power at AP becomes

comparable to the power of the transmitted data signals, which

significantly reduces the SINR. Differently from the perfect

self-interference cancellation case, increasing Pi reduces the

SINR and consequently reduces the long-term reward. There-

fore, the optimal downlink transmit powers by the AP are

P ∗
i = 0 for i ∈ {1, 2} and the performance of the network

approaches that of half-duplex WPCN. Finally, when β > 3,

it is observed that the performance of full-duplex WPCN for

all values of γ is exactly the same as that of half-duplex

WPCN. This happens since when β > 3, the small amounts of

harvested energy by wireless devices during τ1 and τ2 in full-

duplex WPCN are not enough for the network to outperform

the achievable long-term reward by half-duplex WPCN.

In Figure 4, the long-term reward is plotted for full-duplex

and half-duplex WPCNs as a function of Pmax. As expected,

the long-term reward of all studied systems increases with

Pmax. However, the long-term reward saturates when Pmax ≤
10 dBm or Pmax ≥ 35 dBm. For small values of Pmax, i.e.,

Pmax ≤ 10 dBm, the amount of energy harvested by both

devices is very low and the long-term throughput is almost

zero in all cases. On the other hand, for large values of Pmax,

i.e., Pmax ≥ 35 dBm, the performance saturates because AP

transfers enough energy to refill the batteries in every slot.

Figure 5 shows the long-term reward of full-duplex and half-

duplex WPCNs for different values of the distance of D1 from

AP. The battery size of D1 is chosen according to a reference

distance of 5 m, i.e., E1,max = 1.25 × 10−3 × 5−βζ1. It is

observed that the long-term reward monotonically decreases as

d1 increases. This happens because, as d1 increases, D1 expe-

riences a worse channel in both uplink and downlink, and thus

receives less energy from AP and requires more energy for

uploading data packets. Furthermore, when d1 ≤ 2 m, the half-

duplex and full-duplex cases achieve the same performance.

In this region D1 experiences a much better channel than D2,

on average, thus almost all the resources are dedicated to D1.

As a consequence, the optimal policy allocates τ2 = 0, forcing

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Distance between AP and D1 (meters)

Lo
ng

−t
er

m
 re

wa
rd

 (M
bit

s/s
ec

)

Full−duplex WPCN (γ = 0)
Full−duplex WPCN (γ = −110 dB)
Full−duplex WPCN (γ = −100 dB)
Full−duplex WPCN (γ = −70 dB)
Half−duplex WPCN
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Figure 6: Long-term reward vs. ζ1.

the full-duplex scheme to degenerate in the half-duplex one.

However, for d1 > 2 m, the full-duplex WPCN outperforms

the half-duplex scenario.

In Figure 6, we change the battery size of D1 (by varying ζ1)

and compare the long-term rewards. It is observed that as ζ1
increases, the long-term reward of the full-duplex WPCN with

perfect self-interference cancellation becomes notably larger

than that of half-duplex WPCN. This, in turn, highlights the

great influence of battery sizes on the network performance,

as stated before, and the importance of the interference can-

cellation process. More specifically, the long-term reward of

D1 dominates the total long-term reward of the network (5)

since D1 is closer to AP and, hence, experiences a better

channel. Therefore, increasing the battery size of D1 would

significantly enhance the network performance since it allows

D1 to store all the harvested energy.

In summary, our numerical results show the superiority

of our proposed full-duplex WPCN compared to the half-

duplex WPCN. They also describe the effects of both self-

interference cancellation techniques and battery sizes on the

network performance. If other parameters were considered,

the improvement experienced in the full-duplex case could be



even higher (e.g., for a lower noise power). A more detailed

performance analysis in various scenarios is left for future

study.

V. CONCLUSIONS

We studied a full-duplex wireless powered communication

network, where one AP is operating in a full-duplex mode,

broadcasting energy in downlink to two devices and receiving

data packets in uplink at the same time. D1 and D2 adopt a

time division multiple access scheme for sharing the uplink

channel. Our goal was to characterize the maximum long-

term weighted sum-throughput of the system. Towards this

objective, we cast the optimization problem as an MDP and

showed how to solve it. Our numerical results revealed that

the throughput region of the full duplex WPCN with perfect

self-interference cancellation is notably larger than that of the

the half-duplex WPCN. In addition, the full-duplex WPCN

with perfect self-interference cancellation outperforms the

half-duplex WPCN in terms of the maximum sum-throughput

and the max-min throughput. We also demonstrated that the

performance of half-duplex WPCN is a lower bound for

the performance of full-duplex WPCN with imperfect self

interference cancellation. Moreover, the results highlighted the

great influence of battery sizes on the achievable long-term

reward. As part of our future work, we would like to study the

long-term maximization for the case of a generic number of

wireless devices and to extend the current scenario to include

cooperation among terminal devices.
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