
Load Balancing in Cellular Networks: A
Reinforcement Learning Approach

Kareem Attiah†, Karim Banawan†, Ayman Gaber‡, Ayman Elezabi?, Karim Seddik?,
Yasser Gadallah?, Kareem Abdullah?

†Alexandria University, ‡Vodafone Egypt, ?The American University in Cairo

Abstract—Balancing traffic among network installed radio
base stations is one of the main challenges facing mobile operators
because of the unhomogeneous geographical distribution of
mobile subscribers in addition to practical and environmental
limitations preventing acquiring the best locations to build radio
sites. This increases the challenge of satisfying the increasing data
speed demand for smartphone users. In this paper, we present
a reinforcement learning framework for optimizing neighbor
cell relational parameters that can better balance the traffic
between different cells within a defined geographical cluster.
We present a comprehensive design of the learning framework
that includes key system performance indicators and the design
of a general reward function. System level simulations show
that reinforcement learning based optimization for neighbor cell
borders can significantly improve overall system performance;
in particular, with a reward function defined as throughput, an
improvement up to 50% is achieved.

I. INTRODUCTION

Traffic growth in cellular networks is driven by both the
rising number of smartphone subscriptions and an increasing
average data volume per subscription, fueled primarily by
video content. This trend is expected to continue, as video
is increasingly embedded in all types of online content. In
addition, emerging media formats and applications, such as
streaming high-quality video and augmented/virtual reality,
will continue to drive traffic growth while enhancing the user
experience. Video traffic in mobile networks is forecast to
grow by around 35% annually until 2024 to account for 74%
of all mobile data traffic while traffic from social networking is
also expected to rise annually by 24% over the next 5 years [1].

Total traffic carried by 4G networks is not uniformly
distributed among different cells. As a rule of thumb, 15%
of the network cells carry 50% of the generated traffic [2].
This increases the network resource utilization in certain spots
(hot spots) compared to relaxed utilization in the rest of the
network that could be first- or second-tier neighbors of the
highly utilized cells. This increases the need for offloading
the congested cells and employing load balancing techniques
that can balance traffic among neighbor cells with minimum
impact on radio channel conditions for the offloaded users.

Unlike earlier generations of cellular networks, LTE
networks are designed to support some degree of self-
optimization (SO) functionalities. Moreover, future cellular
networks are likely to rely further on such SO mechanisms
in order to dynamically cope with the exponential growth
in traffic [3]. As a result, the past decade has witnessed a
growing interest in realizing load balancing via self-tuning of

handover (HO) parameters [4]–[7]. In [4], the authors present
a simple but powerful algorithm to iteratively update the cell
individual offset (CIO) of congested serving cells with respect
to their underutilized neighbor cells. The CIO is an offset that
can be applied to alter the handover decision, which in effect
changes the effective radius of cell i with respect to cell j.
The main goal here is to determine the CIO value that would
offload the highest amount of user traffic while preventing the
ping-pong effect. One possible drawback of this approach is
that it does not allow the transferred load to propagate further
through the entire network. Another approach was introduced
in [6] where the authors propose a reactive load-balancing
technique in which the CIOs of the serving and target cells
are symmetrically updated with opposite signs by a specific
value. This value is chosen from a predefined discrete subset
by a reinforcement learning (RL) agent that interacts with
the environment and learns the optimum choice with respect
to some reward function. In the proposed model, the reward
function is measured in terms of the negative of the number
of unsatisfied users, i.e. the number of users whose data rate
falls below a certain threshold. However, in this model the RL
states are partially expressed in terms of the cell-edge user
distribution, a piece of information which may not be readily
known to a network operator in a practical scenario.

In addition to the techniques above, there have been a few
attempts to automate load balancing in heterogeneous net-
works where femto-cells are deployed to improve capacity and
coverage. In [7], a supervised learning strategy is introduced to
solve the load balancing problem. Specifically, by dynamically
expanding the range of femto-cells through adjustments of
CIO values, macro cells are relieved from increased user
traffic. The network estimates the correct CIO values through
historical data that are generated using a network simulator.
A similar approach is reported in [5], in which a combina-
tion of fuzzy logic control and reinforcement learning (RL)
algorithms is employed to determine the required femto-cell
range expansion, measured in both femto-cell transmit power
and CIO. We refer the reader to [8], for a more comprehensive
survey on SO techniques for load balancing.

Similar to [5]–[7], in this paper we present a machine learn-
ing approach to solving the load balancing problem for LTE
cellular networks. Particularly, we employ RL to optimize the
throughput and/or resource block utilization of the network.
The RL technique is a dynamic learning framework, where
an agent learns to self-optimize its action by interacting with

an environment. More specifically, in RL the agent seeks to
specify the optimal policy to maximize the long term average
of a certain reward function. RL can be modeled as Markov
decision process (MDP), where the agent observes the current
state of the environment and applies one of several allowable
actions, which changes the state of the environment and earns
a reward as a result of the agent’s action [9].

In this work, we employ deep RL for load balancing. To that
end, we use NS-3 [10] to implement an accurate model of an
LTE cellular network. This model represents the environment,
which the agent interacts with. We choose NS-3 as it supports
the full protocol stack of the LTE system and can provide
simulated, yet accurate, key performance indicators, which are
readily available for cellular operators. We choose the state
of the environment to be a subset of these KPIs. For the
steering action, we use the CIO to trigger the HO procedure.
This effectively forces some of the users to leave congested
cells even if these cells may result in the highest user SNR.
Additionally, we choose the reward function to be the total
throughput of the network.

To solve the MDP corresponding to RL, we use Q-learning
[9]. In Q-learning, the agent constructs a table of the Q-values
corresponding to each (state, action) pair where the Q-value
is a proxy for the quality of the decision at a certain state.
These Q-values are updated based on the interaction with
the environment. Furthermore, since the chosen states in our
formulation belong to an infinite space, we use a deep neural
network to approximate the Q-values and replace the Q-table
with a Q-function.

The rest of the paper is organized as following: Section II
presents the formal system model, Section III presents the
proposed machine learning framework, including the used en-
vironment model and RL, Section IV provide some numerical
results that can be obtained using our proposed technique and
some discussions, and Section V concludes the paper.

II. SYSTEM MODEL AND LOAD BALANCING MECHANISM

Consider the downlink of an LTE cellular network with N
base stations (eNodeBs or eNBs) and K active users. Initially,
Kn users are associated with the nth base station, such that∑N
n=1Kn = K. The kth user is associated with the nth base

station if it results in the best-received signal at the kth user.
The kth user periodically reports the channel quality indicator
(CQI) φk to the associated base station. The CQI is related
to the SINR or BLER measured by the user. Furthermore, the
kth user wishes to be served with a minimum data rate of Rk
bits/second. Consequently, the associated base station assigns
Bk physical resource blocks (PRBs) to the kth user, such that:

Bk =

⌈
Rk

g(φk,Mn,k)∆

⌉
(1)

where ∆ = 180KHz in LTE, and g(φk,Mn,k) is the achievable
spectrum efficiency based on the reported CQI φk and the
antenna configuration Mn,k using the default LTE scheduler.
The total required PRBs needed to serve all associated users in

the nth base station is Tn =
∑Kn

k=1Bk. Moreover, we denote
the total offered PRBs by the nth base station by T̃n.

Our main goal is to offload traffic from over-utilized cells
to under-utilized cells so that the total network load can be
shared more evenly among network cells. One possible method
of performing this is by adjusting the cells’ CIO values.
According to the 3GPP LTE specifications [11], a user initially
served by some cell i will commence a handover request to
some neighbor cell j if the following condition holds

Mj + θj→i > Hys +Mi + θi→j , (2)

where Mi and Mj are the measured values of reference signal
received power (RSRP) from cells i and j, respectively, θi→j
is the CIO value of cell i with respect to cell j, θj→i is the CIO
value of cell j with respect to cell i, and Hys is a hysteresis
value that minimizes the likelihood of ping-pong scenarios that
arise due to fading fluctuations. One may interpret θi→j as the
offset value that makes the measured RSRP of cell i appear
stronger (or weaker) when compared with the measured RSRP
of cell j. Likewise, θj→i is the added value that makes the
measured RSRP of cell j appear stronger (or weaker) when
compared with the measured RSRP of cell i.

Note that this definition allows the values of the CIOs
to be different depending on the neighbor cells. However,
for simplicity we use the same offset value at a given cell,
irrespective of its neighbor cells. That is, we assume that
θi→j = θi, for all j’s that are neighbors to cell i. In this case,
one may readily see that a good strategy for attaining load
balancing is by assigning high CIO values to under-utilized
cells and low CIO values to over-utilized ones.

As we shall see later, we employ an RL framework to
learn which cells are over-utilized (or under-utilized) and
accordingly perform decisions on the CIO values so as to
achieve network load balancing. To do so, we assume that
the network is equipped with a central agent, that can monitor
all key performance indicators (KPIs) at the network level and
controls θn. More specifically, the central agent and network
(environment) interact at discrete time instants t = 0, 1, 2 · · · .
We define the state of the network at time t, S(t), to be a subset
of the KPIs reported in the network at time t. We define the
action of the central agent at time t, A(t), to be the CIOs at
time t, i.e., A(t) = (θn(t), n ∈ {1, · · · , N}). Due to applying
the action, the state of the network changes to S(t + 1), and
the central agent receives a reward R(t+ 1).

III. PROPOSED LOAD BALANCING SCHEME

Many possible reward functions may be considered in
addition to different weighted sums of these. Possible reward
functions include:

1) Instantaneous sum throughput,

R(t) =

N∑
n=1

Kn∑
kn=1

R̂kn(t) (3)

where R̂kn(t) is the actual measured throughput of the
knth user in the nth cell at time t.

2) Total number of blockage events,

R(t) = −
N∑
n=1

Kn∑
kn=1

Ekn(t) (4)

where Ekn(t) = 1 if the knth is not served with the
minimum required data rate Rkn .

3) Average deviation of the total number of offered PRBs,

R(t) = −
N∑
n=1

∣∣∣∣∣T̃n(t)− 1

N

N∑
n=1

T̃n(t)

∣∣∣∣∣ (5)

At each time instant, the central agent implements a stochas-
tic policy πt, where πt(a|s) is the probability that the central
agent performs action A(t) = a given it was in state S(t) = s.
The central agent aims at maximizing the long-term average
reward function, i.e.,

max
π

lim
L→∞

E

[
1

L

L∑
t=0

R(t)

]
(6)

where π = (π1, π2, · · ·).

A. Reinforcement Learning Technique

In this section, we give an overview on RL. Specifically,
for this problem, we use deep Q-learning technique [12],
[13] to construct a self-optimizing agent. The agent’s task is
to maximize the long-term average of the reward functions
presented in Section II. The idea is to learn an approximate
version of the Q-table using a neural network.

We begin our discussion by defining the state S(t). In
this work, we propose three KPIs to define the network
state [14]. The first is the resource block utilization (RBU)
U(t) ∈ [0, 1]N , which is an N -length vector. Each element
in U(t) corresponds to the fraction of the utilized RB in the
nth eNB at time t. This is an important feature as it reflects
the congestion level of each cell. The second KPI is the total
downlink (DL) throughput vector R(t) ∈ RN+ . Each element
in R(t) ∈ RN+ represents the total DL throughput in the nth
cell at time t, which quantifies the overall performance of
each cell. Finally, the third KPI is the modulation and coding
scheme (MCS) utilization M(t) ∈ [0, 1]N×µ, where µ is the
total number of modulation and coding schemes defined in
LTE, which are currently 29 active MCS in [11]. Each element
in the matrix M(t) is the ratio of users that employs a specific
MCS. This is a metric to assess the relative channel qualities
of the users over the cell. Now, we are ready to write the state
S(t), which is a concatenation of all these KPIs, i.e.,

S(t) = [U(t)T R(t)T vec(M(t))T]T (7)

where vec(·) is vectorization function. Consequently, the input
layer of the neural network is a vector of size 2N +Nµ.

For the actions A(t), the central agent can control the CIOs
of all eNBs (or specific subset of them). In each cell, the
central agent choose θn(t), where θn(t) is the CIO of the
nth eNB at time t. The values of θn(t) are selected from the

discrete subset of [−θmax, θmax] dB of size L, where θmax is
the maximum possible CIO in the system, i.e.,

A(t) = [θ1(t) θ2(t) · · · θN (t)]T (8)

This creates an action space of LN possible actions. Addi-
tionally, we use the neural network as a multi-class classifier.
In this case, the neural network operates with the goal of iden-
tifying the optimal action given the state of the environment.
Hence, the output layer of the neural networks consists of LN

output neurons, with softmax activation function, where the
softmax function σ(·) is defined as:

σ(zi) =
exp(zi)∑LN

j=1 exp(zj)
(9)

where zi is the an input to the output layer of the neural
network. To learn the non-linear dependencies of the actions
A(t) on S(t), we further add Nh hidden layers. Each hidden
layer has the size of max{2N + Nµt, L

N} neurons and
with rectified linear (relu) activation function. To avoid over-
fitting, some of the weights of each hidden layer are randomly
dropped with probability q. This is a known regularization
technique in neural networks to minimize possible generaliza-
tion errors.

Now, our neural network is constructed and ready to learn an
approximate version of the Q-function (Q-table) by employing
RL. To that end, the learning is done over Ne episodes.
Each episode corresponds to a complete simulation of the
environment (in this case the NS-3 simulator) over Tsim time
period with a time step ∆. To balance the exploration and
exploitation, we define ε(t) to be the probability of picking a
random action in time t (exploration), where,

ε(t) = (εd)
`(t) (10)

where 0 < εd < 1 is the decay factor of the exploration
probability and `(t) is the index of the time step corresponding
to t.

At each time step, it is required to estimate the optimal
value function (Q-function) Q∗(S,A) by forming an estimate
Qt(S(t), A(t)). To that end, the central agent picks a random
action with probability of ε(t) and exploit the action that max-
imizes the predicted Q-function with the probability 1− ε(t),
i.e.,

A(t) =

{
arg maxA Qt(S(t), A) w.p. 1− ε(t)
A w.p. ε(t)

(11)

where A denotes a random action that is drawn uniformly
from the action space.

The action A(t) is applied to the environment via the gym
interface [15]. The reward R(t+ 1) and the state S(t+ 1) are
observed. The Q-function is then updated using the following
equation:

Qt+1(S(t), A(t)) = R(t+ 1) + λmax
A

Qt(S(t+ 1), A)

(12)

where λ is the discount, which signifies how much we weigh

Fig. 1: The simulate LTE Network Scenario, all UEs are
initially served by the center cell.

future expected reward.
Now, we train the neural network with the results of this

time step. In this case, the target function y(t) consists of a
vector of the previously learned Qt(S(t), A) for all A in the
action except for A(t), i.e., the action taken in the previous
time step. Consequently, the neural network is trained by the
new example (S(t), y(t)).

IV. NUMERICAL ANALYSIS

A. Case Study

We consider the LTE network scenario shown in Fig.1, con-
sisting of 3 eNBs with intersite distance of 500 meters. Each
eNB covers a hexagonal area using a single omnidirectional
antenna. We refer to the middle cell as cell 2, whereas the left
and right cells as cell 1 and 3, respectively. Within each cell
coverage, the UEs assumed to be stationary and are deployed
randomly according to a predefined UE density value: high
(low) density values amount to dense (light) deployment. The
stationarity in our model is to simplify the simulation and
give better insight into the results, i.e. mobility would not
change the method used. Using appropriate density values, we
implement the the extreme case of having all UEs be initially
served by cell 2, i.e., the center cell. The simulation is carried
out using the NS-3 simulator [10]. Table I summarizes the
parameters used in our simulations and their corresponding
values. A parameter of particular interest is the environment
step time, which is defined as the duration for which the LTE
network is allowed to run before a new action is generated
by the RL agent (i.e., the length of one RL time step in
seconds). In our simulations, we set this value to 1s. The 1s
time step is chosen such that the HO procedure has sufficient
time to be triggered as a result of changing the CIO level. We
will show in the next section that the proposed RL agent is
able to achieve significant gains in the total DL throughput
within a few iterations. Thus, in a real-time practical scenario,
we expect our proposed algorithm to possess a relatively fast
convergence (order of minutes).

B. Results and Discussions

In this section, we present the results of our case study.
In Table II, we present the hyper-parameters of the used RL
technique. We aim at optimizing the long term average of the
total DL throughput in the network by controlling the CIO
value of each cell. In all results, we compare with the base

TABLE I: LTE Environment Simulation Parameters

Parameter Value
Intersite Distance 500m
Center Frequency 2GHz
System Bandwidth 10MHz
of Antennas Tx: 1, Rx: 1
Antenna Pattern Omni
eNB antenna height 30m
eNB Tx Power 20dBm
Pathloss Model Okurama-Hata
Shadowing No
Traffic Direction Downlink

Traffic Model

Fixed packet size
at a fixed time interval
Packet size = 12 KB
Packet Interval = 1s.

Scheduler Proportional Fair
UE Mobility Model Static
UE Antenna Height 1.5m

Initial UE distribution
#UEs in cell 2: 22

#UEs in cells 1, 3: 0

Handover
A3-event based

Time to trigger = 40ms
Hysteresis = 3dB.

Environment step time 1s

line system which does not employ CIO, i.e., when all cells
have CIO of 0 dB.

TABLE II: Hyper-parameters of the machine learning tech-
nique

Hyper-parameter Value
CIO set {−6,−3, 0, 3, 6}dB
Reward function Total DL throughput
Number of episodes 10
Number of iterations/episode 50
εd 0.995
Discount (λ) 1
Number of hidden layers (Nh) 3
Dropout (q) 0.5
Activation function relu
Activation of the output layer softmax

Loss function
categorical
cross-entropy

Optimizer Adam(0.001)

In Fig. 2, we plot the simulated DL throughput versus the
episode index. We take the average of all DL throughput
values in the time span of one episode, which consists of
50 iterations (time steps). Upon comparing with the base line
system, we observe a enhancement in the total DL throughput
due to optimizing the CIO of each cell. More specifically, we
observe that the average throughput with RL outperforms the
base line system at any episode. The throughput converges

1 2 3 4 5 6 7 8 9 10

episode index

0

1

2

3

4

5

6

7

8

9

10

11
to
ta
l
th
ro
u
gh

p
u
t
(M

b
/s
)

With RL-optimized CIOs
Zero CIOS at all cells

Fig. 2: Average throughput per episode versus the episode
index. The RL-optimized CIOs result in 55.91% increase in
total throughput over the base-line system that uses zero CIOs.

at 9.76Mb/s starting from episode 8. The base line system
achieves 6.26Mb/s at all episodes. This results in 55.91%
increase in the total throughput of the system as a consequence
of load balancing. Generally speaking, due to the exponential
decay of ε, one expects to have a monotonic increase in
the throughput over the episodes as the random exploration
decreases with time and exploitation of the (supposedly)
optimal decision dominates. Aside from the fluctuation at
episode 4, this seems to be the case. A second observation
one can quickly infer is that the RL model has converged to
a strictly sub-optimal policy as opposed to an optimal one.
We speculate that this may have occured due to the use of
relatively fast exploration rate of decay, or a relatively simple
neural network. Next, we investigate the RB utilization across
the simulated network cells. We calculate the average absolute
deviation from the mean as:

D(t) =
1

N

N∑
n=1

∣∣∣∣∣T̃n(t)− 1

N

N∑
n=1

T̃n(t)

∣∣∣∣∣ (13)

Again, we take the average of these absolute deviation over
each episode to get D̄ and compare it with absolute deviation
in the case of the base line system. In Fig. 3, we plot the
average absolute deviation versus the episode index. The figure
reveals that the average absolute deviation converges to 0.3371
with the RL-optimized CIOs in contrast to 0.42 with zero
CIOs, i.e., the average absolute deviation has decrease by
19.71%, and thus achieving superior load balancing. It is
crucial to remark that since the reward function is defined
in terms of the total DL throughput, it may not be the case
that the individual cell utilization converges to the average
cell utilization. In fact, there have been reported cases of
outstanding total DL throughput despite having significant
disparity in individual cell utilization (66% in cell 2 and 90%

1 2 3 4 5 6 7 8 9 10

episode index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

av
er
ag
e
ab

so
lu
te

d
ev
ia
ti
on

(D̄
)

With RL-optimized CIOs
Zero CIOs for all cells

Fig. 3: Average absolute deviation from the mean RB uti-
lization per episode versus the episode index. The deviation
decreases by 19.71% below the base-line system.

in cells 1 and 3). This follows from the fact that once they
have moved to cell on either side, cell-edge users enjoy the
use of an excess number of unexploited physical RBs.

In Fig. 4 and Fig. 5, we plot the histogram of the throughput
and the RB utilization of individual cells. We restrict our plot
to the last 4 episodes (last 200 iterations) to minimize the
effect of the random exploration in the first 6 episodes. This
reflects an aggregate view of the cellular network KPIs after
operating the agent at convergence. From Fig. 4, we can see
that at steady state, cell 1 accommodates a maximum DL
throughput of about 1.6 Mb/s for nearly most of the time as
opposed to the inferior maximum DL throughput of 0.9 Mb/s
for the zero CIO case. Likewise, we notice a similar increase
in the maximum DL throughput of cell 2 from 6.26 Mb/s to
7 Mb/s. Additionally, we observe some rare events where the
throughput increase significantly to 11.5Mb/s. For cell 3, the
load is almost negligible in both cases. We conclude that the
aforementioned suboptimal policy amounts to offloading user
from cell 2 to cell 1 only, while completely disregarding cell 3.
We speculate that this is directly connected to the edge user
placement around cell 3.

V. DISCUSSION AND CONCLUSIONS

In this paper, we presented a reinforcement learning startegy
to achieving load balancing in LTE cellular networks. In
order to simulate the LTE environment, we used NS-3, a
high-level simulator that allows the extraction of practical
key performance indicators. The states of the RL agent were
described in terms of a subset of such indicators, whereas
the RL reward function was defined in terms of the network
DL throughput. Finally, by allowing the RL agent to perform
actions via adjusting the cell offsets, we have shown clear

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

cell throughput (Mb/s)

0

20

40

60

80

100

120

140

160

180

fr
eq
u
en
cy

of
o
cc
u
ra
n
ce

(a) cell 1

6 7 8 9 10 11 12

cell throughput (Mb/s)

0

20

40

60

80

100

120

140

fr
eq
u
en
cy

of
o
cc
u
ra
n
ce

(b) cell 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

cell throughput (Mb/s)

0

50

100

150

fr
eq
u
en
cy

of
o
cc
u
ra
n
ce

(c) cell 3

Fig. 4: Histogram of individual cell throughput for the last 4 episodes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RB utilization

0

20

40

60

80

100

120

140

160

180

fr
eq
u
en
cy

o
f
o
cc
u
ra
n
ce

(a) cell 1

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

RB utilization

0

20

40

60

80

100

120

140

160

180

fr
eq
u
en
cy

o
f
o
cc
u
ra
n
ce

(b) cell 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

frequency of occurance

0

50

100

150

R
B

u
ti
li
za
ti
o
n

(c) cell 3

Fig. 5: Histogram of individual cell RB utilization for the last 4 episodes.

enhancement of the network DL throughput and absolute
deviation of RB utilization.

Future extensions of this work include investigating other
reward functions (e.g., PRB utilization, user blockage proba-
bility, etc). We expect that introducing mobility, shadowing,
and increasing the LTE network size would reflect more prac-
tical scenarios although would not yield qualitatively different
results.

REFERENCES

[1] Ericsson. Ericsson mobility report june 20019.
[2] Harri Holma and Antti Toskala. LTE advanced: 3GPP solution for IMT-

Advanced. John Wiley & Sons, 2012.
[3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.

Soong, and J. C. Zhang. What will 5g be? IEEE Journal on Selected
Areas in Communications, 32(6):1065–1082, June 2014.

[4] A. Lobinger, S. Stefanski, T. Jansen, and I. Balan. Load balancing in
downlink lte self-optimizing networks. In 2010 IEEE 71st Vehicular
Technology Conference, pages 1–5, May 2010.

[5] P. Muoz, R. Barco, J. M. Ruiz-Avils, I. de la Bandera, and A. Aguilar.
Fuzzy rule-based reinforcement learning for load balancing techniques
in enterprise lte femtocells. IEEE Transactions on Vehicular Technology,
62(5):1962–1973, Jun 2013.

[6] S. S. Mwanje and A. Mitschele-Thiel. A q-learning strategy for lte
mobility load balancing. In 2013 IEEE 24th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pages 2154–2158, Sep. 2013.

[7] C. A. S. Franco and J. R. B. de Marca. Load balancing in self-organized
heterogeneous lte networks: A statistical learning approach. In 2015 7th
IEEE Latin-American Conference on Communications (LATINCOM),
pages 1–5, Nov 2015.

[8] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza. A sur-
vey of machine learning techniques applied to self-organizing cellular
networks. IEEE Communications Surveys Tutorials, 19(4):2392–2431,
Fourthquarter 2017.

[9] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement
learning, volume 2. MIT press Cambridge, 1998.

[10] Nicola Baldo, Marco Miozzo, Manuel Requena-Esteso, and Jaume Nin-
Guerrero. An open source product-oriented lte network simulator based
on ns-3. In Proceedings of the 14th ACM international conference on
Modeling, analysis and simulation of wireless and mobile systems, pages
293–298. ACM, 2011.

[11] 3GPP ETSI TS 136 213 V14.2.0. LTE; Evolved Universal Terrestrial
Radio Access (E-UTRA); Physical layer procedures. 2017.

[12] V. François-Lavet, P. Henderson, R. Islam, M. Bellemare, J. Pineau,
et al. An introduction to deep reinforcement learning. Foundations and
Trends in Machine Learning, 11(3-4):219–354, 2018.

[13] Y. Li. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274, 2017.

[14] Kareem Abdullah, Noha Korany, Ayman Khalafallah, Ahmed Saeed,
and Ayman Gaber. Characterizing the effects of rapid lte deployment: A
data-driven analysis. In 2019 Network Traffic Measurement and Analysis
Conference (TMA), pages 97–104. IEEE, 2019.

[15] P. Gawlowicz and A. Zubow. ns3-gym: Extending OpenAI Gym for
Networking Research. CoRR, 2018.

