
1

Stable Throughput of Cooperative Cognitive
Networks with Energy Harvesting: Finite Relay

Buffer and Finite Battery Capacity
Mohamed A. Abd-Elmagid, Tamer ElBatt, Karim G. Seddik, and Ozgur Ercetin

Abstract—This paper studies a generic model for cooperative
cognitive radio networks where the secondary user is equipped
with a finite relay queue as well as a finite battery queue.
Our prime objective is to characterize the stable throughput
region. Nevertheless, the complete characterization of the stable
throughput region for such system is notoriously difficult, since
the computation of the steady state distribution of the two-
dimensional Markov Chain (MC) model for both finite queues
is prohibitively complex. We first propose an algorithm to
characterize the stable throughput region numerically, and show
its sheer computational complexity for large queue lengths. To
lend tractability and explore the nature of design parameters
optimization at the cognitive node, we next focus on two simpler
systems, namely, finite battery queue with infinite relay queue
and finite relay queue with infinite battery queue (referred
henceforth as dominant system 1 and 2, respectively). For each
proposed dominant system, we investigate the maximum service
rate of the cognitive node subject to stability conditions. Despite
the complexity of the formulated optimization problems, due
to their non-convexity, we exploit the problems’ structure to
transform them into linear programs. Thus, we are able to solve
them efficiently using standard linear programming solvers. Our
numerical results demonstrate that, in practical systems, finite
battery and relay queues achieve the same level of benefits of a
system with infinite queue sizes, when their sizes are sufficiently
large. They also reveal that the achievable stable throughput
region significantly expands when the arrival rate of the energy
harvesting process increases.

I. INTRODUCTION

One of the prominent challenges in wireless communication
networks is to efficiently utilize the spectrum. The cognitive
radio technology has the potential to improve the utilization
of the scarce spectrum resource. In cognitive radio networks,
better utilization of spectrum is made possible by allowing
unlicensed (i.e., secondary) users (SUs) access the spectrum
owned by the licensed (i.e., primary) users (PUs) [2]–[4] using
spectrum underlay or spectrum overlay access techniques.
Unlicensed SUs sense the spectrum for activity of licensed
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PUs [5], [6], and based on the sensing information, spectrum
access decisions are made by the SUs. In the spectrum
underlay paradigm [7], [8], SUs transmit even if PUs are
sensed to be present. Nevertheless, the spectrum occupation
of the SUs is tied with a minimum quality of service (QoS)
guaranteed for the PUs. This, in turn, calls for the necessity
of designing efficient spectrum access schemes to maximize
the SU’s achievable throughput while satisfying the PU’s QoS
constraints. In the spectrum overlay paradigm [9], [10], SUs
only access the spectrum when PUs are sensed to be idle.
However, due to spectrum sensing errors, collisions are expe-
rienced by both PUs and SUs as a result of the interference
between their transmissions.

Energy harvesting has recently emerged as a promising
technology to prolong the life time of energy-constrained
wireless networks. This is triggered by the fact that energy
harvesting circuitries provide wireless devices with the capa-
bility of perpetual charging of their batteries via harvesting
energy from the surrounding environment. Significant research
has been conducted on wireless powered communication
networks from different perspectives and with the focus on
different performance aspects [11]–[20]. Incorporating energy
harvesting capability to cognitive radio networks has attracted
considerable attention in the literature [21]–[27]. In [21], the
authors studied a non-cooperative cognitive radio network
composed of two primary and secondary source-destination
pairs of nodes. The primary source node (PS) is equipped
with an energy queue and is assumed to be solely powered
by energy harvesting. The secondary source node (SS) is not
only able to access the channel when the PS is idle, but
also is allowed to transmit data with probability p whenever
the PS is active. The goal was to characterize the optimal
transmission probability of the SS, p∗, that maximizes its
achievable throughput while maintaining the stability of the
primary source packet queue at given packet arrival and
energy harvesting rates. [22] extended the analysis of [21]
and characterized p∗ for the two other potential scenarios:
i) SS is solely powered by energy harvesting whereas PS is
plugged to a reliable power supply, and ii) both PS and SS have
energy harvesting capabilities. Differently from [21], [22], the
authors in [23] assumed that the SS can sense the channel
perfectly and may only access the channel if the PS is idle.
Whenever the SS has the opportunity to access the channel,
it can consume i energy packets with probability pi such that
i is less than or equal to the total number of energy packets
in its energy queue. The objective was to optimally tune pi
so as to maximize the achievable throughput of the SS. In
[26], the authors investigated the optimal spectrum sensing
policy to maximize the expected total throughput subject to
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two constraints, namely, an energy causality constraint and
a collision constraint. The objective of the energy causality
constraint is to guarantee that the total consumed energy at
the cognitive node is less than or equal to the total harvested
energy, while the collision constraint protects the primary user
by guaranteeing a minimum QoS requirement. The optimal
transmission power and density, for the cognitive nodes, were
characterized in [27] so that the secondary network throughput
is maximized under given outage probability constraints in,
both, the primary and secondary networks.

Cooperative cognitive radio networks (CCRNs) have re-
cently attracted considerable attention [24], [25], [28]–[35].
The notion of cooperation in cognitive radio networks is that
the SU helps the PU in successfully transmitting its data
packets to the destination so as to decrease the number of
time slots dedicated to retransmit the PU’s lost packets over its
direct link. This, in turn, enhances the available time slots for
the SU to access the channel and transmit its own data packets.
Therefore, both the PU and SU benefit from the cooperation.
The most relevant literature can be categorized into two sets:
i) CCRNs with energy harvesting capability [24], [25], and ii)
CCRNs without energy harvesting capability [28]–[35]. Incor-
porating a relay queue at the SS to the system setup in [22],
[24] formulated the maximum weighted sum of the service
rates at the SS queues problem as a Markov Decision Process
(MDP), and [25] characterized the stable throughput region
for Poisson energy harvesting processes using the Dominant
System approach [36]. In [28], SU acts as a relay for delivering
the PU’s data packets, wherein it maximizes its achievable
throughput for a given fixed throughput value demanded by
the PU by optimizing its transmit power. [29] proposed two
multiple-access protocols in a cooperative cognitive radio net-
work consisting of M source terminals, a single cognitive relay
and a single common destination. In [30], the SU was allowed
to share the channel with the PU, and could act as a relay
for transmitting successfully decoded PU’s packets that were
not successfully decoded by its destination. For this proposed
channel access scheme with fixed scheduling probability, the
stable throughput region was characterized. [31] introduced a
full cooperation protocol in a wireless multiple-access system
for a system composed of N users wherein each user is a
source and at the same time a potential relay.

In [32], the authors proposed a cooperative strategy with
probabilistic relaying. In this strategy, the SU is equipped
with two infinite length queues; one is for storing its own
packets and the other is for relaying the PU packets. If the PU’s
packet is not successfully decoded by the destination, whereas
it is successfully decoded by the SU, the SU admits the PU’s
packet with probability a. On the other hand, when the PU is
sensed idle, the SU serves its own data queue with probability
b or the relay queue with probability 1−b. The authors in [34]
characterized the throughput region when the relay buffer at
the SU has finite length, and in [33] generalized the model
studied in [32] to the scenario of having multiple cognitive
nodes, and characterized the optimal transmission probability
of SU that maximizes the individual achievable throughputs.
In [35], the authors incorporated the overhead of forming
the cooperation and the potential interference caused by SUs’
transmissions. The system is modeled as a Markov decision
process (MDP), and the impact of cooperation overhead and

secondary interference are quantified in the actions and their
rewards. Note that in [32]–[35], it was implicitly assumed that
the SU is equipped with unlimited energy supply, i.e., the SU
does not suffer from any energy limitations whenever it has
the opportunity to access the channel. It is worth noting that a
similar system setup to that in [32] has recently studied in the
context of cooperative relay networks [37], [38]. Incorporating
energy harvesting to the considered system model in [32], the
authors in [37], [38] assumed that both the source and relay
nodes are equipped with infinite battery queues to store their
harvested energy. Unlike the probabilistic selection strategy
(selection of whether the transmitted packet is from the data
queue or the relay queue) adopted by the SU whenever it is
able to access the channel in [32], the relay node does not
differentiate between whether the transmitted packet belongs
to the overheard packets from the source node or its own
arrival packets. This is due to the fact that, in contrary to
CCRNs, within the context of cooperative relay networks, any
transmitted packet from the relay node is counted in its own
throughput.

In this paper, we consider a spectrum overlay cooperative
cognitive network with a single PU and a single SU. The SU is
solely powered by energy harvesting and its battery is replen-
ished by a stochastic energy harvesting process independent
from packet arrivals and scheduling decisions. The SU can
sense the channel perfectly and is equipped with two data
queues; one queue stores its own data packets whereas the
other one (relay queue) stores the the overheard unsuccessfully
transmitted packets by the PU. A probabilistic strategy is
adopted by the SU in both admitting PU’s data packets at
its relay queue and selecting one of its data queues whenever
it has the chance to access the channel. Unlike prior work,
the SU has a finite relay to store the packets overheard from
the PU and a finite capacity battery to transmit both its own
packets as well as the overheard packets of the PU. Compared
to the usual assumption in the literature of considering infinite
queue lengths, having two finite queues (relay and battery
queues) simultaneously adds another layer of complexity to
the performance analysis. It can be contemplated that the
proposed system model constitutes an important step towards
real systems with all finite queue lengths. Our prime objective
is to optimally tune the admission and selection probabilities as
a function of the relay and battery queue lengths to maximize
the SU’s achievable throughput.

The main contributions of this paper are summarized as
follows:
• We introduce a generic model for cooperative cognitive

radio networks, where the relaying SU is equipped with
a finite capacity battery and a finite relay queue. We
exemplify the challenges of characterizing the stable
throughput region, by demonstrating the intractability of
obtaining a closed-form expression of the steady state
distribution of the underlying two-dimensional Markov
Chain. We propose a numerical approach to characterize
the stable throughput region. However, even the numeri-
cal solution becomes intractable for large queue sizes.

• Motivated by the problem complexity, we introduce two
simpler problems for the relaying SU, i.e., finite battery
queue with infinite relay queue (dominant system 1) and
finite relay queue with infinite battery queue (dominant
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Fig. 1. System model.

system 2). The stability conditions for the two dominant
systems are derived.

• We formulate two optimization problems to characterize
the maximum achievable throughput of the SU, subject
to the queue stability conditions, for each of the two
dominant systems. Despite the fact that the optimization
problems are non-convex, we exploit the problems’ struc-
ture to re-cast them as linear programs. This, in turn, leads
to efficient solutions by standard optimization tools.

• Our numerical results reveal interesting insights about the
effects of finite relay and energy queues as well as the
energy limitations on the achievable stable throughput
region. Specifically, they quantify: 1) the expansion in
the throughput region due to increasing the battery queue
size, and 2) the enhancement of the maximum sustainable
arrival rate of PU’s data packets, corresponding to a non-
zero SU’s achievable throughput, due to increasing the re-
lay queue size. They also reveal that, in practical systems,
finite battery and relay queues of sufficiently large sizes
are enough to achieve the same level of performance of
a system with infinite queue sizes. Moreover, the results
demonstrate the great influence of the arrival rate of the
energy harvesting process at the SU on the achievable
stable throughput region.

The rest of the paper is organized as follows. Section II
describes the system model. The stable throughput region of
our generic proposed CCRNs with both finite relay and battery
queues is characterized in Section III. In Section IV, we pro-
vide the stability conditions for dominant system 1, formulate
the stable throughput region optimization problem and show
how to solve it. The stability conditions for dominant system
2, and its associated stable throughput region optimization
problem are presented in Section V. We present our numerical
results in Section VI. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In this paper, we study a cooperative cognitive radio network
as shown in Fig. 1. The network consists of a PU and a SU
transmitting their packets to a common destination d. The
PU is equipped with an infinite queue (Qp) for storing its
data packets. On the other hand, the SU is equipped with an
infinite queue (Qs) for storing its data packets and a finite
queue (Qsp) of length N for storing packets overheard from
the PU. The arrival processes at the data queues, Qp and
Qs, are modeled as Bernoulli processes with means λp and

λs [39], respectively, where 0 ≤ λp, λs ≤ 1. The arrival
processes at both users are assumed to be independent of
each other, and are independent and identically distributed
across time slots. SU is equipped with an energy harvesting
circuitry to generate energy to perform transmissions. The
harvested energy is stored in a finite size battery modeled
as a queue (QB) of maximum length M . For mathematical
tractability, the harvested energy is assumed to be harvested
in quantas of size necessary for one transmission attempt. The
energy harvesting process1 at the SU is modeled as a Bernoulli
process with mean δ [39], where 0 ≤ δ ≤ 1.

The queue sizes of Qp and Qs evolve as follows

Qt+1
i = (Qti − Y ti )+ +Xt

i , i ∈ (p, s), (1)

where Qti is the number of packets at the beginning of time
slot t, and Xt

i and Y ti are binary random variables that denote
the number of arriving and departing packets, respectively. In
addition, (Z)+ = max(Z, 0).

Time is slotted and one slot duration is equal to one
packet transmission time. It is assumed that the PU and SU
are perfectly synchronized and the SU has perfect spectrum
sensing2 capability. For a successful transmission, the channel
should not be in outage, i.e., the received signal-to-noise ratio
(SNR) at the destination should not be less than a pre-specified
threshold required to successfully decode the received packet.
Let fpd, fsd and fsp denote the probability of successful
transmission between the PU and destination, the SU and
destination, and the SU and PU, respectively. We assume that
fpd < fsd

3 so that we can characterize the relaying role
of the SU for the PU. Moreover, acknowledgement packets
(ACKs) are sent either by the destination for successfully-
decoded packets from the PU or SU, or by the SU for
successfully-decoded overheard packets from the PU. In order
to obtain analytical characterization, we assume that ACKs are
instantaneous, error-free and can be heard by all the nodes in
the network similar to [32].

The proposed channel access policy is as follows. The PU
has the priority to transmit a packet whenever Qp is non-
empty. If the packet is successfully decoded by the destination,
the destination sends back an ACK heard by both users (PU
and SU). Therefore, the packet is dropped from Qp and exits
the system. If the packet is not successfully decoded by the
destination but successfully decoded by the SU, Qsp either
admits the packet with probability ai,j or discards it with prob-
ability (1−ai,j), i = 0, · · · ,M and j = 0, · · · , N . The packet

1Note that the energy harvesting process at the SU is assumed to have an
arrival rate always sufficient to keep the node alive to listen to the channel
at every slot and or transmit ACK packets whenever needed. This can be
ensured by designing the energy harvesting system appropriately, e.g., having
at least a certain size solar panel, or having higher and/or more frequent RF
signal transmissions towards the SU. However, given this constant leakage of
energy to keep the node alive, we are still short of energy to transmit, and
arrivals in addition to leakage rate is assumed to be Bernoulli-like process.

2Note that imperfect spectrum sensing leads to collisions experienced by
both PU and SU due to the possible interference between their transmissions.
This, in turn, degrades the achievable throughputs, and, reduces the stable
throughput region.

3Note that when fpd > fsd, storing the PU’s unsuccessfully transmitted
packets to the destination at relay queue is not beneficial to the PU. Specif-
ically, it becomes more efficient for the PU to retransmit any unsuccessfully
decoded packet at the destination than transmitting it through the SU’s relay
queue. This is due to the fact that in such scenario, the PU has a better channel
to the destination than that from the SU.
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admission probabilities depend on the number of packets in
QB and Qsp, i.e., ai,j is the admission probability when QB
has i packets and Qsp has j packets. This admission strategy,
in turn, constitutes the probabilistic admission relaying policy.
If the packet is buffered in Qsp, the SU sends back an ACK to
announce the successful reception of PU’s packet. Thus, the
packet is dropped from Qp and the SU becomes responsible
for delivering the PU’s packet to the destination. Finally, if the
packet is neither successfully decoded by the destination nor
SU, or it is decoded by the SU but not admitted to Qsp, then
the packet is kept at Qp for retransmission in the subsequent
time slot.

When the PU is idle, the SU’s packet transmission depends
on the status of battery and data queues. If the battery queue
is empty, then the SU is unable to transmit a packet. On the
other hand, if the battery queue is not empty, the SU either
transmits a packet from Qs with probability bi,j or from Qsp
with probability (1 − bi,j), i = 0, · · · ,M and j = 0, · · · , N .
Also, note that the queue selection probability depends on the
number of packets in QB and Qsp, i.e., bi,j is the selection
probability when QB has i packets and Qsp has j packets. If
the destination successfully decodes the packet, it sends back
an ACK heard by the SU. Therefore, the packet is dropped
from its respective queue, i.e., Qs or Qsp, and exits the system.
Otherwise, the packet is kept at its queue for retransmission.
In Section III, we characterize the stability conditions when
all queues in the network may have infinite size.

III. GENERALIZED CCRNS WITH BOTH FINITE BATTERY
AND RELAY QUEUES

In this section, we characterize the stable throughput region
of the proposed system model. We start by deriving the
stability conditions of infinite length queues (Qp and Qs).
Next, we propose a discrete time two-dimensional Markov
Chain (MC) model for finite queues (QB and Qsp). Then, we
show the complexity of characterizing the steady state distri-
bution for the underlying two-dimensional MC with diagonal
transitions. Afterwards, we characterize the stable throughput
region numerically showing the impact of different system
design parameters. Finally, we propose a simpler scheme in
which the admission and selection probabilities (ai,j and bi,j)
are the same among most of the states, to accommodate the
sheer complexity of numerical computations as the queues’
lengths become large.

A. Stability conditions for infinite queues (Qp and Qs)
Loynes theorem [40] provides the stability condition for an

infinite size queue. The theorem states that if the queue arrival
and service processes are stationary, the queue is stable if and
only if the packet arrival rate is strictly less than the packet
service rate. Note that QB and Qsp are finite queues; therefore,
the number of packets in each of them will never grow to
infinity since it is upper bounded by M and N , respectively.

A packet leaves Qp if it is either successfully decoded by the
destination or successfully decoded by the SU and admitted
to the relay buffer (Qsp). Therefore, the service rate of Qp is
given by

µp = fpd + (1− fpd) fps
M∑
i=0

N∑
j=0

ai,jπi,j , (2)

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig. 2. Discrete time two-dimensional MC model for Qsp and QB , where
M = N = 2.

where πi,j denotes the steady state probability that QB has
i packets and Qsp has j packets at a given time slot, i =
0, · · · ,M and j = 0, · · · , N . Therefore, the stability condition
for Qp is given by

λp < fpd + (1− fpd) fps
M∑
i=0

N∑
j=0

ai,jπi,j . (3)

Similarly, a packet leaves Qs if Qp is empty with probability

1− λp
µp

, QB is not empty or it is empty but there is an energy

packet arrival, Qs is selected for transmission with probability
bi,j and the destination successfully decodes the packet with
probability fsd. Thus, the stability condition for Qs can be
expressed as

λs <

(
1− λp

µp

)
fsd

 M∑
i=1

N∑
j=0

bi,jπi,j + δ

N∑
j=0

b0,jπ0,j

 .

(4)
Note that the service rates of Qs and Qsp depend on the

state of the battery queue (QB) at the secondary user and
vice versa. This dependency, in turn, leads to an interacting
system of queues and complicates the characterization of the
stable throughput region. In the sequel, we use the concept of
Dominant System approach [36] where we assume that Qs and
Qsp have dummy packets to transmit when they are empty and,
hence, the service rate of QB becomes only dependent on the
PU’s status. This system stochastically dominates our system
since the lengths of the SU’s queues in the dominant system
are always larger than that of our system if both systems
start from the same initial state, have the same arrivals and
encounter the same packet losses.

Now, we calculate the steady state distribution of QB and
Qsp (πi,j) in order to fully characterize the stable throughput
region. Consequently, we will investigate the optimal admis-
sion and selection probabilities (ai,j and bi,j) in order to
maximize the service rate of SU subject to queue stability
conditions.

B. Discrete time two-dimensional MC model for QB and Qsp
QB and Qsp can be modeled as a discrete time two-

dimensional MC. The MC is shown in Fig. 2 where state (i, j)
denotes that the number of packets in QB and Qsp are i and j,
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respectively. The probability of moving from state (i, j) to state
(i+1, j+1) is the probability that Qp is non-empty, an energy
packet arrives at QB , the PU’s packet is not successfully
decoded at the destination, the SU successfully decodes the
packet and Qsp admits the packet. Hence, Pi,j→i+1,j+1 can
be expressed as

Pi,j→i+1,j+1 =
λp
µp
δ (1− fpd) fpsai,j . (5)

The probability of moving from state (i, j) to state (i −
1, j−1) is the probability that Qp is empty, there is no energy
packet arrival at QB , Qsp is selected for transmission and the
packet is successfully decoded at the destination. Therefore,
Pi,j→i−1,j−1 is given by

Pi,j→i−1,j−1 =

(
1− λp

µp

)
(1− δ) fsd (1− bi,j) . (6)

The probability of moving from state (i, j) to state (i+1, j)
is the probability that Qp is non-empty, there is an energy
packet arrival at QB and the PU’s packet is either successfully
decoded by the destination or not successfully decoded by
the destination but not successfully decoded at the SU and
admitted at the same time. Therefore, Pi,j→i+1,j is given by

Pi,j→i+1,j =
λp
µp
δ (fpd + (1− fpd) (1− fpsai,j)) , (7)

The probability of moving from state (i, j) to state (i, j+1)
is the probability that Qp is non-empty, there is no energy
packet arrival at QB and the PU’s packet is not successfully
decoded by the destination but successfully decoded by the
SU and admitted to the relay buffer. Therefore, Pi,j→i,j+1 is
given by

Pi,j→i,j+1 =
λp
µp

(1− δ) (1− fpd) fpsai,j , (8)

The probability of moving from state (i, j) to state (i, j−1)
is the probability that Qp is empty, there is an energy packet ar-
rival at QB , Qsp is selected for transmission and the packet is
successfully decoded at the destination. Therefore, Pi,j→i,j−1
is given by

Pi,j→i,j−1 =

(
1− λp

µp

)
δfsd (1− bi,j) , (9)

The probability of moving from state (i, j) to state (i −
1, j) is the probability that Qp is empty, there is no energy
packet arrival at QB and Qs is selected for transmission or Qsp
is selected for transmission but the transmitted packet is not
successfully decoded by the destination. Therefore, Pi,j→i−1,j
is given by

Pi,j→i−1,j =

(
1− λp

µp

)
(1− δ) (bi,j + (1− bi,j) (1− fsd)) .

(10)
Given the fact that both battery and relay queues are of finite

size, there exists some states with special properties. We now
highlight those states and show the impact of their properties
on their transition probabilities as follows:
• States with an empty relay queue (Qsp), i.e., i =

0, · · · ,M and j = 0 : We set the selection probabilities
of those states to 1, i.e., bi,j = 1, in order to prevent
wasting any time slots when the SU has the opportunity to
access the channel. This, in turn, will effect the transition
probabilities as follows

Pi,j→i,j−1 = 0, (11)

Pi,j→i−1,j =

(
1− λp

µp

)
(1− δ) , (12)

Pi,j→i−1,j−1 = 0. (13)
• States with a full relay queue (Qsp), i.e., i = 0, · · · ,M

and j = N : We set the admission probabilities of those
states to 0, i.e., ai,j = 0, since the relay does not have
capability to admit any new packets whenever it is full.
Hence, transition probabilities at these states are given as

Pi,j→i+1,j+1 = 0, (14)

Pi,j→i+1,j =
λp
µp
δ, (15)

Pi,j→i,j+1 = 0. (16)
• States with full battery queue at the time when the PU

is active, i.e., i = M and j = 0, · · · , N − 1 : We set
the energy arrival rate of those states at the time of the
PU’s activity to 0, i.e., δ = 0, since the energy can not
be stored in the battery. Hence, the transition probability
form state (i, j) to state (i, j + 1) becomes

Pi,j→i,j+1 =
λp
µp

(1− fpd) fpsai,j . (17)

The existence of diagonal transitions, i.e., Pi,j→i−1,j−1
and Pi,j→i+1,j+1, complicates the solution of the bal-
ance equations along with the normalization equation∑i=M
i=0

∑j=N
j=0 πi,j = 1. Consequently, the product-form so-

lution of the MC is not possible and there is no closed-
form expressions for the steady state probabilities. It is
worth mentioning that various approximation techniques for
the solution of multidimensional MCs have been extensively
studied in the literature [41], e.g., equilibrium point analysis
(EPA). However, these approaches rely on approximating the
stationary probability distribution of the MC by a unit impulse
located at a point in the state space where the system is at
equilibrium. Thus, we can not employ these methods to obtain
closed-form expressions for the steady state probabilities so
that we can optimize the admission and selection probabilities
to achieve the maximum SU’s service rate subject to stability
conditions. Hence, in the next subsection, we propose an
algorithm to numerically characterize the stable throughput
region.

C. Proposed algorithm for characterizing the stable through-
put region numerically

Tuning the admission and selection probabilities so as
to maximize the SU’s throughput calls for having closed-
form expressions for the steady state distribution of the two-
dimensional MC model. Our proposed algorithm is based on
discretizing each of the admission and selection probabilities
to a number of values, and then investigating the optimal
combination of different probabilities that leads to the maxi-
mum achievable SU’s throughput. Note that the computational
complexity of the algorithm increases with the number of
states, i.e., as the lengths of QB and Qsp increase. We
will specifically highlight this complexity after presenting our
proposed algorithm.

Algorithm 1 presents our proposed method to obtain the
maximum achievable throughput of the SU (µ∗s) for a given
arrival rate of PU (λp). For each combination of different
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Algorithm 1 Evaluating the maximum achievable throughput
of the SU for a given λp (µ∗s(λp)).

Input = (λp, fpd, fps, fsd, δ), Output = µ∗s(λp).
1. for Combcounter = 1 : Combnum

1) for µp = λp + ε : θ : fpd + (1− fpd) fps
(1) Compute πi,j(Combcounter, µp).
(2) Compute µ̄p(Combcounter, µp) from (2).

2) end for
3) Set µ∗p(Combcounter) = arg minµp |

µ̄p(Combcounter, µp)− µp |.
4) Compute µs(Combcounter) from (4).

2. end for
3. Set µ∗s(λp) = arg maxµs(Combcounter) µs(Combcounter).

admission and selection probabilities, we calculate the SU’s
achievable throughput as follows. Note that the transition prob-
abilities (5)-(10) are functions of µp, where µp is a function
of the steady state distribution (πi,j) from (2). Therefore,
we start by searching for the value of µp and (πi,j) for
which both the transition probabilities and (2) are satisfied,
in an iterative manner. More specifically, the steady state
distribution is evaluated for each feasible value of µp, and then
the evaluated steady state distribution is used to compute the
estimated value of µp in Algorithm 1 (µ̄p(Combcounter, µp))
from (2). Next, we choose the value of µp which minimizes
| µ̄p(Combcounter, µp) − µp |. Using the evaluated value of
µp and the steady state distribution, we compute the SU’s
achievable throughput for each combination of admission and
selection probabilities. Finally, the optimal SU’s throughput
will be the maximum achievable one among all achievable
throughputs for different all combinations.

The computational complexity of Algorithm 1 is deter-
mined by two main factors: 1) The number of combinations
(Combnum) of different selection and admission probabilities,
and 2) The increment step size θ for µp. Recall that each state
πi,j is associated with an admission probability ai,j and a
selection probability bi,j , and there are some states which have
deterministic values for either admission or selection probabil-
ities. The number of combinations Combnum can be expressed
as D

(M+1)(N−1)
num , where Dnum is the number of discrete

values that each of the admission and selection probabilities
could take. Therefore, the total number of function evaluations
for Algorithm 1 is given by Combnum(2 + c) + 1, where c
denotes the number of iterations of the loop in step 1) and is

given by
fpd + (1− fpd) fps − (λp + ε)

θ
+ 1. In addition, the

total time complexity of Algorithm 1 is O
(
D

(M+1)(N−1)
num

)
.

It is clear that the computational complexity increases ex-
ponentially as the queues’ lengths (M and N ) increase. This,
in turn, makes the computational time practically infeasible as
the lengths of Qsp and QB become large, and it becomes not
possible to even characterize the stable throughput region nu-
merically. Motivated by this sheer computational complexity,
we relax the assumption of having state-dependent admission
and selection probabilities when M and N are relatively large,
and consider that all states, except for those which have either
deterministic admission or selection probabilities, have equal
admission and selection probabilities. This assumption greatly
reduces the computational complexity and also enables us
to characterize the stable throughput region for systems with

large queues’ lengths, as will be shown in the numerical results
(Section VI).

In Fig. 3a, we plot the maximum achievable throughput of
the SU (µs) with respect to the arrival rate of PU’s data packets
(λp), for different combinations of queues’ lengths. If it is not
stated otherwise, we use the following parameters fpd = 0.3,
fps = 0.4, fsd = 0.8 and δ = 0.5 in the numerical experiments
throughout the paper. Here, our main objective is to test the
quality of the proposed heuristic scheme of having identical
decision variables (i.e., admission and selection probabilities)
and relatively large queue lengths. Towards this objective, we
quantify the performance loss due to applying the heuristic
scheme by comparing its performance to that of Algorithm
1. Interestingly, it is observed that the heuristic scheme
achieves the same stable throughput region as the optimal
one obtained by Algorithm 1. This, in turn, demonstrates
that the optimal stable throughput region for small queues
lengths can be achieved using the relatively simple state-
independent admission and selection probabilities, except for
the boundary states with probabilities either 0 or 1 as explained
before. Consequently, the proposed heuristic qualifies as a
strong candidate to achieve a near-optimal stable throughput
region for large queue lengths (Section VI). It is also observed
that for a fixed relay queue length N = 1, increasing the
length of the battery queue (M) leads to an expansion in
the achievable throughput region. This is explained by the
fact that increasing M leads to the ability of storing more
energy packets. Therefore, the steady state probability that
the battery queue is capable of supporting the transmission
of the SU’s packets increases and, hence, the maximum SU’s
achievable throughput increases as well. On the other hand,
for a fixed M = 1, we observe that as N increases, the
maximum sustainable arrival rate of PU’s data packets, which
is corresponding to a non-zero µs, increases. This is attributed
to the fact that as N increases, the cooperation between the
PU and SU becomes more valuable for the PU such that more
PU’s data packets could be stored at Qsp and served by the
SU.

Fig. 3b shows the effect of the arrival rate of the harvested
energy packets at the SU on the achievable stable throughput
region. Towards that, we fix N = 3 and M = 3, and plot
the stable throughput region for different values of δ (δ =
0.1, 0.3, 0.5, 0.7, 0.9, and 1). Increasing δ leads to having a
higher probability of harvesting an energy packet each time
slot, which in turn increases the probability of having non-
empty QB at the time when the SU has the ability to access
the channel. Therefore, for δ ≤ 0.5, it is observed that as
δ increases, both the SU’s maximum achievable throughput
and PU’s maximum sustainable arrival rate increase. On the
other hand, for δ > 0.5, increasing δ leads to a higher max-
imum achievable throughput for the SU since the maximum
sustainable arrival rate of PU’s data packets is restricted by
the limited size of the relay length.

In order to investigate the optimization of design parameters
at the SU and provide efficient lower computational complex-
ity algorithms for stable throughput region’s characterization,
we relax the constraint of having two finite queues in the
subsequent two sections. Specifically, we focus on two simpler
systems, namely, finite battery queue with infinite relay queue
in Section IV and finite relay queue with infinite battery queue
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Fig. 3. Generalized CCRNs with both finite battery and relay queues: (a) the stable throughput region for both systems with different and identical admission
and selection probabilities, and (b) the stable throughput region for different values of δ.
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Fig. 4. Discrete time MC model for QB in dominant system 1.

in Section V.

IV. FINITE BATTERY QUEUE WITH INFINITE RELAY QUEUE
(DOMINANT SYSTEM 1)

A. Stability conditions

Under this setting, we assume that QB has a maximum finite
length M , but Qsp may have an infinite queue length. Note
that the admission and selection probabilities (ai and bi for
i = 0, · · · ,M ) become only dependent on the state of QB . It
is worth nothing that the stability conditions for Qp and Qs,
given by (3) and (4), will reduce to the following expressions

λp < fpd + (1− fpd) fps
M∑
i=0

aiπ
B
i , (18)

λs <

(
1− λp

µp

)
fsd

(
M∑
i=1

biπ
B
i + δb0π

B
0

)
, (19)

respectively, where πBi is the steady state probability that QB
has i energy packets at a given time slot. By applying Loynes
theorem, the stability condition for Qsp can be derived as
follows. A packet is buffered at Qsp if Qp is not empty which

happens with probability 1− λp
µp

. In addition, the packet is not

successfully decoded by the destination which happens with
probability 1− fpd, whereas it is successfully decoded by the
SU which happens with probability fps and is admitted to Qsp
which has a probability of 1− ai, i = 0, 1, · · · ,M . Thus, λsp
is given by

λsp =
λp
µp

(1− fpd) fps
M∑
i=0

aiπ
B
i . (20)

On the other hand, a packet leaves Qsp if Qp is empty

which happens with probability
λp
µp

, QB is not empty or it

is empty but there is an energy packet arrival, Qsp is se-
lected for transmission which happens with probability 1− bi,
i = 0, 1, · · · ,M , and the packet is successfully decoded at
the destination with probability fsd. Therefore, µsp and the
stability condition for Qsp are given respectively by

µsp =

(
1− λp

µp

)
fsd

(
M∑
i=1

(1− bi)πBi + δ(1− b0)πB0

)
,

(21)

λsp < µsp. (22)

In order to fully characterize the stability region, we shall
now calculate the steady state probabilities of QB (πBi for
i = 0, · · · ,M ). QB can be modeled as a discrete time
M|M|1|M4 queue. The MC is shown in Fig. 4 where state
i denotes that the number of packets in QB . Let λBi and µBi
denote the probability of moving from state i to state i + 1
and the probability of moving from state i to state i − 1,
respectively. λBi is the probability that Qp is not empty and
an energy packet arrives at QB . On the other hand, µBi is
the probability that Qp is non-empty and there is no arriving
energy packet. Thus, using the balance equations, the steady
state probabilities of QB are given by

πBi+1 =

δ
λp
µp(

1− λp
µp

)
(1− δ)

πBi , (23)

where i = 0, 1, · · · ,M − 1. Applying the normalization
condition

M∑
i=0

πBi = 1, (24)

along with (23), the steady state distribution of QB can be
completely characterized.

The main results of this subsection can be summarized in
the following proposition.

Proposition 1. Given ai and bi, i = 0, 1, · · · ,M , the domi-
nant system 1 is stable if the arrival rates of Qp, Qs and QB

4Note that, according to Kendall’s notation, the first two M letters indicate
that the arrival and service processes are Markovian whereas the last M letter
demonstrates that QB has a maximum finite length M .
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satisfy the following conditions:

λp < fpd + (1− fpd) fps
M∑
i=0

aiπ
B
i ,

λs <

(
1− λp

µp

)
fsd

(
M∑
i=1

biπ
B
i + δb0π

B
0

)
,

λsp < µsp,

where λsp and µsp are given by (20) and (21), respectively.
πBi , i = 0, 1, · · · ,M , can be obtained by solving equations
(23) and (24).

B. SU’s throughput maximization problem
The SU’s service rate maximization problem for dominant

system 1 can be formulated as

P1 : max
ai,bi,π

B
i ,µp

(
1− λp

µp

)
fsd

(
M∑
i=1

biπ
B
i + δb0π

B
0

)
s.t. λp < µp,

µp = fpd + (1− fpd) fps
M∑
i=0

aiπ
B
i ,

λsp < µsp,

0 ≤ πBi , ai, bi ≤ 1, i = 0, · · · ,M,

(23), (24),
(25)

where λsp and µsp are given by (20) and (21), respectively.
It is worth nothing that P1 is a non-convex optimization

problem. However, we exploit the problem structure in order
to transform it into a linear program. More specifically, by
defining the new variables

xi = aiπ
B
i , yi = biπ

B
i , i = 0, · · · ,M, (26)

P1 reduces into a linear program for a given µp as follows.
First, we have the following constraints on the new defined
variables

0 ≤ xi, yi ≤ πBi , i = 0, · · · ,M. (27)
Second, we can rewrite the constraint in (22) as
M∑
i=0

xi <
fsd (µp − λp)
λpfps (1− fpd)

(
M∑
i=1

(
πBi − yi

)
+ δ

(
πB0 − y0

))
.

(28)
Finally, by substituting with the new defined variables into

the objective function and the remaining constraints, P1 turns
out to be a linear program for a given µp and can be expressed
as follows

P1∗ : max
xi,yi,π

B
i

(
1− λp

µp

)
fsd

(
M∑
i=1

yi + δy0

)

s.t. µp = fpd + (1− fpd) fps
M∑
i=0

xi,

0 ≤ πBi ≤ 1, i = 0, · · · ,M,

(23), (24), (27), (28).

(29)

From (18), the feasible values of µp over which the linear
program is solved are given by

max(λp, fpd) ≤ µp ≤ fpd + (1− fpd) fps. (30)
We now show how to obtain the maximum achievable

throughput of the SU for a given λp using Algorithm 2. For

Algorithm 2 Evaluating the maximum achievable throughput
of the SU for a given λp (dominant system 1).

Input = (λp, fpd, fps, fsd, δ), Output = µ∗s(λp).
1. for µp = max(λp, fpd): θ : fpd + (1− fpd) fps

1) Compute µ∗s(µp) from P1∗.
2. end for
3. Set µ∗p = arg maxµp µ∗s(µp).
4. Set µ∗s(λp) = µ∗s(µp∗).

a given λp, the feasible range of µp’s values is defined by
(30). For each feasible µp, the maximum SU’s achievable
throughput is obtained by solving P1∗. Afterwards, we search
for the optimal value of µp which achieves the maximum
throughput in the feasible range of µp’s values. Finally, the
obtained optimal value of µp(µ

∗
p) is used to evaluate the

optimal SU’s achievable throughput (µ∗s(λp)). We use standard
optimization tools, e.g., CVX [42], to obtain the optimal
solution.

Fig. 5a compares the achievable stable throughput region
of a baseline cooperative cognitive radio with infinite size
battery and relay queues with that of P1∗ for different values
of maximum battery queue length (M = 1, 3, 10 and
100). As expected, the stable throughput region obtained by
P1∗ expands as M increases. Increasing M decreases the
probability of QB being empty and the drop of energy packets
due to overflow. Therefore, the service rate of the SU increases
with M . It is observed also that the system with finite battery
length M = 100 achieves the same stable throughput region
as in the scenario of having infinite battery length. Hence, in
practical systems, a finite battery capacity of a sufficient size
(M = 100) is enough to reap the same level of benefits of a
system with infinite size battery.

In Fig. 5b, we demonstrate the effect of the arrival rate
of the harvested energy packets at the SU on the stable
throughput region for dominant system 1 (P1∗). To this end,
we fix M = 10 and plot the stable throughput region for
different values of δ (δ = 0.1, 0.3, 0.5, 0.7 and 0.9). It
is observed that as the average arrival rate of the harvested
energy packets increases, the throughput region expands. This
happens since as the average arrival rate of harvested energy
packets increases the likelihood that QB is empty decreases.
That, in turn, manages the SU to achieve larger service rate
(µs) for a given PU packet arrival rate (λp).

V. FINITE RELAY QUEUE WITH INFINITE BATTERY QUEUE
(DOMINANT SYSTEM 2)

A. Stability conditions

Under this setting, we assume that Qsp remains with finite
length N , but QB becomes an infinite size queue. Although
the effects of finite size relay queue were studied in [34],
it was implicitly assumed that the system has no energy
limitation, i.e., the SU always has energy packets to transmit
whenever it has the opportunity to access the channel. On the
contrary, in this subsection, we focus on the more interesting
practical scenario of having a limited-energy system. The
energy limitation is characterized through the fact that there
is a non-zero probability of having an empty QB for a certain
range of λp’s values. Thus, the number of energy packets
inside QB will never grow to infinity for such range of λp’s
values and we will have a limited-energy system.
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Fig. 5. Dominant system 1: (a) the stable throughput region for different values of M , and (b) the stable throughput region for different values of δ.

In this scenario, the admission and selection probabilities
(aj and bj for j = 0, · · · , N ) become only dependent on
the state of (Qsp). Recall that aN = 0 to prevent Qsp from
admitting any overheard PU’s packet when it is full, and b0 =
1 to prevent allocating any transmission time slots for Qsp
when it is empty. The stability condition for Qp, given by (3),
will reduce to the following expression

λp < fpd + (1− fpd) fps
N∑
j=0

ajπ
sp
j , (31)

where πspj is the steady state probability that Qsp has j packets
at a given time slot. The probability of moving from state i
to state i + 1 at QB is the probability that Qp is non-empty
and there is an energy packet arrival. Thus, the probability of
moving from state i to state i+ 1 at QB can be expressed as

λB = δ
λp
µp
. (32)

On the other hand, due to applying the dominant system
approach, the probability of moving from state i to state i− 1
at QB is the probability that Qp is empty and there is no
energy packet arrival. Therefore, the probability of moving
from state i to state i− 1 at QB can be expressed as

µB =

(
1− λp

µp

)
(1− δ) . (33)

Depending on the relationship between λB and µB , the
energy available at QB is determined. If λB is strictly less
than µB , the probability that QB is capable of supporting the

transmission of the SU’s packet will be δ/

(
1− λp

µp

)
, and

it is the sum of the two probabilities: i) the probability of
having non-empty QB which is λB/µB and ii) the probability
of having an empty QB but there is an energy packet arrival

which is δ
(

1− λB
µB

)
. On the other hand, when µB is less

than or equal to λB , the number of energy packets inside QB
will grow to infinity and the system will be considered as being
equipped with unlimited-energy supply. Thus, the stability
condition for Qs, given by (4), reduces to the following

0 1 N-1 N

sp

0
sp

1
sp

N 2
sp

N 1

sp

1
sp

2
sp

N
sp

N 1

Fig. 6. Discrete time MC model for Qsp in dominant system 2.

expression

λs <



(
1− λp

µp

)
fsd

δ

1− λp
µp

∑N
j=0 bjπ

sp
j , λB < µB

(
1− λp

µp

)
fsd
∑N
j=0 bjπ

sp
j , λB ≥ µB .

(34)
Next, we calculate the steady state distribution of Qsp. Qsp

can be modeled as a discrete time M|M|1| N queue. The MC
is shown in Fig. 6 where state j denotes that the number of
packets in Qsp is j. Let λspj and µspj denote the probability of
moving from state j to state j+1 and the probability of moving
from state j to state j − 1, respectively. λspj is the probability
that Qp is not empty, the packet is not successfully decoded
by the destination, whereas it is successfully decoded by the
SU and is admitted to Qsp. On the other hand, µspj is the
probability that Qp is empty, QB is capable of supporting
the transmission of the SU’s packet, Qsp is selected for
transmission and the packet is successfully decoded at the
destination. Thus, using the balance equations, the steady state
probabilities of Qsp are given by

πspj+1 =
λspj
µspj+1

πspj , (35)

where j = 0, 1, · · · , N − 1, and λspj and µspj+1 are given
respectively by

λspj =
λp
µp
fps (1− fpd) aj , (36)

µspj+1 =

δfsd (1− bj+1) , λB < µB(
1− λp

µp

)
fsd (1− bj+1) , λB ≥ µB .

(37)

Applying the normalization condition
N∑
i=0

πspj = 1, (38)
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along with (35), the steady state distribution of Qsp can be
completely characterized. In the next subsection, we formulate
the stable throughput region optimization problem and discuss
its solution.

The main results of this subsection can be summarized in
the following proposition.

Proposition 2. Given aj and bj , i = 0, 1, · · · , N , the
dominant system 2 is stable if the arrival rates of Qp and
Qs satisfy the following conditions:

λp < fpd + (1− fpd) fps
N∑
j=0

ajπ
sp
j ,

λs <



(
1− λp

µp

)
fsd

δ

1− λp
µp

∑N
j=0 bjπ

sp
j , λB < µB

(
1− λp

µp

)
fsd
∑N
j=0 bjπ

sp
j , λB ≥ µB .

,

where πspj , j = 0, 1, · · · , N , can be obtained by solving
equations (35) and (38).
B. SU’s throughput maximization problem

The SU’s service rate maximization problem of dominant
system 2 for a given λp, when λB < µB , can be formulated
as

P2 : max
aj ,bj ,π

sp
j ,µp

δfsd

N∑
j=0

bjπ
sp
j

s.t. λp < µp,

µp = fpd + (1− fpd) fps
N∑
j=0

ajπ
sp
j ,

πspj+1 =

λp
µp
fps (1− fpd) aj

fsdδ (1− bj+1)
πspj , j = 0, · · · , N − 1,

N∑
i=0

πspj = 1, aN = 0, b0 = 1,

0 ≤ aj , bj , πspj ≤ 1, j = 0, · · · , N.
(39)

By inspecting P2, we can easily see that it is a non-convex
optimization problem. However, similar to P1, P2’s structure
can be exploited to transform it into a linear program for a
given µp. Recall that, from (31), the feasible values of µp over
which the linear program runs are given by (30).

By defining the new variables
xj = ajπ

sp
j , yj = bjpi

sp
j , j = 0, · · · , N, (40)

P2 reduces into a linear program for a given µp as follows.
First, we have the following constraints on the new defined
variables

0 ≤ xj , yj ≤ πspj , j = 0, · · · , N. (41)

Second, we can rewrite the constraint in (35) as

πspj+1 − yj+1 =
λpfps (1− fpd)

µpfsdδ
xj , j = 0, · · · , N − 1. (42)

Finally, by substituting the new defined variables into the
objective function and the remaining constraints, P2 turns out
to be a linear program for a given µp and can be expressed
as follows

Algorithm 3 Evaluating the maximum achievable throughput
of the SU for a given λp (dominant system 2).

Input = (λp, fpd, fps, fsd, δ), Output = µ∗s(λp).
1. for µp = max(λp, fpd): θ : fpd + (1− fpd) fps

1) if (λB < µB)
(1) Compute µ∗s(µp) from P2∗.

2) else
(2) Compute µ∗s(µp) from P3.

3) end if
2. end for
3. Set µ∗p = arg maxµp µ∗s(µp).
4. Set µ∗s(λp) = µ∗s(µp∗).

P2∗ : max
xj ,yj ,π

sp
j

δfsd

N∑
j=0

yj

s.t. µp = fpd + (1− fpd) fps
N∑
j=0

xj ,

xN = 0, y0 = πsp0 ,

N∑
i=0

πspj = 1,

0 ≤ πspj ≤ 1, j = 0, · · · , N,
(41), (42).

(43)

Following the same approach applied to P2, the SU’s service
rate maximization problem of dominant system 2 for a given
λp, when λB ≥ µB , can be formulated as

P3 : max
xj ,yj ,π

sp
j

(
1− λp

µp

)
fsd

N∑
j=0

yj

s.t. µp = fpd + (1− fpd) fps
N∑
j=0

xj ,

πspj+1 − yj+1 =
λpfps (1− fpd)
fsd (µp − λp)

xj , j = 0, · · · , N − 1,

N∑
i=0

πspj = 1, xN = 0, y0 = πsp0 ,

0 ≤ πspj ≤ 1, j = 0, · · · , N,
(41).

(44)
We now summarize how to obtain the SU’s achievable

throughput for a given λp using Algorithm 3. For a given
λp, the feasible range of µp’s values is defined by (30). For
each feasible µp, the maximum SU’s achievable throughput
is either obtained by solving P2∗ if λB < µB or by solving
P3 if λB ≥ µB . Finally, we search for the optimal value of
µp which achieves the maximum throughput in the feasible
range of µp’s values. Note that increasing M in Algorithm 2
(N in Algorithm 3) leads to a higher number of optimization
variables in P1∗ (P2∗ and P3). Owing to the convexity of P1∗,
P2∗ and P3), the computational complexity of Algorithm 2
or Algorithm 3 does not significantly increase as a function
of M or N , respectively, and thus both Algorithms have a
much lower computational complexity compared to that of
Algorithm 1. Particularly, the total time complexity of both
Algorithm 2 and Algorithm 3 is O(1).

Fig. 7a compares the achievable stable throughput region
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Fig. 7. Dominant system 2: (a) the stable throughput region for different values of N , and (b) the stable throughput region for different values of δ.

of dominant system 2 with that of the baseline cooperative
cognitive radio with infinite battery and relay queue sizes, for
different values of Qsp length (N = 1, 3, 10 and 30). On
the contrary to the achievable throughput region by dominant
system 1, we observe here two different regimes due to the
increase of Qsp’s length. The first regime is represented by
the range λp ≤ 0.25, where all systems with different lengths
achieve the same maximum SU’s achievable throughput. This
happens due to the fact that, for small values of λp, the
likelihood that the SU has the opportunity to access the
channel is relatively high. Thus, the capability of QB to
support the transmission of the SU’s packets will serve as
the bottleneck of the maximum achievable SU’s throughput.
Since the capability of QB to support the transmission of the
SU’s packets is defined by QB’s length (M) and δ (M and δ
are the same for all plotted systems), we observe that the SU’s
achievable throughput is the same for all systems. On the other
hand, the second regime is represented by the range λp > 0.25,
where the value of N defines the maximum sustainable arrival
rate of PU’s data packets, which is corresponding to a non-
zero µs. Increasing N reduces the time slots needed by the
PU to serve its own data packets and, hence, increases the
likelihood that the SU has the chance to access the channel.
Therefore, it is observed that the maximum sustainable arrival
rate of PU’s data packets, which is corresponding to a non-zero
µs, increases with N . Finally, we observe that the system with
finite relay length N = 30 achieves the same stable throughput
region as in the scenario of having infinite relay length. Hence,
in realistic systems, a finite relay queue of a size N = 30 is
enough to reap the same level of benefits of a system with
infinite size relay queue.

Fig. 7b shows the stable throughput region achieved by
dominant system 2, for different values of the average arrival
rate of the harvested energy packets (δ) and N = 10.
Increasing δ promotes the probability that QB is capable of
supporting the transmission of the SU’s packets. Therefore,
it is observed that as δ increases, the achievable throughput
region expands.

Finally we investigate the range of λp’s values, over which
there exists a non-zero probability of having an empty QB
and P2∗ is used to characterize the maximum achievable
throughput. Towards that, we introduce the energy-limited
cooperative cognitive radio networks with finite relay queue
and infinite battery queue, in which we impose an energy

limitation constraint to ensure that there is always a non-zero
probability of having an empty QB . More specifically, the
energy limitation constraint guarantees that the energy arrival
rate at QB is strictly less than its service rate. Thus, the number
of energy packets inside QB will never grow to infinity. The
stable throughput region of such networks is characterized by
solving P2∗ when being constrained by the energy-limitation
constraint (λB < µB). Note that, due to the newly imposed
energy-limitation constraint to P2∗, the feasible values of µp
over which the linear program runs are given by

max(
λp

1− δ
, fpd) ≤ µp ≤ fpd + (1− fpd) fps. (45)

In Fig. 8, we plot the achievable stable throughput region
for dominant system 2 with and without the energy limitation
constraint [1]. It is observed that the range of λp’s values,
over which there exists a non-zero probability of having an
empty QB for dominant system 2 without the energy limitation
constraint, is λp ≤ 0.25, where both systems achieve the same
maximum SU’s throughput. This is intuitive since for large
values of λp, the steady state probability that Qp is empty and
the SU is able to access the channel becomes very low that
the number of energy packets inside QB will grow to infinity,
and QB will always be capable of supporting the transmission
of the SU’s packets whenever it has the chance to access the
channel.

VI. NUMERICAL RESULTS

In this section, our prime objective is to quantify the
performance loss experienced by cooperative cognitive radio
networks due to the existence of limited energy sources and fi-
nite queues, when compared to a baseline network with similar
setup, yet, having an unlimited energy source, introduced in
[32], [34]. Motivated by the sheer computational complexity of
Algorithm 1 for large values of queue lengths, as demonstrated
in Section III, we propose a heuristic scheme to characterize
the stable throughput region of CCRNs with both finite battery
and relay queues, and relatively large queue lengths. In the
proposed heuristic scheme, we assume that all states have
equal admission and selection probabilities, except for those
having either deterministic admission or selection decision
variables. Recall that we have demonstrated that the proposed
heuristic scheme can be considered as a strong candidate to
achieve a near-optimal stable throughput region for large queue
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Fig. 8. Comparing the stable throughout region of dominant system 2 with
its achievable one when imposing the energy limitation constraint.
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Fig. 9. The achievable stable throughput region for different values of N .

lengths in Fig. 3a. Owing to the convexity of the proposed
linear programs, we use standard optimization tools, e.g., CVX
[42], to obtain the optimal solution. If not otherwise stated,
we use the following parameters for our numerical results:
fpd = 0.3, fps = 0.4, fsd = 0.8 and δ = 0.5.

Fig. 9 shows the effect of increasing N on the achiev-
able stable throughput region of CCRNs with both finite
battery and relay queues. Towards that, we fix M to 1 and
plot the stable throughput region for different values of N
(N = 1, 2, 3, 10 and 30). As expected, we observe that
the maximum sustainable arrival rate of PU’s data packets,
which corresponds to a non-zero µs, increases with N due to
increasing the number of available time slots for the SU to
access the channel. We further observe that when N = 30,
the achievable throughput region nearly approaches the one
of dominant system 1, introduced in Section IV. This leads
to an interesting insight that Generalized CCRNs with both
finite battery and relay queues (M = 1 and N = 30) achieve
the same stable throughput region of the system with infinite
relay queue (M = 1 and N = infinity). It is worth noting that,
similar to Fig. 7a, λp = 0.25 divides the stable throughput
region into two different regimes. However, the maximum
SU’s achievable throughput decreases from 0.3 to 0.1 due to
reducing the length of the battery queue from infinity to 1.

In Fig. 10, our objective is to demonstrate the impact of
increasing M on the achievable stable throughput region of
CCRNs with both finite battery and relay queues. Towards
this objective, we fix N to 1 and plot the stable throughput
region for different values of M (M = 0, 1, 2, 3, 10 and
30). It is observed that the stable throughput region expands
with increasing M till it nearly approaches the same stable
throughput region of the system with infinite battery queue
(M = infinity and N = 1), presented in Section V, when M =
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Fig. 10. The achievable stable throughput region for different values of M .
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Fig. 11. Comparing the achievable throughput regions by our proposed
models with the of the baseline system with unlimited energy supply and
infinite relay queue.

30. It is further observed that the stable throughput region
achieved by CCRNs with unlimited energy source and finite
relay queue [34] constitutes an upper bound on the achievable
ones corresponding to different values of M . This is intuitive
since the SU does not suffer from ”energy hunger” whenever it
has the opportunity to access the channel in CCRNs introduced
in [34].

Finally, Fig. 11 compares the achievable stable throughput
regions of all studied CCRNs in this paper with that of the
baseline system with infinite relay length and unlimited energy
source [32]. As expected, we observe that the achievable stable
throughput region by [32] constitutes an upper bound on the
other systems (with finite queues and limited energy sources)
due to the fact that the SU has no energy limitations and is
equipped with infinite relay length at the same time. We further
observe that, although the SU always has the chance to access
the channel when λp = 0, the maximum SU’s achievable
throughput by all systems (including the system with both
infinite battery and relay queues) is half the one achieved in
[32]. This, in turn, highlights the impact of the probabilistic
arrival of energy packets at the SU (δ = 0.5).

VII. CONCLUSION

In this paper, we studied a queuing-theoretic model for
cooperative cognitive radio networks where the secondary user
has a finite relay queue as well as a finite battery queue.
We first developed an algorithm to characterize the stable
throughput region numerically due to mathematical intractabil-
ity towards obtaining closed-form expressions for the steady
state distribution of the two-dimensional Markov Chain. Faced
with this hurdle, we relaxed the system model and studied two
simpler problems: 1) finite battery queue with infinite relay
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queue and 2) finite relay queue with infinite battery queue. The
stable throughput regions were characterized for the simpler
systems. Specifically, we formulated the stable throughput
region optimization problem for problem and showed how
to solve it. Finally, we compared the achievable throughput
region of all studied systems with that of the baseline system
with unlimited energy sources and infinite queues. Our numer-
ical results quantified the expansion in the throughput region
due to increasing the battery queue size, and the enhancement
of the maximum sustainable arrival rate of PU’s data packets,
corresponding to a non-zero SU’s achievable throughput, due
to increasing the relay queue size. Furthermore, they revealed
that finite battery and relay queues of sufficiently large sizes
are enough to achieve the same level of benefits of a system
with infinite queue sizes. They also showed the profound role
of the arrival rate of the energy harvesting process at the SU
on the achievable stable throughput region.

This work has many possible extensions. For instance,
we focused in this paper only on characterizing the stable
throughput region of cooperative cognitive radio networks with
both finite battery and relay queues. One possible extension is
to study the delay analysis of our finite queue lengths coop-
erative cognitive radio networks. In addition, another possible
extension is to investigate the achievable stable throughput
region when the arrival rate of the energy harvesting process
at the SU may not be enough to keep the node alive to
listen to the channel at every slot. In such scenario, even
when using the Dominant System approach, the service rate
of the battery queue at the SU will not only depend on
the PU’s state. This, in turn, complicates the associated two-
dimensional Markov Chain and, hence, leads to a significantly
higher computational complexity of stable throughput region
characterization, which possibly calls for new models and
approaches. Another possible future work is to consider the
scenario of having multiple secondary users.
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