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Abstract— In this paper, we examine a cognitive spectrum
access scheme in which a secondary user exploits the primary
feedback information. We consider an overlay model in which
the secondary user accesses the channel by certain access prob-
abilities that are function of the spectrum sensing metric. In
setting our problem, we assume that the secondary user can
receive the primary link’s feedback automatic repeat request
(ARQ), but through an erasure channel. This means that the
primary feedback may either be received correctly or is erased
with a certain erasure probability. We study the cognitive radio
network from a queuing theory point of view. Access probabilities
are determined by solving a secondary throughput maximization
problem subject to a constraint on the primary queues’ stability.
Fortunately, our problem is convex and can be solved using
standard optimization techniques. Our scheme yields improved
results in the secondary throughput than the non-feedback based
access scheme attributed to the efficient utilization of the primary
user’s unerased feedback messages.

I. INTRODUCTION

Cognitive radio technology is a communication paradigm
that emerged in order to solve the spectrum scarcity problem
by allowing unlicensed (or secondary) users to exploit the
under-utilized spectrum of the licensed (or primary) users.
Coexistence of such secondary users (SU) along with primary
users (PU) is allowed provided that minimal or no harm
is caused upon the primary network, and that a minimum
quality of service is guaranteed for primary users. In a typical
cognitive radio setting, the cognitive transmitter senses the
primary activity and decides on accessing the channel based
on the sensing outcome. This setting is problematic in the
sense that cognitive users are not aware of their impact on the
primary network, besides the usual sensing errors.

Toward alleviating such issues, soft sensing [1] was intro-
duced as a way to enhance the sensing reliability. The idea is
to use the value of the test statistic as a confidence measure
for the sensing outcome. This value is then used to specify a
channel access probability for the secondary network. Access
probabilities as a function of the sensing metric are obtained by
solving an optimization problem formulated to maximize the
secondary throughput given a constraint on the primary queue
stability. Soft sensing was first introduced in [2]. However, the
focus was on physical layer power adaptation to maximize the
capacity of the secondary link.

On the other hand, other works have focused on enhanc-
ing the SU’s awareness of the primary environment through
overhearing the primary ARQ feedback, and adjusting either
its transmit power or access probabilities accordingly. For
instance, in [3], the SU observes the automatic repeat request
(ARQ) from the primary receiver. The ARQs reflect the PU’s
achieved packet rate. The cognitive radio’s objective is to
maximize the secondary throughput under the constraint of
guaranteeing a certain packet rate for the PU. In [4], the
authors use a partially observable Markov decision process
(POMDP) to devise an optimized admission control policy.
Secondary power control on the basis of the primary link
feedback is investigated in [5].

The ARQ mechanism introduces redundancy in the system,
in the form of copies of the same message transmitted in
subsequent time slots. The idea of exploiting this redundancy
is investigated in [6] where several protocols are proposed,
in which the secondary transmitter collects side-information
about the primary message in the first primary transmission,
which is exploited to relay the primary message, if a re-
transmission occurs. While in [7], the authors introduce a
mechanism where the secondary receiver can perform inter-
ference cancellation during the whole primary ARQ window
by decoding the primary message, thus enhancing its own
outage performance. In particular, they investigate a Backward
Interference Cancellation mechanism in which the secondary
receiver buffers the secondary transmissions that underwent
outage due to primary interference, and attempts to recover
them once the knowledge about the primary message becomes
available due to decoding operation in a future instant.

An SU that can perfectly overhear, and make use of,
the primary feedback messages is expected to have better
throughput and cause lower primary queuing delay relative
to the case where the primary feedback is not leveraged.
This is attributed to the fact that by overhearing the primary
feedback, the SU acquires knowledge about the PU’s potential
activity in the future which, in turn, aids in further optimizing
its access decisions to the wireless channel in an attempt to
avoid interference with the PU. In a recent work [8], we
have investigated this case and the results were as expected.
In this paper, however, we contend that an SU overhearing
imperfect primary feedback (i.e. feedback messages that are



exposed to erasures), can still have better throughput than an
SU that simply ignores the primary feedback, provided that
an appropriate model is used to deal with the erased feedback
messages.

We consider a time-slotted system in which an SU is
attempting to access the primary channel whenever sensed
idle. By the end of each time slot, a feedback (ACK/NACK)
is sent from the primary receiver to the primary transmitter to
acknowledge the reception of packets. We assume that the SU
can overhear this feedback in order to increase its degree of
awareness of the primary network, but cannot overhear it as
perfectly as the PU can. We adopt an erasure model just as
in [9] where the concept of overhearing, and responding to,
unreliable feedback is introduced. In particular, the primary
feedback channel, as viewed by the SU, is modeled as an
erasure channel, in which either the ACK/NACK messages are
decoded reliably, or are declared in error (i.e. erased1). Our
proposed scheme dealing with this issue is shown to yield
improved results regarding the secondary throughput than a
scheme that does not leverage the primary feedback at all.

II. SYSTEM MODEL

We consider the uplink of a TDMA primary network con-
sisting of Mp primary users, along which we have one SU try-
ing to acquire access to the channel. let Mp = {1, 2, ...,Mp}
denote the set of all primary users. Each PU has its dedicated
time slot to send its data, while the SU’s transmission strategy
is overlay, in which it employs random access to leverage the
sensed-idle time slots. We adopt a collision model in which
whenever more than one transmission proceeds at a time, all
packets involved are lost.

At the beginning of each time slot, the SU senses the
channel using energy detection and, if found empty, it attempts
accessing it with a certain access probability. Primary users
access the channel in their dedicated time slots whenever they
have packets to send. By the end of each time slot, a feedback
is sent from the primary receiver to the primary transmitter
to acknowledge the reception of packets. The SU is assumed
to overhear this feedback to monitor its effect on the primary
network. However, the SU cannot decode the primary feedback
messages as perfectly as the primary users can. From the SU’s
view point, the primary feedback channel is modeled as an
erasure channel, in which either the feedback messages are
decoded reliably, or are declared in error (i.e. erased). In this
work, we consider feedback imperfection only on the primary
receiver-secondary user link. Imperfection on both feedback
links will be investigated in an extended version.

The channel is modeled as a Rayleigh flat fading channel
with additive white Gaussian noise (AWGN). The received
signal at node j from node q at time slot t is given by

ytqj =
√
Gqr

−γ
qj h

t
qjx

t
q + ntj (1)

1The erasure feedback channel can arise if the SU sets a SNR threshold for
the feedback channel below which an erasure is declared and no decoding of
the feedback bit is attempted; above that threshold, the feedback bit is always
assumed to be correctly decoded.

where Gq is the transmitted power, rqj is the distance between
the two nodes, and γ is the path loss exponent. xtq is the
transmitted signal, which is assumed to be drawn from any
constant modulus constellation, M-ary PSK for instance, with
zero mean and unit variance. htqj is the channel coefficient
between the two nodes, modeled as i.i.d. circularly symmetric
complex Gaussian random variable with zero mean and unit
variance. The noise term ntj is also modeled as i.i.d. circularly
symmetric complex Gaussian random variable with zero mean
and variance N0. We assume the channel is stationary and
independent from slot to slot.

For a transmission to be successful, not only there should
be no collisions between packets, but the channel must not be
in outage as well, i.e. the received SNR should not be smaller
than a pre-specified threshold ζ. From the signal model in
(1), the outage probability between nodes q and j is given by
P oqj = Pr

{
|hqj |2 <

ζN0r
γ
qj

Gq

}
= 1− exp

(
− ζN0r

γ
qj

Gq

)
.

Each PU has an infinite buffer for storing its incoming
equal-length packets. The packet arrival processes at the
primary queues are assumed to be Bernoulli i.i.d. with an
average arrival rate of λq for user q. A slot duration is equal
to the packet transmission time, and therefore, 0 ≤ λq ≤ 1,
∀q. Arrival of packets at the primary queues can occur at any
time during the time slot. However, a PU can only attempt
transmitting its newly arrived packet in the next time slot.

In the sequel, we assume symmetry conditions, for simplic-
ity of analysis and presentation, in which all primary users’
transmit powers are equal and all distances between the SU
and the primary users are equal. Therefore the subscript qj
is dropped in the rest of the paper. Also, we assume that all
λq’s are the same for all primary users, and are equal to λp.
Furthermore, in our model we consider secondary throughput
analysis; the case in which the SU always has packets to send.

III. BACKGROUND: SOFT SENSING-BASED ACCESS

Instead of relying on hard decisions resulting from a binary
hypothesis testing, and in order to enhance the decision authen-
ticity, we focus on the concept of soft sensing introduced in
[1]. Soft sensing is basically using the energy statistic ‖yps‖2
acquired from the energy detector as a measure of reliability,
where p stands for PU and s stands for SU. The lower the
value of ‖yps‖2 compared to the decision threshold η, the more
certain the SU becomes that the PU is idle in the time slot in
question. If the interval [0, η] is divided into n subintervals as
shown in Fig. 1, then for each subinterval i ∈ [1, n], an access
probability ai is assigned. As a result:
• If ‖yps‖2 lies in the ith subinterval, the SU attempts

accessing the channel with probability ai.
• While if ‖yps‖2 value is greater than η, the SU does not

access the channel.
Under the previously mentioned system model assumptions,

for the SU to successfully send its packets, the following
events have to all take place simultaneously: it has to correctly
identify the channel as idle, i.e. no false alarm occurs; it must
gain access to the channel; its own link must not be in outage;
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Fig. 1: Soft Sensing: Division of the interval [0, η] into
subintervals and their associated access probabilities.

and the PU’s queue has to be empty of packets. Thus, the
service process of the SU can be characterized as

Y ts = 1

 ⋃
q∈Mp

[
Atq
⋂
{Qtq = 0}

⋂
Otsd

⋂
A
⋂
Ps

] (2)

where 1(·) denotes the indicator function (1(A) = 1 if event
A occurs, and 0 otherwise). Atq denotes the event that time
slot t is assigned to the qth PU, Otsd denotes the event that
the link between the SU and its destination is not in outage,
A is the event of false alarm, Ps is the event that the SU gains
access to the channel, and {Qtq = 0} denotes the event that
the qth PU queue is empty.

The joint event of no false alarm and gaining channel access
when the PU is not present can be expressed, according to our
signal model, as Pr

{
A⋂Ps} = p0s =

∑
i∈[1,n] p

0
i ai, where

p0i = exp
(
− (i−1)η

2nσ2
0

)
− exp

(
− iη

2nσ2
0

)
, and σ2

0 is the variance
of the detector when no PU is present (please refer to [1] for
detailed proofs of these formula).

IV. IMPERFECT FEEDBACK-BASED ACCESS SCHEME
ANALYSIS

A. Imperfect Feedback

Assuming a binary primary feedback system (ACK/NACK),
the SU overhears this feedback through a binary erasure
channel with erasure probability α (BEC(α)). Hence, either
the SU overhears a clear ACK/NACK, or declares an erasure
status. The rare case in which a NACK gets converted into an
ACK or vice versa is considered of negligible probability. The
SU reacts in response to these cases as follows:
• If an ACK/no feedback is overheard: SU uses soft sensing

and attempts accessing the channel in the next time slot.
• If a NACK is overheard: SU backs-off; it refrains from

accessing the channel in the next time slot, allowing for
an interference-free retransmission of the lost PU packet.

• In the case of declaring an erasure status, which occurs
with probability α, the SU ignores the erased feedback
message and acts normally (i.e. uses soft sensing and
attempts accessing the channel in the next time slot).

It can be inferred from the above model that the SU only
responds to reliable overheard feedback. This scheme should
provide the SU with more throuhput than a scheme that does
not leverage the feedback. The rationale is as follows: if a
NACK is overheard, this means that the PU will resend its
lost packet in the next time slot with probability one. But this
is when the SU backs-off. Therefore, sure collisions between
primary and secondary packets will be avoided, and the PU
will serve its packets more often, which in turn allows more
idle time slots for the SU to exploit.

B. Markov Chain Model

The Markov chain modeling the primary queue evolution
is shown in Fig. 2. As shown, there are two major classes
of states where the PU can be: state class kON , denoting the
PU’s acquisition of k packets, and at the same time, the SU’s
ability to access the channel in the next time slot (SU ON
mode); and state class kOFF , denoting the PU’s acquisition of
k packets, but this time the SU is prohibited from accessing the
channel in the next time slot due to overhearing a NACK in the
previous time slot (SU OFF mode). Let πk and εk represent the
probability that the PU is in state kON and kOFF , respectively.
Arising from the fact that a PU would have zero packets if,
and only if, it was successful in delivering its packet during the
previous time slot, and therefore provoking an ACK feedback,
it then follows that the SU cannot be in OFF mode while the
PU has zero packets in its queue, hence, ε0 = 0.

As shown in Fig. 2, a downward transition from state
(k + 1)ON at time slot t, to state kON at time slot t + 1
occurs if: the PU does not receive any packets during time
slot t, which has a probability 1 − λp; and at the same
time succeeds in transmission, which has a probability Γp =
1
Mp

(1 − P opd)
(

1−∑i∈[1,n] p
1
i ai

)
, i.e. the PU got allocated

to the time slot, its forward channel was not in outage (P opd
is the outage probability between a PU and its destination),
and the SU did not miss detect the presence of the PU and
gain access to the channel simultaneously. These two events
are independent, and hence, their joint probability boils down
to their product. It is worth noting here that Γp has the
same value as the PU service rate µp in the baseline no
feedback scheme introduced in [1], since they both denote
the successful primary transmission probability in the same
surrounding conditions. The probability that a PU stays in
kON , for k ≥ 1, is equal to λpΓp + (1−λp)(1−Γp)α, which
means that either the PU received an extra packet during time
slot t and succeeded in transmission, or that it did not receive
any extra packets during time slot t, failed in transmission,
and more over, the NACK sent as a feedback was overheard
as an erased packet, and therefore ignored, by the SU.

On the other hand, an upward transition from state kOFF
at time slot t, to state (k + 1)OFF at time slot t + 1 occurs
if: the PU receives a packet during time slot t, which has a
probability λp; fails in transmission (which now should be
considered in the absence of the SU) which has a probability
δ = 1 − 1

Mp
(1 − P opd), meaning that either the PU did not

get allocated to the time slot, or it did but its forward channel
was in outage; and finally, the NACK sent as a feedback was
overheard correctly by the SU and was not erased, which has
a probability 1−α. The rest of the probabilities can be derived
using similar arguments.

C. Secondary Throughput Analysis

In this subsection, we derive an expression for the SU
throughput in the studied imperfect feedback-based regime.
The SU service event will be just the same as in (2). Due to
the feedback, it is only the value of Pr{Qtq = 0} (which is
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Fig. 2: Markov Chain modeling the PU queue evolution.

equivalent in our model to π0) that is going to change. The PU
Markov chain in Fig. 2 can be analyzed, using global balance
equations, in order to get the value of π0 which is given by

π0 =
χ− λp

(1− δ)(1− α) + Γpα
, (3)

where χ = λpΓp + (1−λp)(1− δ) + (1−λp)(Γp− (1− δ))α
(proof in Appendix).

We can now write the formula of the SU throughput by
taking the expectation of the SU service event in (2) to give

µs = E
{
Y ts
}

=

(
χ− λp

(1− δ)(1− α) + Γpα

)
(1− P 0

sd)

 ∑
i∈[1,n]

p0i ai

 , (4)

where E {·} is the expectation operator.
In this work, the stability of the PU queue is studied as the

performance measure. Access probabilities are chosen such
that the SU throughput is maximized provided that the PU’s
queue is stable. Stability can be loosely defined as keeping a
quantity of interest bounded; in our case, the queue size. It
is worth noting that for an irreducible and aperiodic Markov
chain, the queue is stable if there exists a non-zero value for
the probability of the queue being empty [10]. This condition
is equivalent in our model to having π0 > 0, which leads to
λp < χ. Therefore, the optimization problem is given by

max
ai,i∈[1,n]

µs, subject to λp < χ. (5)

Fortunately, the optimization problem of (5) using (4) is
convex, and therefore can be solved using any standard op-
timization technique [11] (proof omitted due to space limits).
D. Primary Delay Analysis

In this subsection, we only present final expressions for the
average PU packet delay (proofs omitted due to space limits).
For the scheme in Section III, one can show that

Dp =
1− λp
µp − λp

, (6)

where Dp is the PU delay. While for the proposed feedback-
based scheme, the delay is given by

Dp =
(Γp − χ)(χ− λp)2 + (1− λp)2(1− Γp)χ

(1− λp)(1− χ)((1− δ)(1− α) + Γpα)(χ− λp)
(7)
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Fig. 3: SU throughput for various schemes vs. primary
arrival rate at α = 0.1 and Mp = 4 PUs.

V. PERFORMANCE RESULTS

In this section, we provide some performance results com-
paring our proposed access scheme with others. We consider
a network of Mp = 4 primary users among which an
SU is demanding service. The distance between the primary
transmitters and receivers is set to 100 m, and is also set to
100 m between the secondary transmitter and receiver, while
it is set to 150 m between any PU and the SU. The SNR
threshold ζ is 10 dB, the transmit power is 100 mW, the path
loss exponent γ = 3.7, and N0 = 10−11 W/Hz. The region
below the energy threshold η is divided into n = 4 regions
each having a different access probability. The SU overhears
erased feedback messages with probability α = 0.1.

In Fig. 3, the SU throughput is plotted against the pri-
mary arrival rate. Three schemes are compared: the proposed
feedback-based scheme; a baseline no feedback (conventional)
soft sensing scheme, where the SU does not exploit the
primary feedback messages; and a perfect sensing scheme (an
upper bound), which is a genie-aided scheme in which the
SU is perfectly acquainted of the idle primary time slots, and
therefore accesses the channel during them with probability
one. We can see that our feedback-based scheme outperforms
the no feedback one. This is attributed to the increased
awareness of the SU about the primary environment after
overhearing, and reacting to, the unerased feedback messages.

In Fig. 4, the average primary queuing delay is plotted
against primary arrival rate. We can see that our proposed
feedback-based access scheme also outperforms the conven-
tional soft sensing scheme for all possible values of λp.
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(b) Feedback-Based Soft Sensing.

Fig. 5: SU access probabilities. Mp =4 PUs, and α = 0.1.

SU access probabilities for both the no feedback and the
feedback-based schemes are plotted against primary arrival
rate in Fig. 5(a) and Fig. 5(b), respectively. It can be easily
noticed that in our scheme, the SU is able to access the channel
more frequently than in the conventional one, which explains
why it can attain higher throughput.

In order to see how our system performs with different
erasure probabilities, we provide some plots against α at a
primary arrival rate of λp = 0.08. In Fig. 6, the SU throughput
is plotted against α. As expected, as α varies from 0 to 1,
the SU throughput of our proposed scheme keeps degrading
until reaching its minimum (which is the same value of the
conventional soft sensing scheme’s throughput) at α = 1; a
case in which the SU ignores all overheard feedback messages
as they are all erased. Therefore, our proposed scheme’s worst
conditions are the conventional soft sensing scheme’s best.

Another plot is provided in Fig. 7. This time, the average
primary queuing delay is plotted against α. Note that the
primary delay is not an optimization variable to be minimized
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Fig. 6: SU throughput for various schemes vs. feedback
erasure probability at λp = 0.08 and Mp = 4 PUs.
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Fig. 7: Average PU queuing delay for various schemes vs.
feedback erasure probability at λp = 0.08 and Mp = 4 PUs.

(and thus, its values in our proposed scheme are not guaranteed
to be lower than the values of the conventional soft sensing
one). However, as α varies from 0 to 1, it is kept lower than
the conventional soft sensing’s one. An important notice is that
at α = 0, the SU overhears perfect primary feedback, which
will surely cause the primary delay to be lower than that in
the conventional soft sensing scheme. While at α = 1, the
SU ignores the overheard feedback (as it is always erased),
which causes no difference than the conventional soft sensing
scheme. Other than those two values of α, the primary delay
of our scheme is not guaranteed to be lower than that in the
conventional soft sensing scheme. In fact, for higher values
of the arrival rate, the PU delay of our scheme may be even
higher at some values of α between 0 and 1; a price that is to
be compromised in order to increase the secondary throughput.

VI. CONCLUSIONS

We examined a cognitive spectrum access scheme in which
an SU exploits the primary feedback information, which is
received through an erasure channel. We considered an overlay
model in which the SU accesses the channel by certain access
probabilities that are function of the spectrum sensing metric.
We studied the cognitive radio network from a queuing theory
point of view in which access probabilities are determined
by solving a secondary throughput maximization problem
subject to a constraint on the primary queues’ stability. The
problem is convex and, hence, can be solved efficiently. Our
scheme yielded improved results in the SU throughput than the
baseline no feedback scheme. This is attributed to the efficient
utilization of the PU’s unerased feedback messages.
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APPENDIX

Referring to the Markov chain in Fig. 2, we can write the
balance equation around state 0ON as

π0λp = π1λ̄pΓp + ε1λ̄pδ̄, (8)

where the notation x̄ = 1 − x. Writing the balance equation
around state 1OFF we get

ε1(1− λ̄pδᾱ) = π1λ̄pΓ̄pᾱ,

therefore, we have

π1 = ε1
1− δλ̄pᾱ
λ̄pΓ̄pᾱ

. (9)

Substituting by (9) in (8), we get

ε1 =
λpΓ̄pᾱ

χ
π0, (10)

where χ = λpΓp + λ̄pδ̄ + λ̄p(Γp − δ̄)α. Using (10) in (9):

π1 =
λp(1− λ̄pδᾱ)

λ̄pχ
π0. (11)

Writing the balance equation around state 1ON , we have

π1(1− λpΓp − λ̄pΓ̄pα) = π0λp + ε1(λpδ̄ + λ̄pδα)

+π2λ̄pΓp + ε2λ̄pδ̄.

Using (8) to substitute for the term π0λp, we get

π1Γ̄p(1− λ̄pα) = ε1(δ̄ + λ̄pδα) + π2λ̄pΓp + ε2λ̄pδ̄. (12)

Using (10) and (11) into (12), we now have

π2λ̄pΓp + ε2λ̄pδ̄ =
λ2pΓ̄p

λ̄pχ
π0. (13)

Writing the balance equation around state 2OFF , we get

ε2(1− λ̄pδᾱ) = ε1λpδᾱ+ π1λpΓ̄pᾱ+ π2λ̄pΓ̄pᾱ,

but since from (10) and (11) we have

ε1λpδ + π1λpΓ̄p =
λ2pΓ̄p

λ̄pχ
π0,

therefore

ε2
1− λ̄pδᾱ

ᾱ
− π2λ̄pΓ̄p =

λ2pΓ̄p

λ̄pχ
π0. (14)

From (13) and (14) we can get the following

ε2 =
λ̄pᾱ

1− λ̄pᾱ
π2. (15)

Therefore, using (15) in (13) we get

ε2 =

(
λpχ̄

λ̄pχ

)2

.
λ̄pΓ̄pᾱ

χ̄2
π0, π2 =

(λpχ̄
λ̄pχ

)2
.
(1− λ̄pᾱ)Γ̄p

χ̄2
π0.

(16)
From the symmetry of the upcoming states in the Markov

chain, expressions (15) and (16) can be generalized for any εk
and πk with k ≥ 2, since all the upcoming balance equations
will give the same result.

We can now use the normalization condition,
∑∞
k=0(πk +

εk) = 1, to get the value of π0. First, we will divide the
summation as follows
∞∑
k=0

(πk + εk) = π0 + (π1 + ε1)︸ ︷︷ ︸
A

+

∞∑
k=2

(πk + εk)︸ ︷︷ ︸
B

= 1. (17)

Simplifying the term B: since, for k ≥ 2, we have

πk + εk = ψk
Γ̄p
χ̄2
π0, where ψ =

λpχ̄

λ̄pχ
.

Hence,

B =
Γ̄pπ0
χ̄2

∞∑
k=2

ψk =

(
λpΓ̄p
λ̄pχ

)(
λp

χ− λp

)
π0 (18)

The last summation converges only if ψ < 1, that is equivalent
to λp < χ. This is actually the stability condition for the PU
queue. After some manipulations, the term A is given by

A =

(
λpΓ̄p
λ̄pχ

)(
χ+ Γ̄p

Γ̄p

)
π0. (19)

Using (18) and (19), the final result becomes

A+B =
λp
(
Γ̄p + δ̄ + (Γp − δ̄)α

)
χ− λp

π0. (20)

Using (20) in (17), π0 is finally given by

π0 =
χ− λp

δ̄ + (Γp − δ̄)α
, (21)

which satisfies the balance equation given in (8).
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