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Abstract—Compressive Sensing (CS) has recently opened the
door for efficient algorithms to solve various data gathering
problems. Among these problems is sparse events detection in
wireless sensor networks. In this problem, it is desirable to
reduce the sensing cost by minimizing the number of sensors
and the amount of data sent by each sensor. In this paper, we
model the problem of sparse event detection as a compressive
support recovery problem. We exploit the sparse and the binary
nature of the event signal in the reconstruction algorithm using
sequential compressive sensing. This provides an efficient solution
to the problem, even under the assumptions of wide sensing area
and high levels of noise. Simulation results show an improved
performance under different compression ratios as compared to
previous CS based approaches. It also shows the robustness of
the proposed approach at low SNRs.

I. INTRODUCTION

The last few years witnessed a dramatic growth for the need
of Wireless Sensor Network (WSN), with increased emphasis
on improving its performance. We can formulate the sensing
problem in WSN as a data gathering problem, where the aim
is to collect the data from the wireless sensors in a sink node
with higher accuracy and lower power consumption. In WSN,
power consumption occurs mostly due to the transmission
process [1], thus researchers try to reduce the power consumed
in wireless sensor either by reducing the amount of data sent
by each sensor, reducing the number of sensors used to cover
the target area, or both.

Many techniques were developed to address the problem
of power consumption in WSN. Recently, Compressive Sens-
ing [2]–[4] has gained an increased interest among these
techniques. Through exploiting the sparse nature of most of
the target signals, compressive sensing can reconstruct WSN
data from a small number of linear measurements. Several
variations of CS were used to address the problem, starting
with [5] which models the problem in CS framework and
reconstruct WSN data through linear projections of raw sensor
readings. This was followed by modified versions of CS, which
use coding compressive sensing [6] to code sensed data in
order to decrease the amount of data. At the same time, another
direction of research utilized CS to decrease the number of
transmitting nodes rather than to decrease the amount of data
[7]–[10].

Adaptive CS approaches have also seen several attempts
in the WSN domain. In [8], the authors use adaptive CS to

enhance the energy efficiency by adaptively collecting linear
meaurments (projections) of the sensors data. A new projection
vector is produced by the sink if it is not satisfied with the
accuracy of the estimated data fields. Heuristic approaches are
used for generating the projection vectors. A different adaptive
approach was presented in [11], where at each time instant
each sensor node decides randomly with a certain probability
whether to transmit its measurement to the sink or not. In
another approach, Chen et. al. [10] proposed to adaptively
modify the sampling rate of each node, and CS is used to
exploit the sparsity of the signal to reduce the sampling rate.

A special scenario occurs when the WSN is deployed to
monitor an area for occurrence of rare events; this scenario
occurs in several applications, such as alarm systems. In this
case, the amount of data can be reduced by addressing the
problem as a detection problem, where the target is to detect
the occurrence of certain events. This can also be used as
an initial stage in general WSN data gathering applications,
followed by estimating the event values at the detected event
location(s) [12].

In the event detection problem, the sparse nature of the
sensed events opens the door for a different utilization of
the CS theory as demonstrated in [13], where the authors
use the channel matrix between the sensors and events as a
measurement matrix and apply Bayesian compressive sensing
(BCS) [14] to reconstruct the event vector. This approach was
shown to achieve high performance at a much lower sampling
rate than traditional CS approaches. However, the Bayesian
compressive sensing is known to be sensitive to noise, which
results in a degraded performance in low SNR scenarios such
as wide WSN areas.

To overcome these limitations and further reduce the com-
munication load even at low SNR, we propose to model the
problem of event detection as a support recovery problem. We
use the newly developed sequential compressive sensing (SCS)
approach [12] to recover the support in an adaptive manner.
The proposed approach assumes no prior knowledge about the
noise statistics, and achieves high performance even at low
SNRs. Our formulation allows for two levels of compression,
which can reduce both the number of sensors needed and the
amount of data transmitted to cover large areas within the
WSN. Experimental results show that the proposed approach
can achieve higher detection accuracy at a lower compression



rate even in very noisy environment.
The rest of the paper is structured as follows. In Section II,

we provide an overview of the mathematical background of
CS and the different adaptive and non-adaptive reconstruction
algorithms. The system model is described in Section III. In
Section IV, we explain the proposed approach to apply SCS
for support recovery in WSN. The experimental results are
presented in Section V. We conclude with the conclusion and
future work in Section VI.

II. A MATHEMATICAL BACKGROUND ON COMPRESSIVE
SENSING ALGORITHMS

In this section, we briefly review the mathematical back-
ground of compressive sensing. Then, we describe the non-
adaptive Bayesian Compressive Sensing. Finally, we discuss
the Sequential Compressive Sensing algorithm that we use as
an adaptive CS algorithm.

A. Compressive Sensing

Compressive sensing theory combines the signal acquisition
and compression steps into a single step. The main require-
ment is that the acquired data is sparse in some transform
domain, which means that the signal has a small number of
non-zero element in that domain. CS theory proves that, under
certain constraints on the measurement matrix, the acquired
signal can be reconstructed from a small number of linear
measurements [2], [3].

Consider a real-valued signal xN×1, which is sparse in some
domain Ψ.

x =

N∑
i=1

siψi or x = Ψs. (1)

The signal x is K-sparse if it can be represented as a linear
combination of only K basis vectors; that is, only K of the
si coefficients in equation (1) are non zero.

In CS, we do not acquire x directly but rather acquire
M < N linear measurements y, using an M×N measurement
matrix Φ, as shown in the following equation.

y = Φx = ΦΨs = Θs. (2)

This linear system of equations is underdetermined since M <
N , and hence it is impossible to uniquely recover x from y.
However, if the additional assumption that the vector x is K-
sparse is imposed, where K << N , then the CS theory allows
us to reconstruct the signal, provided that the measurement
matrix Φ satisfies a condition called the Restricted Isometric
Property (RIP) condition [2].

The signal reconstruction problem is formulated as an `1-
norm minimization problem.

min
s∈RN

||s||`1 s.t. y = ΦΨs. (3)

This problem can be efficiently solved using linear program-
ming techniques or greedy algorithms. However, in order to
reconstruct the signal we need a number of measurement M
that satisfies the condition:

M ≥ Cµ2(Φ,Ψ)k logN (4)

where C is a small constant, and µ(Φ,Ψ) is the incoherence
between the two matrices Φ and Ψ.

B. Bayesian Compressive Sensing

Bayesian compressive sensing (BCS) [14] is a probabilistic
CS reconstruction algorithm that introduces a set of hyper-
parameters which is considered as a prior over the sensed
signal. The most probable values are iteratively estimated
from the received data. In the binary event detction problem,
the binary nature of event signals is used as a prior, which
makes BCS more efficient than other traditional CS recovery
algorithms like the `1-norm algorithm [13].

BCS converts the CS problem to a linear regression prob-
lem. The sparse vector s in equation (2) is represented as
the summation of two N -dimensional vectors of the form
s = sl + ss, where sl contains the M largest magnitude
elements in s, and the remaining N−M elements in sl are set
to zero. Similarly, ss contains the N −M smallest magnitude
elements in s, and all the remaining elements in ss are set to
zero. Equation (2) can be reformulated as

y = Θs = Θsl + Θss = Θsl + ns (5)

where ns = Θss can be modeled as a zero-mean Gaussian
noise with variance σ2. We therefore have the Gaussian
likelihood model

P
(
y|Θ, σ2

)
=
(
2πσ2

)−M/2
exp

(
− 1

2σ2
||y −Θsl||2

)
.

(6)
We may assume a zero-mean Gaussian prior distribution

over the signal s as

P (s|β) =

N∏
i=1

N(si|0, β−1i )

where β = [β1, β2, · · · , βN ]T is a vector of N independent
hyper-parameters.

The posterior parameter distribution conditioned over the
signal is given by combining the likelihood and prior using
Bayes rule:

P (s|y,β, σ2) =
P (y|s, σ2)P (s|β)

P (y|β, σ2)
(7)

which is a Gaussian distribution with mean µ and covariance
Σ of the form

µ = σ−2ΣΘTy,Σ = (A+ σ−2ΘT Θ)−1 (8)

where A = diag(β1, · · · , βN ) is a diagonal matrix.

C. Sequential Compressive Sensing

Sequential Compressive Sensing [12] is a recent variation of
CS that is referred to as adaptive compressive sensing. Similar
to the distilled Sensing [15], the sparse signal is acquired
through several adaptively designed measurement matrices.
This allows for the sensing resources to be non-uniformly
allocated in order to focus the sensing energy toward the non
zero elements of the signal, allowing the signal to be efficiently
reconstructed at lower SNRs [16], [17].



Fig. 1: System model of event detection in WSN.

At each iteration, an M × N measurement matrix Φt is
designed, where each column of this matrix has a single non-
zero entry. The locations of these elements are randomly cho-
sen according to a uniform distribution, while the amplitude
of each non zero entry is selected randomly from {+α,−α},
where α > 0.

The measurement matrix Φt is used to collect M linear
measurements. The measurement vector yt can be represented
as

yt = Φtx+wt (9)

where wt is an M × 1 vector of additive Gaussian noise.
The measurement vector is used to form the back-projected

vector x̃t by the relation

x̃t = ΦT
t yt. (10)

This process is repeated for t1 iterations, where t1 = log 2
δ+

logK + log log2 logM , and δ > 0 is the desired confidence
parameter [12].

These back-projected vectors are combined to form a signal
proxy x̂, with entries x̂i =

∑t1
t=1 sgn(x̃i,t). The support of the

non zero elements is refined to include elements corresponding
to x̂i < 0. The corresponding columns of the measurement
matrix are masked out for all following steps.

The above SCS algorithm is repeated for log2 logN steps.
Each step removes, in expectation, half of the zero compo-
nents while guaranteeing that all the non-zero components are
retained with large probability. Thus, the expected number of
components remaining after that is bounded by N/ logN+K,
and the K non-zero components are guaranteed to be con-
tained in this set [12].

III. SYSTEM MODEL

We consider a WSN of M sensors, deployed to monitor
N binary event sources, where M < N and both the sensors
and event sources are randomly distributed in the sensing area.
We denote the event signal as xN×1, where x ∈ {0, 1}. We
assume that only a small portion of the sources K << N are
simultaneously active at any given instant of time. The sensors
collect measurement data, and then send it to a sink node to
detect the active events.

Similar to [13], the received signal vector at the sensors is
represented as

y = Gx+w (11)

where w is the M×1 thermal measurement noise vector at the
sensors, whose components are independent with zero mean
and a variance of σ2

w, and G is the M ×N Rayleigh fading
channel matrix, whose elements are given by

Gm,n = d−α/2m,n |hm,n| (12)

where dm,n is the distance between the nth source and mth

sensor, α is the propagation loss, and hm,n is the Rayleigh
fading (modeled as complex Gaussian random variable with
zero mean and unit variance). Similar to [13], we assume that
the sink has full knowledge of the channel state information
matrix G.

In order to reduce communication load, we consider a
single-hop data gathering similar to [5], which distributes the
consumed power equally among sensors in order to avoid high
power consumption at end sensors. The sink node generates
a measurement matrix AL×M , where L << M , and sends
it to all sensors. Each sensor multiples its reading yi by the
corresponding column of the measurement matrix. Then each
sensor sends L readings to its neighbour sensor, and so on till
the combined measurements reach the sink as shown in Figure
1. The L× 1 received signal at the sink node can be written
as

z = Ay + n (13)

where n is the additive noise vector at the sink, which
has components that are independent with zero mean and a
variance of σ2

n.
Our goal is to reconstruct the original event signal xN×1

from the compressed received signal at sink zL×1, where K <
L < M << N .

IV. SEQUENTIAL COMPRESSIVE SENSING EVENT
DETECTION

In this section, we model the problem in equation (13) as a
support recovery problem and apply SCS to reconstruct xN×1
from zL×1, which are related as follows.

z = Ay + n

= AGx+Aw + n

= AGx+ e (14)

where e is the total L × 1 combined noise in the system
between event sources and the sink node.

As shown in section II-C, adaptive CS algorithms, such
as SCS, depend on recovering the support of the sparse
signal in an iterative manner, where the signal is captured at
each iteration with different specially designed measurement
matrices Φt, t = 1, 2, · · · , t1. We assume that the status of the
event sources does not change during the acquisition process.
Our problem formulation in equation (14) allows us a complete
control over the measurement matrix AL×M between the
sensors and sink node. Unfortunately this is not true for the



measurement matrix GM×N , which depends on the channel
condition between the event sources and sensors, and hence
cannot be altered.

This challenge can be avoided by noting that M < N ,
and assuming full knowledge of the channel response matrix
GM×N . Hence, the desired measurement matrix AL×M can
be computed as

At = ΦtG
†, (15)

whereG† refers to the the pseudo-inverse of the M×N matrix
G. This pseudo-inverse can be efficiently computed using the
singular value decomposition (SVD) of G = UDV T , as
follows.

G† = V D−1UT ,

where U and V are orthonormal matrices, the superscript (T )
denotes the transpose, and D is a diagonal matrix containing
only the positive singular values of G.

At each iteration, the sink node generates the measurement
matrix At according to equation (15) and sends it to all sen-
sors. Each sensor multiples its reading with the corresponding
column in the measurement matrix and sends it back to sink
using the single-hop model described. With this special design
of the measurment matrix, the signal received at the sink at
each step can be represented as

zt = Aty = AtGx = Φtx. (16)

The back-projected vector x̃t can be calculated at the sink
node as

x̃t = ΦT
t zt

= (AtG)Tzt

= (AtG)T (AtG)x+ (AtG)Te

= GTAT
t AtGx+ (AtG)Te. (17)

The back-projected vectors are combined to form signal
proxy x̂, which is used to refine the support set. This process
iterates a number of times to refine the search space and detect
the active events correctly. The complete sensing process is
illustrated in Figure 2. We note that most of the computation
steps in this process are performed at the sink node, which
generally has less stringent power constraints in wide area
WSN.

The main benefit of the proposed approach is that it provides
an effective way to recover the active events with fewer
number of measurements, even under large noise levels. This
can be attributed to the fact that SCS reduces the dimension
of the search space and iteratively allocates the sensing energy
to the more likely active events. This gives an advantage
for adaptive design in event detection problem. As for non-
adaptive designs, the amplitude of the smallest non-zero
element of x must exceed C1

√
N
M σ2 logN , where C1 is

a constant, M/N is the sensing energy per dimension, and√
logN is needed to ensure that the signal is larger than

the maximum noise contribution [18], [19]. However, the
adaptive designs succeed under the weaker requirement that

the amplitude of the smallest non-zero element of x exceeds
C2

√
N
M σ2(logK + log log2 logN) where C2 is a constant

[12]. This results in an improved performance for larger
number of events N , with fewer number of simultaneously
active events K << N .

To make a fair comparison between SCS and BCS, we need
to investigate the effect of our approach on other important
parameters of the sensor network such as processing and
communication load overhead. In BCS, each sensor multiplies
the acquired signal of the sensor by a vector of length L
representing a single column of the measurement matrix,
and then transmits these L measurements. This process is
repeated in SCS for t1 × (log log2N) iterations. This may
look like an excess overhead on the WSN resources. However,
the length of the measurement vector L in each iteration in
SCS can be significantly reduced. The experimental results in
the following section show that we can achieve an improved
detection performance for a much lower communication and
processing overheads.

V. SIMULATION RESULTS AND ANALYSIS

In order to show the effectiveness of our proposed approach,
we evaluated, through simulation, the performance of the
proposed sequential compressive sensing in event detection
problem, and compared the performance to the Bayesian
compressive sensing [14]. The simulated model consists of
N = 1000 random sources randomly distributed in an area of
1000×1000 meters, with a minimum distance of 10m between
any event and sensor. We randomly chose K = 10 events to be
simultaneously active at any instant of time. We collect these
events using M = 500 randomly distributed sensors over the
sensed area. We averaged over 100 trials to avoid fluctuation.

We compare the performance of the SCS and the BCS
algorithms at different SNRs and compression ratios. Since
we model the problem as a detection problem, we use the
Probability of Correct Detection (PCD) and the Probability of
False Alarm (PFA) as our performance metrics, where PCD
refers to the percentage of correctly recovered active events
and PFA refers to the percentage of non-active events that are
falsely detected as active.

The compression ratio in our experiment represents the ratio
between the total amount of data sent and the number of event
sources. In the original work using BCS [13], compression
ratio was considered as the ratio between the number of
sensors and number of events. In our simulation, we fix the
number of sensors M and change the compression ratio by
changing the number of measurements transmitted by each
sensor, L. We take into consideration the iterative nature of
SCS, which requires the sensors to send multiple times, as
described in section IV. Thus, the compression ratio in SCS
is calculated as

(
L×t1×log log2N

N

)
.

In Fig. 3, we show the probability of correct detection of
our proposed SCS algorithm and BCS plotted against the
compression ratio, evaluated at different SNR values. This
figure shows that SCS achieves a comparable detection rate



Fig. 2: Model for applying Sequential Compressive Sensing in WSN.
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Fig. 3: Probability of Correct Detection (PCD) vs. Compression Ratio at different SNR levels.

at high SNR values (20dB). However, as the noise level in-
creases, BCS performance deteriorates while SCS performance
remains consistent across different noise levels. This noise
immunity of SCS is more evident in Figure 4, which shows the
probability of false alarm (PFA) against the compression ratio
at different SNR values. This is theoretically justified by the
fact that PFA in SCS depends only on the number of iteration
steps instead of the noise levels. The same behaviour, but from
another perspective, is shown in Figure 5 and Figure 6, which
show PCD and PFA against the SNR at different compression
ratio values.

VI. CONCLUSION

In this paper, we formulate events detection problem in
Wireless Sensor Networks as a compressive support recovery
problem. Exploiting the binary nature of the events signals,
we utilize a recent adaptive CS algorithm called Sequential
Compressive Sensing, which gives an advantage in low SNR
scenarios that are common in wide area WSN. We show
through simulations that the proposed approach can lead to
a higher probability of correct detection and lower probability
of false alarm as compared to non-adaptive reconstruction
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Fig. 4: Probability of False Alarm (PFA) vs. Compression Ratio at different SNR levels.
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algorithms, especially under high noise levels.
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