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Abstract—Collecting data continuously in Wireless Sensor Net-
works (WSNs) with limited power and bandwidth is still a chal-
lenging issue. Recently, the sparse nature of these data motivated
the use of Compressive Sensing (CS) as an efficient data gathering
technique. In this paper, several algorithms are proposed to
effectively exploit the temporal correlation and the sparsity
inherent in sensor network data over time. These algorithms
combine recent advances in compressive sensing (CS) theory,
data compression, and data gathering algorithms. Experimental
analysis through simulation evinces that the proposed algorithms
significantly reduce the power consumption by reducing the
number of sent measurements for the same Normalized Mean
Square Error (NMSE).

I. I NTRODUCTION

Wireless Sensor Networks consist of a large number of
sensors distributed in a sensing area to serve different tasks,
such as continuous environmental monitoring [1], [2]. These
networks are intended to continuously sense an area of interest
and transmit the sensed data to a sink node. Due to the
power consumption constraints, it is inefficient to directly
transmit the raw sensed data to the sink, as they often exhibit
a high correlation in the spatial and temporal domains and
can be efficiently compressed to reduce power and bandwidth
requirements.

Spatial correlation in WSN refers to the correlation between
the sensed data at spatially adjacent sensor nodes. On the
other hand, temporal correlation usually refers to the slow
varying nature of the sensed data. Researchers were motivated
to explore this nature in designing efficient data gathering
approaches. In [1], the sensor sends its reading only if it is
changed from the last time. Spatial correlation between sensors
is also utilized by suppressing the reading of the edges between
nodes if the difference between the nodes values is unchanged.
Goel and Imielinski in [3] propose a prediction model at the
sink to predict the current readings of the sensors based on
their past and surrounding readings. These predicted values
are sent back to the sensors. The sensor ceases its transmission
if difference between its reading and predicted one does not
exceed a specific threshold.

Compressive sensing (CS) [4], [5] is a novel tool that
provides a mean to process and transport correlated data
in an efficient manner by exploring the sparsity of these
data. Recently, CS was demonstrated effective in exploring
data correlation in WSN. In [6], the authors introduce a

compressive data gathering approach for WSN based on CS;
they focus on designing an efficient measurement matrices
and comparing between them experimentally. Meanwhile, they
introduce several ideas for exploiting temporal correlation,
spatial correlation, and measurement vector reshape. Unfor-
tunately, they did not provide an experimental evaluation of
these approaches. We will revisit some of their ideas in later
parts of this paper.

On the other hand, many novel CS algorithms were intro-
duced to further exploit signal structure in order to improve
performance over traditional CS algorithms. The weightedℓ1
[7] improves CS reconstruction by incorporating the possible
location of non-zero entries as a prior information. From
another perspective, temporal correlation can be modelledin
the form of a multiple measurement vector (MMV) as in [8],
where it models the source as an auto regressive (AR) process
and then incorporates such information into the framework
of sparse Bayesian learning for sparse signal recovery and
converts MMV to block single measurement vector (SMV)
model.

In this paper, we investigate different approaches to utilize
temporal correlation for efficient CS data gathering in WSN.
Some of these approaches utilize temporal correlation to pro-
cess the sensed data in a way that increases its sparsity order.
Which in turn reduces the required number of measurements
in the sensing process. Another class of approaches utilizes
the temporal correlation as a prior in the reconstruction step
for CS. The last class of approaches combines several time
instants into a single measurement vector, on the assumption
that this MMV will be more sparse than distinct time instants
measurements. We experimentally evaluate the performanceof
these approaches under different noise levels using synthetic
and real WSN data.

The rest of the paper is organized as follows. We provide
an overview of the mathematical background of CS in Section
II. In Section III, the system model is described. We explain
different algorithms that exploit temporal correlation using
different approaches in Section IV. In Section V, the experi-
mental results are presented. We conclude with the conclusion
and future work in Section VI.



II. A M ATHEMATICAL BACKGROUND ON COMPRESSIVE

SENSING

Compressive sensing theory [4], [5] provides an elegant
mathematical framework to compress and recover signals
using a small number of linear measurements. It shows that
under certain conditions on the measurement matrix, the
acquired signal can be perfectly reconstructed from these
measurements. Consider a real-valued signalxN×1, which is
sparse in some domainΨ.

x =

N
∑

i=1

siψi or x = Ψs. (1)

The signalx is K-sparse if it can be represented as a linear
combination of onlyK basis vectors; that is, onlyK of the
si coefficients in equation (1) are non zero.

In CS, we do not acquirex directly but rather acquire
M < N linear measurementsy, using anM×N measurement
matrix Φ, as shown in the following equation.

y = Φx = ΦΨs = Θs. (2)

If the measurement matrixΦ satisfies a condition called the
restricted isometric property condition (RIP) [4], then the
signal reconstruction problem can be framed as anℓ1-norm
minimization problem and perfect reconstruction is guaran-
teed.

min
s∈RN

||s||ℓ1 s.t. y = ΦΨs. (3)

III. SYSTEM MODEL

We consider a WSN composed ofN sensors, randomly
disseminated to continuously monitor a given area. We denote
the signal collected by sensors asxN×1. We assume this
signal is sparse in some transform domain with a number
of non zero elementsK << N . Sensor reading data are
forwarded to a central sink node.

We use the single hub compressive data gathering (CDG)
model proposed in [9] as shown in Figure 1. We assume that
each node knows its local routing structure. Initially, thesink
sends anM ×N measurement matrix to all nodes. Each node
multiplies its reading with the corresponding column in the
measurement matrix, adds it to the vector received from the
previous node, and then sends the resultingN×1 vector to the
next hop node. This vector is propagated through the network
until it reaches the sink as shown in Figure 1. Thus, each node
sendsM messages and the overall complexity isO(MN). The
sink collects theM measurements and needs to reconstructN

readings.
The received signal at the sink is represented as

yM×1 = ΦM×N × xN×1 +wM×1 (4)

whereyM×1 is the measurement collected at the sink,wM×1

is the additive noise between the sensors and the sink, whose
components are independent with zero mean and a variance of
σ2, andΦM×N is a measurement matrix designed according
to the data gathering algorithm used.

Fig. 1: Sub-tree of WSN.

Our goal is to reconstruct the original signalxN×1 from
the compressed received signal at sinkyM×1, whereK <

M << N . We note that all of the approaches in this paper
can be applied to different CS data gathering approaches [10]
with any different network organization.

IV. D IFFERENT ALGORITHMS EXPLOITING TEMPORAL

CORRELATION IN WSNS

In this section, we discuss the different algorithms that are
studied to exploit temporal correlation of sensor data. This
work can be categorized into three main approaches:

1) An approach that increases the sparsity order by taking
the difference between the current reading and the pre-
vious one. This can be performed either at the sensor
(denoted by “CS-diff”) [1], [11] or at the sink (denoted
by “Measurement diff”) [6].

2) An approach that increases the sparsity order by rear-
ranging the sensor readings based on temporal correla-
tion. Two algorithms are presented under this approach,
denoted by “Reshape” [6] and “MMV” [8].

3) An approach that takes previous reading as a prior
information and utilizes weighted CS [7] to enhance
the reconstruction with fewer number of measurements
(denoted by “Weighted”) [12].

A. Calculate the difference at sensors: CS-diff

Sensor readings usually exhibit a slow varying pattern in
time. In many scenarios, only a limited number of sensors
change their values between two consecutive time instants.
This was used in [1], where the sensors send their reading
only if it has changed from the previous one. CS provides
an efficient framework to benefit from this assumption, as
the current reading and the previous reading would be highly
correlated and the difference will be sparse in the wavelet
domain and in various situations in the original time domain.
The “CS-diff” algorithm, listed below, uses CS to compress
and transmit the time difference signal instead of the original
sensor readings. One benefit of this algorithm is its high noise
immunity, but it needs more energy for extra-processing at the
sensors. We note that the same approach was used in [11] for
compressive background subtraction in images.

B. Calculate the difference at sink: Measurement diff

This algorithm is built on subtracting the current measure-
ments from the previous one. The idea of this algorithm was
proposed in [6] to explore what was denoted as “temporal-
frequency sparsity”. However, it was not part of the exper-
imental results performed in that work. While based on the
same idea of CS-diff, this algorithm reduces the computation
load at the sensors by moving the difference computation to



Algorithm 1 CS-diff.
Input:
xt1 (data at timet1), xt2 (data at timet2), ΦM×N (measure-
ment matrix)
Steps:

At each sensor calculate the difference :xdif = xt2 − xt1

Collect measurements at timet2 : yt2 = Φt2xdif +wt2

Reconstruct the difference signal at sink :
min

xdif∈RN
||x̂dif ||ℓ1 s.t. y = Φxdif

Output:
Recover the signal at sink :̂xt2 = xt1 + x̂dif

the sink node. However, this is at the expense of less noise
immunity as we will show in the results section. We will list
the algorithm here for completeness and refer the reader to [6]
for more details.

Algorithm 2 Measurement diff.
Input:
xt1 (data at timet1), xt2 (data at timet2), ΦM×N (measure-
ment matrix)
Steps:

Collect measurements at timet2 : yt2 = Φt2xt2 +wt2

At sink calculate the difference between measurements :
ydif = yt2 − yt1 = yt2

−Φt2xt1 = Φt2xdif

Reconstruct the difference signal at sink :
min

xdif∈RN
||x̂dif ||ℓ1 s.t. y = Φxdif

Output:
Recover the signal at sink :̂xt2 = xt1 + x̂dif

Two main drawbacks can be easily noticed in the CS-diff
and Measurement diff approaches; first, they depend heavily
on the rate of change of the data, as the sparsity order and
hence the number of measurements needed depends on the
sparsity of the difference signal. The second problem is the
accumulation of error if the algorithm is reiterated for a long
period of time. This can be readily fixed by periodically
sending the original sensor reading to correct drift error.

C. Signal reshape using measurement matrix: Reshape

The idea of shuffling or reshaping the sensor readings to
increase the sparsity was also originally proposed in [6],
where the authors used the information from the last recovered
signal to design a measurement matrix that can reshape the
measurement vector into a more sparse vector in a desired
domain.

A reshaping matrixQN×N is designed to optimally rear-
range the signal at timet. Under the assumption of a slowly
varying signal, the same matrix will approximately rearrange
the signal captured at timet + 1, which in turn increases its
sparsity order.

The reshape algorithm effectiveness depends mainly on how
much the most sparsifying order is preserved across successive
time instants. Also, the optimal order depends on the domain
in which the signal is considered sparse.

D. Multiple measurement reshape: MMV

A completely different approach to explore temporal corre-
lation is based on the stacking of several time measurements
into a multiple measurement vector (MMV). We will use the
formulation presented in [8] to transfer the MMV into a sparse
single measurement vector using the Kronecker product. How-
ever, we will utilize the standardℓ1-norm minimization for
reconstruction instead of the sparse Bayesian learning (SBL)
approach proposed in that paper.

At each timet, we collect the measurementyM×1 using
the relation

yM×1 = ΦM×N × xN×1 +wM×1 (5)

We arrange the measurements fromL time instants as
follows.

Υ = Φd+ υ (6)

whereΥ ∈ R
M×L is the measurement matrix consisting of

L measurement vectors,d ∈ R
N×L is the source matrix with

each row representing single source readings, andυ ∈ R
M×L

is a white Gaussian noise matrix with each column represent-
ing the noise at a different time instant.

The MMV can be transformed into SMV by lettingY =
vec(ΥT ) ∈ R

ML×1, X = vec(dT ) ∈ R
NL×1, V =

vec(υT ) ∈ R
ML×1, and D = Φ ⊗ IL. Where ⊗ is the

Kronecker product. Then equation 6 transforms to

Y = DX + V . (7)

As proposed in [8], to improve the sparsity
of this signal, we can rewrite it as Y =

[φ1 ⊗ IL, · · · , φM ⊗ IL]
[

xT
1 , · · · , x

T
N

]T
+ V , where φi

is the ith column inΦ andxi ∈ R
L×1 is the ith row in X .

Note that this algorithm does not reconstruct the signal
at each time instant, but it collects signals at different time
instants and reconstructs all of them at once. This gives
some limitation of using this algorithm in real time sensing
applications.

E. Exploit weight at reconstruction: Weighted

The idea of using weightedℓ1 in CS reconstruction to incor-
porate prior information about the signal was first introduced
in [7]. Weighted CS was used in WSN in [12] to detect certain
events using the event signature in the transform domain to
construct the weighting matrix. In this algorithm, we propose
using the previous time reading as a prior information in
designing the weight matrix. This is done by replacing the
CS ℓ1 minimization problem in equation 3 by the following

min
s∈RN

||Ws||ℓ1 s.t. y = ΦΨs, (8)



whereW is a diagonal matrixW = diag(w1, · · · ,wN ).
At the first time instant, the values of the weight matrix are
initialized with ones, then at any timet + 1 the values are
inversely proportional to the corresponding signal transform
components at previous timet, which is given by

wt+1

i =
1

|sti|+ ǫ
, (9)

where ǫ > 0 is a parameter introduced to provide stability
and to ensure that a zero-valued component insti does not
completely prohibit a nonzero estimate at the next time instant.
ǫ should be set slightly smaller than the minimum nonzero
magnitudes ofs. The weights in equation 9 focus the energy
in the reconstruction process to the same nonzero locationsat
the previous time instant. Generally speaking, large weights
are used to discourage nonzero entries in the recovered signal,
while small weights are utilized to encourage nonzero entries.

V. SIMULATION RESULTS AND ANALYSIS

In order to compare the different proposed approaches, we
run experimental analysis through simulation. The normalized
mean square error (NMSE) between the original and recon-
structed signal is used as a performance measure in all of these
experiments. The compression ratio (C.R.) in our experiment
refers to the ratio between the number of measurements and
the total number of sensors.

We use two types of data sets in our simulation. The first
one is a synthetic data set generated by “peaks” function in
Matlab [13]; this data is sparse in the discrete cosine transform
(DCT) domain. We dynamically change the data over time by
changing a percentageβ of the sensors reading at each new
time instant. The value of the signal at these sensors is changed
within α of previous time values according to the following
equation

xi,t+1 = (1 ± α)xi,t. (10)

In all of our experiments we randomly choseα ∈ [0.05, 0.25],
andβ = {10, 30}. The signal dimension corresponding to the
number of sensors isN=400. We average the results over 50
trials to avoid fluctuations.

The second data set used is the real data set obtained
by a WSN deployed at Intel Labs Berkeley [14]. This data
set contains temperature, humidity, light, and voltage value
periodically collected every 31 seconds from 54 distributed
sensor nodes between February 28th and April 5th, 2004.
Figure 2 shows the distribution of sensors in Berkeley Lab
and the sink node is near sensor number 54. We apply the
CDG technique shown in Figure 1, where each sensor sends
to the next hop sensor and so on until reaching to the sink.
The temperature sensor readings at different time instantsare
shown in Figure 3.

In Figure 4, we individually evaluate the performance of
each of the different algorithms at different time instants,
SNRs, and compression ratios. This figure clearly shows the
improvement in performance after first time instant. This
improvement decreases as time progress due to error accumu-
lation. The Reshape algorithm is the most affected algorithm

Fig. 2: Intel Labs Berkeley WSN [14].
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Fig. 3: Real data at different times.

with accumulator error. Also we need to note that in sub-
figure 4i, we do not plot NMSE against time as all previous
sub-figures since the MMV algorithm collects the signals from
different time instants and reconstructs all of them at once.

In Figure 5, we compare between the various approaches
and the default CS approach in terms of the NMSE perfor-
mance at different noise levels. The four subfigures show
the effect of changing the time and the compression ratio
on the different algorithms. It is clearly evident the superior
performance of the CS-diff algorithm, especially at low SNRs.
We also note from Figure 5d that by decreasing C.R. to 25 %
the performance of the default and MMV algorithms are the
most affected.

In Figure 6, we show the effect of changing the percentage
of modified data at each time instantβ on the different
algorithms. As expected the “CS-diff” and “Measurement diff”
algorithms are the most affected algorithms with changingβ.
The algorithms compress the difference signal which is sparse
in time domain. This sparsity rate is highly affected by the
amount of change in the data.

In Figure 7, the effect of the different algorithms in real data
is shown. We note that all algorithms have a similar behaviorto
the peaks signal, but the behavior of the weighted algorithmis
changed, because the sensors values have high deviation IV-E.
The “CS-diff” algorithm outperforms all other algorithms at
lower SNRs as it is considered the least effected algorithm with
noise. However, at higher SNRs “Measurement diff” algorithm
has better performance.
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(a) CS-diff., SNR = 65 db
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(b) CS-diff., t = 3 sec
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(c) Measurement diff., SNR = 65 db
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(d) Measurement diff.,t = 3 sec
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(e) Weighted, SNR = 65 db
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(f) Weighted,t = 3 sec
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(g) Reshape, SNR = 65 db
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(h) Reshape,t = 3 sec
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(i) MMV, t = 3 sec
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(j) MMV, t = 3 sec

Fig. 4: Normalized mean square error Vs. time or C.R. or SNR
for signal dimensionN = 400 andβ = 10 %.
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(a) t = 2 sec, C.R. = 50 %
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(b) t = 5 sec, C.R. = 50 %
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(c) t = 2 sec, C.R. = 25 %
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(d) t = 5 sec , C.R. = 25 %

Fig. 5: Peaks signal, Normalized mean square error Vs. SNR
for signal dimensionN = 400 and andβ = 10 %, for different
times.
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(a) β = 10% , C.R. = 50 %
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(b) β = 30% , C.R. = 50 %
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(c) β = 10% , C.R. = 25 %
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(d) β = 30% , C.R. = 25 %

Fig. 6: Peaks signal, Normalized mean square error Vs. SNR
for signal dimensionN = 400 and time = 2 sec, for different
β.
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Fig. 7: Real data, Normalized mean square error Vs. SNR for
signal dimensionN = 50, for different times and C.R. = 50
% and time = 5 sec.

VI. CONCLUSION

In this work, we examine the behavior of the different
algorithms that utilize temporal correlation to enhance com-
pressive data gathering in WSN. The proposed algorithms
cover different approaches to incorporate temporal correlation
into measurement matrix design and reconstruction algorithms.
We evaluated the performance of these approaches at different
noise levels using synthetic and real data sets. In the future
work of this research, we plan to design new approaches to
further exploit the combined spatial and temporal correlation
in WSN data. Other aspects of these approaches such as the
computational complexity and latency will be further studied.
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