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Abstract—Collecting data continuously in Wireless Sensor Net- compressive data gathering approach for WSN based on CS;
works (WSNs) with limited power and bandwidth is still a chal-  they focus on designing an efficient measurement matrices

lenging issue. Recently, the sparse nature of these data matted ; ; ;

the use of Compressive Sensing (CS) as an efficient data gating ."”‘d comparing between them expe_r!mentally. Meanwhilg, _the
technique. In this paper, several algorithms are proposed d |ntr0duce several ideas for exploiting temporal corref{i
effectively exploit the temporal correlation and the sparity Spatial correlation, and measurement vector reshape.rnfo

inherent in sensor network data over time. These algorithms tunately, they did not provide an experimental evaluatibn o

combine recent advances in compressive sensing (CS) theorythese approaches. We will revisit some of their ideas irr late
data compression, and data gathering algorithms. Experimetal parts of this paper.

analysis through simulation evinces that the proposed algidhms

significantly reduce the power consumption by reducing the . .
number of sent measurements for the same Normalized Mean On the other hand, many novel CS algorithms were intro-

Square Error (NMSE). duced to further exploit signal structure in order to imgov
performance over traditional CS algorithms. The weighted
[7] improves CS reconstruction by incorporating the pdssib
Wireless Sensor Networks consist of a large number lofcation of non-zero entries as a prior information. From
sensors distributed in a sensing area to serve differeks,tasanother perspective, temporal correlation can be modétled
such as continuous environmental monitoring [1], [2]. Teheghe form of a multiple measurement vector (MMV) as in [8],
networks are intended to continuously sense an area oésitewhere it models the source as an auto regressive (AR) process
and transmit the sensed data to a sink node. Due to #wed then incorporates such information into the framework
power consumption constraints, it is inefficient to dirgctlof sparse Bayesian learning for sparse signal recovery and
transmit the raw sensed data to the sink, as they often éxhitmnverts MMV to block single measurement vector (SMV)
a high correlation in the spatial and temporal domains amdodel.
can be efficiently compressed to reduce power and bandwidth
requirements. In this paper, we investigate different approaches tozatili
Spatial correlation in WSN refers to the correlation betwedemporal correlation for efficient CS data gathering in WSN.
the sensed data at spatially adjacent sensor nodes. On Sbene of these approaches utilize temporal correlationde pr
other hand, temporal correlation usually refers to the slogess the sensed data in a way that increases its sparsity orde
varying nature of the sensed data. Researchers were nectivat/hich in turn reduces the required number of measurements
to explore this nature in designing efficient data gatheririg the sensing process. Another class of approaches stilize
approaches. In [1], the sensor sends its reading only if it tise temporal correlation as a prior in the reconstructi@p st
changed from the last time. Spatial correlation betweeaamsn for CS. The last class of approaches combines several time
is also utilized by suppressing the reading of the edgesd®iw instants into a single measurement vector, on the assumptio
nodes if the difference between the nodes values is uncanghat this MMV will be more sparse than distinct time instants
Goel and Imielinski in [3] propose a prediction model at theneasurements. We experimentally evaluate the performance
sink to predict the current readings of the sensors basedthase approaches under different noise levels using symthe
their past and surrounding readings. These predicted valamd real WSN data.
are sent back to the sensors. The sensor ceases its tranamiss
if difference between its reading and predicted one does nofThe rest of the paper is organized as follows. We provide
exceed a specific threshold. an overview of the mathematical background of CS in Section
Compressive sensing (CS) [4], [5] is a novel tool thdt. In Section Ill, the system model is described. We explain
provides a mean to process and transport correlated ddifferent algorithms that exploit temporal correlationings
in an efficient manner by exploring the sparsity of thesdifferent approaches in Section IV. In Section V, the experi
data. Recently, CS was demonstrated effective in exploringental results are presented. We conclude with the conclusi
data correlation in WSN. In [6], the authors introduce and future work in Section VI.

I. INTRODUCTION



II. A MATHEMATICAL BACKGROUND ON COMPRESSIVE

SENSING
Compressive sensing theory [4], [5] provides an elegant s s: s Su sy sink
mathematical framework to compress and recover signals Fig. 1: Sub-tree of WSN.

using a small number of linear measurements. It shows that
under certain conditions on the measurement matrix, the
acquired signal can be perfectly reconstructed from theseOur goal is to reconstruct the original signal; from
measurements. Consider a real-valued signa), which is the compressed received signal at sipk ., Where K <

sparse in some doma#l. M << N. We note that all of the approaches in this paper
N can be applied to different CS data gathering approachds [10
r — Z sih; Of x = Ws. (1) with any different network organization.
=1 IV. DIFFERENT ALGORITHMS EXPLOITING TEMPORAL
The signalx is K-sparse if it can be represented as a linear CORRELATION IN WSNSsS
combination of onlyK basis vectors; that is, onli” of the | this section, we discuss the different algorithms that ar
s; coefficients in equation (1) are non zero. studied to exploit temporal correlation of sensor data.sThi

In CS, we do not acquirec directly but rather acquire work can be categorized into three main approaches:

M <.N linear rr?easqremher}ys”usipg anMx_N measurement 1) An approach that increases the sparsity order by taking
matrix &, as shown in the following equation. the difference between the current reading and the pre-
y=®z=dTs = Os. ) vious one. Trus can be performed either at the sensor
(denoted by “CS-diff”) [1], [11] or at the sink (denoted
If the measurement matris satisfies a condition called the by “Measurement diff”) [6].

restricted isometric property condition (RIP) [4], thereth 2) An approach that increases the sparsity order by rear-

signal reconstruction problem can be framed as/anorm ranging the sensor readings based on temporal correla-
minimization problem and perfect reconstruction is guaran tion. Two algorithms are presented under this approach,
teed. denoted by “Reshape” [6] and “MMV” [8].
min ||s|lgg St y=®Ps. 3 3) An approach that takes previous reading as a prior
sERY information and utilizes weighted CS [7] to enhance
I1l. SYSTEM MODEL the reconstruction with fewer number of measurements

We consider a WSN composed of sensors, randomly ~ (denoted by “Weighted”) [12].
disseminated to continuously monitor a given area. We @&enot calculate the difference at sensors: CS-diff

the signal collected by sensors asyxi. We assume this . - . .
. ) ) . : Sensor readings usually exhibit a slow varying pattern in
signal is sparse in some transform domain with a number

; time. In many scenarios, only a limited number of sensors
of non zero elementdl’ << N. Sensor reading data are . T .

. change their values between two consecutive time instants.
forwarded to a central sink node.

: . : is was used in [1], where the sensors send their reading
We use the single hub compressive data gathering (CD o ; .
. o only if it has changed from the previous one. CS provides
model proposed in [9] as shown in Figure 1. We assume tha - , . .
) : - . an efficient framework to benefit from this assumption, as
each node knows its local routing structure. Initially, #iek . . . .
i he current reading and the previous reading would be highly
sends anV/ x N measurement matrix to all nodes. Each node . . .
o . ) . . correlated and the difference will be sparse in the wavelet
multiplies its reading with the corresponding column in th . . . e . . . i
. . . gmain and in various situations in the original time domain
measurement matrix, adds it to the vector received from t

; ' e “CS-diff” algorithm, listed below, uses CS to compress
previous node, and then sends the resulfihg 1 vector to the . . . . : o
. . aﬂd transmit the time difference signal instead of the pabi
next hop node. This vector is propagated through the netwosr nsor readings. One benefit of this algorithm is its higlseoi
until it reaches the sink as shown in Figure 1. Thus, each node gs. 9 9

sends\ messages and the overall complexitig\/ V). The Immunity, but it needs more energy for extra—processmgatt
) sensors. We note that the same approach was used in [11] for
sink collects thel/ measurements and needs to reconstiNict

. compressive background subtraction in images.
readings.

The received signal at the sink is represented as B. Calculate the difference at sink: Measurement diff

This algorithm is built on subtracting the current measure-
ments from the previous one. The idea of this algorithm was
whereynrx1 is the measurement collected at the simlg; 1 proposed in [6] to explore what was denoted as “temporal-
is the additive noise between the sensors and the sink, whéreguency sparsity”. However, it was not part of the exper-
components are independent with zero mean and a varianc@mdntal results performed in that work. While based on the
o2, and® s« v IS @ measurement matrix designed accordirgame idea of CS-diff, this algorithm reduces the computatio
to the data gathering algorithm used. load at the sensors by moving the difference computation to

YMx1 = PyuxN X TNx1+ Whrx1 4)



Algorithm 1 CS-diff. The reshape algorithm effectiveness depends mainly on how

Input: much the most sparsifying order is preserved across sueeess
x;, (data at timel;), ;, (data at timet,), @,/ (Measure- time instants. Also, the optimal order depends on the domain
ment matrix) in which the signal is considered sparse.
Steps: _
At each sensor calculate the differencegi; = ;, — @i, ©° Multiple measurement reshape: MMV
Collect measurements at tine . y,, = ®¢,xair + w, A completely different approach to explore temporal corre-
Reconstruct the difference signal at sink : lation is based on the stacking of several time measurements
min_ ||Zair|len Sty = Praiy into a multiple measurement vector (MMV). We will use the
OJ”tdpJL‘ERN formulation presented in [8] to transfer the MMV into a sgars

single measurement vector using the Kronecker product.-How
ever, we will utilize the standard,;-norm minimization for
reconstruction instead of the sparse Bayesian learnind)(SB
approach proposed in that paper.

the sink node. However, this is at the expense of less no{ﬁéa\treefzggntlmet we collect the measuremepf, ., using
immunity as we will show in the results section. We will list

the algorithm here for completeness and refer the read&i to |
for more detalils.

Recover the signal at sink2;, = x, + &a;¢

Ymx1 = PruxN X TNx1 + Whrrx1 %)

We arrange the measurements fraintime instants as

Algorithm 2 Measurement diff. follows.

Input:

x¢, (data at timety), =, (data at timety), ® 5/ n (Measure- YT =®d+v (6)

ment matrix)

Steps: where Y € RM*L is the measurement matrix consisting of
Collect measurements at timg : y, = ®;,a,, + w, L measurement vectord, € RV <L is the source matrix with

. . i i i MxL
At sink calculate the difference between measurements £ach rr(])_W rgprese_zntmg single sc_)urc_ehreadlags,lzar&dR

_ _ _ is a white Gaussian noise matrix with each column represent-
Yaif =Yt — Y, = Yz, — Qtzmtl - étzmdi.f P

Reconstruct the difference signal at sink : ing the noise at a different time instant. ,
mmN |Zaiflln St y = Bzai TheTMMV Ca}\th;el transformed |r:1Fto SMV ]silxllettm};j =
T4 ER vec(T ) c R , X = VeC(d ) € R , Vo=
Output: . . vequv?) € RMLx1 and D = ® ® I. Where® is the
Recover the signal at sinka;, = z;, + ®air Kronecker product. Then equation 6 transforms to
Y=DX+V. @)

Two main drawbacks can be easily noticed in the CS-difs proposed in [8], to improve the sparsity
and Measurement diff approaches; first, they depend headly this signal, we can rewrite it asY —
on the rate of change of the data, as the sparsity order apd 1, ... ¢y © 1] [],--- ’IJQHT + V., where ¢
hence the number of measurements needed depends onighge it* column in® andz; € RL*T is theit” row in X.

sparsity of the difference signal. The second problem is thengte that this algorithm does not reconstruct the signal
accumulation of error if the algorithm is reiterated for @do 4t each time instant, but it collects signals at differemteti
period of time. This can be readily fixed by periodicalljnstants and reconstructs all of them at once. This gives
sending the original sensor reading to correct drift error.  gome [imitation of using this algorithm in real time sensing
i i i applications.

C. Signal reshape using measurement matrix: Reshape

The idea of shuffling or reshaping the sensor readings fo EXPloit weight at reconstruction: Weighted
increase the sparsity was also originally proposed in [6], The idea of using weighted in CS reconstruction to incor-
where the authors used the information from the last re@alvermporate prior information about the signal was first introgllic
signal to design a measurement matrix that can reshape ith§/]. Weighted CS was used in WSN in [12] to detect certain
measurement vector into a more sparse vector in a desiments using the event signature in the transform domain to
domain. construct the weighting matrix. In this algorithm, we prepo

A reshaping matrix@ . 5 is designed to optimally rear- using the previous time reading as a prior information in
range the signal at time Under the assumption of a slowlydesigning the weight matrix. This is done by replacing the
varying signal, the same matrix will approximately reagan CS ¢1 minimization problem in equation 3 by the following
the signal captured at time+ 1, which in turn increases its

sparsity order. ggﬁ?}v IWslla st y=2¥s, (8)



At the first time instant, the values of the weight matrix are @
initialized with ones, then at any time+ 1 the values are N T \\
inversely proportional to the corresponding signal tramsf @ =g\l ——- T \
components at previous tinte which is given by N i
th1_ L

ST e ©
wheree > 0 is a parameter introduced to provide stability o @ b o @ @D o o @
and to ensure that a zero-valued componentlirdoes not . ‘
completely prohibit a nonzero estimate at the next timeaimtst Fig. 2: Intel Labs Berkeley WSN [14].
e should be set slightly smaller than the minimum nonzero
magnitudes ofs. The weights in equation 9 focus the energy
in the reconstruction process to the same nonzero locatibns

where W is a diagonal matrixW = diag(wi, - ,wy). m®
o

20.5

data at time t
data at time t+1 ||

the previous time instant. Generally speaking, large wsigh 207 data at time t+2
are used to discourage nonzero entries in the recoveredlsign 195] gataattime 43 1

data at time t+4

while small weights are utilized to encourage nonzero esiri ol

V. SIMULATION RESULTS ANDANALYSIS 185}

In order to compare the different proposed approaches, we 18}
run experimental analysis through simulation. The norpeali

mean square error (NMSE) between the original and recon- ol

structed signal is used as a performance measure in all g the 17y

experiments. The compression ratio (C.R.) in our expertmen 165 - - - n .
refers to the ratio between the number of measurements and

the total number of sensors. Fig. 3: Real data at different times.

We use two types of data sets in our simulation. The first
one is a synthetic data set generated by “peaks” function in

Matlab [13]; t_his data is sparse in the discrete cosine tm with accumulator error. Also we need to note that in sub-
(DCT) domain. We dynamically change the data over time By, ;e 4 we do not plot NMSE against time as all previous
changing a percentage of the sensors reading at each newp, fi res since the MMV algorithm collects the signalsrfro
tlme_lnstant. The_ value_ of the signal at the_se Sensors 'Sgdd_andifferent time instants and reconstructs all of them at once
W|th|n_ « of previous time values according to the following In Figure 5, we compare between the various approaches
equation and the default CS approach in terms of the NMSE perfor-
Titr1 = (1 E)zis. (10)  mance at different noise levels. The four subfigures show

In all of our experiments we randomly chosec [0.05, 0.25], the effect of changing the time and the compression ratio
and g = {10, 30}. The signal dimension corresponding to then the different algorithms. It is clearly evident the super
number of sensors i8/=400. We average the results over 5@erformance of the CS-diff algorithm, especially at low SNR
trials to avoid fluctuations. We also note from Figure 5d that by decreasing C.R. to 25 %

The second data set used is the real data set obtaitleel performance of the default and MMV algorithms are the
by a WSN deployed at Intel Labs Berkeley [14]. This datenost affected.
set contains temperature, humidity, light, and voltagaueal In Figure 6, we show the effect of changing the percentage
periodically collected every 31 seconds from 54 distriduteof modified data at each time instagt on the different
sensor nodes between February 28th and April 5th, 20@4gorithms. As expected the “CS-diff” and “Measuremert'dif
Figure 2 shows the distribution of sensors in Berkeley Laddgorithms are the most affected algorithms with changing
and the sink node is near sensor number 54. We apply fhiee algorithms compress the difference signal which issspar
CDG technique shown in Figure 1, where each sensor seiisime domain. This sparsity rate is highly affected by the
to the next hop sensor and so on until reaching to the sirknount of change in the data.
The temperature sensor readings at different time instets  In Figure 7, the effect of the different algorithms in reatala
shown in Figure 3. is shown. We note that all algorithms have a similar behawior

In Figure 4, we individually evaluate the performance ahe peaks signal, but the behavior of the weighted algorithm
each of the different algorithms at different time instantghanged, because the sensors values have high deviatien V-
SNRs, and compression ratios. This figure clearly shows tiibe “CS-diff” algorithm outperforms all other algorithms a
improvement in performance after first time instant. Thi®wer SNRs as it is considered the least effected algoritfitin w
improvement decreases as time progress due to error accumaise. However, at higher SNRs “Measurement diff” algamnith
lation. The Reshape algorithm is the most affected algorithhas better performance.
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VI. CONCLUSION

In this work, we examine the behavior of the different
algorithms that utilize temporal correlation to enhancenco
pressive data gathering in WSN. The proposed algorithms
cover different approaches to incorporate temporal caticei
into measurement matrix design and reconstruction atyost
We evaluated the performance of these approaches at differe
noise levels using synthetic and real data sets. In thedutur
work of this research, we plan to design new approaches to
further exploit the combined spatial and temporal coriahat
in WSN data. Other aspects of these approaches such as the
computational complexity and latency will be further stai
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