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Abstract—In this paper, we consider the design of multi-
resolution non-coherent multiple-input multiple-output (MIMO)
systems that enable Unequal Error Protection (EUP). A method
for designing a multi-layer non-coherent Grassmannian constel-
lations is introduced. Specifically, the proposed method yields
multi-layer constellations that are amenable to a natural set
partitioning strategy. The resulting subsets from such partitioning
are used to encode the more protected symbols. On the other
hand, the less protected symbols are mapped to points within
these subsets. Furthermore, we present two methods to establish
the link between the gain of the more protected layer and the
design parameters of this construction. Finally, we exploit the
underlying structure to develop a sequential decoding approach.
Numerical results suggest that employing such decoding scheme
leads to computational savings with respect to the optimal
decoding while maintaining comparable performance.

I. INTRODUCTION

MIMO communication systems are multi-antenna systems
in which data streams are transmitted simultaneously over a
common channel. For these systems, two modes of operations
can be identified. In a coherent MIMO, the information is
communicated over a channel whose fading coefficients are
known at the receiver, whereas in non-coherent MIMO [1], [2]
it is assumed that channel coefficients are unavailable at both
the transmitter and the receiver. Despite the losses in achiev-
able rates relative to the coherent case, non-coherent signaling
is particularly attractive in situations where estimating the
channel coefficients is either inefficient or infeasible.

In a standard communication setting, all transmitted bits
of information are considered to be equally valuable. This
symmetric view encourages uniform error protection to seg-
ments of information against channel imperfections. Despite
the benefits of Equal Error Protection (EEP) schemes, in many
applications, the nature of information being conveyed over
the channel motivates the need to provide a non-uniform
protection against channel perturbations. For instance, multi-
resolution systems enable the receiver to reconstruct trans-
mitted information at different levels of precision depending
on the state of the channel. If the channel conditions are
convenient, the receiver will be able to recover all transmitted
information and reconstruct the message with high accuracy.
On the other hand, if the channel conditions are less favorable,
it is adequate for the receiver to reconstruct a coarse view
by only retrieving the most basic or important parts of the
message. In the previous example, it is clear that a uniform
treatment of bits of information being transmitted is inap-
propriate. Instead, it is more natural to support transmission
of information by a scheme that allows different parts of

information to be protected at varying degrees based on their
level of importance [3].

UEP has been previously studied in the literature. Many
existing techniques utilize coded [4] as well as uncoded [5]
coherent constellations to provide more protection to certain
parts of information. While there have been several efforts in
the literature to design multi-resolution UEP-based coherent
constellations, the authors are not aware of any such attempts
in the context of non-coherent signaling.

Motivated by the above discussion, this paper investigates
the potential of utilizing a non-coherent multi-layer technique
to achieve UEP. This scheme was previously proposed by the
authors in [6]. In particular, we exploit the underlying structure
of this construction to develop a natural set partitioning
scheme. In other words, the non-coherent constellation repre-
senting points on the Grassmann manifold is broken down into
smaller disjoint subsets. Furthermore, the information symbols
are decomposed into two segments of smaller symbols and the
more protected symbols are allowed to choose one of possible
subsets, whereas the less protected symbols will be conveyed
by points within the chosen subset. By varying the distance
between subsets we demonstrate that coding gains can be
realized over the EEP case for the more protected symbols.
Additionally, we provide two methods of characterizing the
gain of the more protected layer in terms of a specific design
parameter. These characterizations simplify the problem of
choosing the design parameter to yield a desired nominal gain.
Finally, we make use of the multi-layer structure to simplify
the decoding task by utilizing a sequential decoding scheme.
Numerical simulations reveal that the proposed decoder ex-
hibits similar or comparable performance to the exhaustive
optimal decoder, while demanding much less computational
effort than that of the optimal decoder.

II. CHANNEL MODEL AND PRELIMINARIES
A. Channel Model

Consider the block Rayleigh fading model in [1]. This
model assumes constant channel coefficients during channel
coherence interval of T symbols duration, which then take on
a statistically-independent realization in each of the subsequent
coherence intervals. Using M and N to denote the numbers of
transmit and receive antennas, respectively, the T×N received
signal Y at a given coherence interval can be expressed as

Y = XH +
√
M/γT W, (1)

where X is the complex T × M transmitted matrix, H is
the M ×N fading matrix whose coefficients are independent,



identically distributed (i.i.d.) drawn from the standard com-
plex Gaussian distribution CN (0, 1) and are assumed to be
unknown at both the transmitter and the receiver, W is the
T ×N noise matrix which is also modeled as i.i.d. complex
Gaussian whose elements are CN (0, 1) and γ is the SNR.

Under the assumptions that N ≥ M and T ≥ N + M
and by constraining the average transmitted power over all M
transmitted antennas to be kept constant, it was shown in [2]
that the asymptotic (in the SNR) capacity achieving signaling
scheme is comprised of unitary signals (X†iXi = IM ) that
take on the form of isotropically distributed points on the
Grassmann manifold GT,M (C), i.e., the set of M dimensional
subspaces in CT . In this paper, we only consider signaling
constellations of this class, that is, unitary signals representing
distinct points on GT,M (C). In what follows, we do not
differentiate between Grassmannian points and the unitary
transmitted matrices Xi.

B. The Optimal Detector

At the receiver, the optimal scheme for detecting the trans-
mitted matrix is referred to as the Generalized Likelihood
Ratio Test (GLRT) [7]

X̂ = arg max
X∈C

Tr(Y†XX†Y), (2)

which is shown in [7] to have the same performance as the
Maximum Likelihood (ML) detector in i.i.d. fading environ-
ment and unitary signaling.

C. Pairwise Error Probability

For any two distinct transmitted matrices Xi,Xj and for
high SNR, the asymptotic Pairwise Error Probability (PEP) of
the GLRT is approximated by [7]

Pij ≈
(γT )

−MN
MMN

(
2MN − 1
MN

)
∣∣Rii −RijR

−1
jj Rji

∣∣N ,

where [
Rii Rij

Rji Rjj

]
=

[
X†i
X†j

] [
Xi Xj

]
.

Under the assumption that the transmitted matrices are unitary,
the asymptotic expression for the PEP becomes [8]

Pij ≈ (dcp(Xi,Xj)γT )
−MN

MMN

(
2MN − 1
MN

)
, (3)

where

dcp(Xi,Xj) :=

(
M∏
k=1

(
1− σ2

k

)) 1
M

,

where {σk}1≤k≤M are the singular values of X†iXj . Follow-
ing along the lines in [8], we refer to this quantity as the
product chordal distance. This is, in fact, a slight inaccuracy
since dcp(Xi,Xj) is not a true distance.

A closely-related metric is the chordal distance [9]

d2
c(Xi,Xj) = M − ‖X†iXj‖2F .

Both metrics may be employed to aid in the design of
Grassmannian constellations (e.g., see [10] for the chordal
distance). Unlike the chordal product distance however, the
chordal distance is a true distance. This handy feature makes
it more appealing (and intuitive) to guide constellations design
than the product chordal distance. Our multi-layer construction
described in Section III is also based on the chordal distance.

Denoting the principal angles between the subspaces
spanned by the columns of Xi and Xj by {θk}1≤k≤M , where
θk ∈

[
0, π2

]
, alternative expressions for both metrics can be

obtained

dcp(Xi,Xj) =

(
M∏
k=1

sin2 θk

) 1
M

, (4)

and

d2
c(Xi,Xj) =

M∑
k=1

sin2 θk. (5)

We find expressions (4) and (5) quite revealing. In particular,
the connection between the two metrics can now be well-
understood in terms of the Arithmetic Mean - Geometric Mean
(AM-GM) inequality

dcp(Xi,Xj) ≤
1

M
d2
c(Xi,Xj). (6)

With this inequality in mind, constellations designed by pack-
ing spheres on GT,M (C) using the chordal distance will
necessarily be suboptimal in the sense of minimizing the
asymptotic union bound on the probability of error of the
GLRT. Both of these metrics play an important role in this
paper. Quite often we omit the distinction and simply speak
of “distance” when either the context is clear or the statement
applies to both measures.

Analogous to the coherent case, the coding gain1 of a non-
coherent constellation can be readily deduced from (3) and is
essentially equivalent to min

i,j,i 6=j
dcp(Xi,Xj) [8].

III. MULTI-LAYER CONSTRUCTION OF NON-COHERENT
CONSTELLATIONS

In [6], we propose a multi-layer approach to the design of
Grassmannian constellations. In this section we summarize this
strategy. Let L be the number of constellation layers and let
ξ1, . . . , ξL be these layers. We insist that the ith layer ξi for
2 ≤ i ≤ L be constructed from ξ1≤j≤i−1. Particularly, to find
ξi, first find the ith parent layer Ci =

⋃i−1
j=1 ξj . Then, for each

parent point Xp ∈ Ci, find K children points by transitioning
on GT,M (C) along K geodesics emanating from Xp. Finally,
the newly found children points of all Xp ∈ Ci collectively
define the layer ξi.

Mathematically speaking, a geodesic on GT,M (C) initially
at some point Z = Z(0) extending along some direction

1Although the chordal distance does not guarantee full diversity, we
argue that when the constellation size is not very large the principal angles
between the associated subspaces will take on nonzero values and hence
min
i,j

dcp(Xi,Xj) > 0.



Ż(0) = Z⊥B for some (T − M) × M complex matrix B
is given by [11]

Z(t) =
[
Z Z⊥

] [V cos Σt
U sin Σt

]
, (7)

where B = UΣV† is the compact SVD of B and t is a step
parameter. Using (7), we can now formally define ξi

ξi =

{
[Xp Xp⊥]

[
Vk cosΣkti
Uk sinΣkti

] ∣∣∣∀Xp ∈ Ci,∀k = 1, . . . ,K

}
.

Observe that the above definition sets no restrictions on the
directions defining children geodesics. We can impose some
restrictions on this structure by further demanding that the
pairwise chordal distances among children points associated
with a common parent point be maximized. By doing so, we
finally arrive at (cf. [6])

ξi =

{[
Xp Xp⊥

] [αiṼk

βiUi

] ∣∣∣∀Xp ∈ Ci, ∀k = 1, . . . ,K

}
(8)

where K ≤ 4M2, αi = cos ti and βi = sin ti. The matrix
Ui is an arbitrary (T −M)×M complex unitary matrix for
which the natural choice is IT−M,M . However, as indicated
by the subscript, it may also be possible to alter its value on a
layer to layer basis in order to maximize the distances among
children points of different parents. Typically, varying Ui

amounts to altering the orientation of the children geodesics
around the parent point without disrupting the distances among
children points (of a common parent) as well as their distances
from that parent. Finally, the K, M × M , complex unitary
matrices {Ṽk}1≤k≤K are found by solving the optimization
problem

max
{V†kVk=IM}1≤k≤K

min
i,j,i 6=j

‖Vi −Vj‖2F .

The initial layer ξ1 is of small size N ′ and is typically
constructed by packing spheres on GT,M (C) using the chordal
distance as a packing metric. A number of good numerical
algorithms have been proposed in the literature to attain this
packing. One example would be [12] which is proven to be
reliable when the packing size is small. It was found that
this algorithm is appropriate for typical sizes of ξ1. Finally,
the overall non-coherent constellation is formed by taking the
union of these L layers. Alternatively, it can be regarded as
the (L + 1)th parent layer C = CL+1 = {X|X ∈

⋃L
i=1 ξi}.

The size of this constellation is |C| = N ′(K + 1)L−1.
Before we move on to the next section, it is insightful to

draw a number of remarks. First, since the step parameter ti
is essentially the same for all members of the layer ξi, they
all lie at an identical distance from their respective parents. To
show this, let Xp be some parent point in Ci and let Xc be its
child in ξi, the expression for the chordal distance between Xp

and Xc can be readily derived using expressions (5) and (8)

d2
c(Xp,Xc) = Mβ2

i , (9)

which is independent of both Xp and Xc.
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Fig. 1. This figure provides a pictorial visualization of the parent layer points
Xp and Yp, children layer points Xc1, Xc2, Xc3, Yc1, Yc2 and Yc3 and the
set partitioning scheme. The minimum inter-subset distance as well as the
constellation minimum distance are also shown.

Second, the evident hierarchical structure of this construc-
tion allows us to conveniently define a natural set partitioning
scheme. To elaborate, the ith level partition, 1 ≤ i ≤ L, of |C|
consists of the |Ci+1| = N ′(K+1)i−1 subsets (i.e. subconstel-
lations) Ω

(i)
1 , . . . ,Ω

(i)
|Ci+1|, where the kth subset Ω

(i)
k contains

exactly one element from Ci+1 as well as all of its descendants
(and not just its children) in ξi+1, . . . , ξL. For instance, the
1st level partition includes N ′ subsets Ω

(1)
1 , . . . ,Ω

(1)
N ′ , where

Ω
(1)
k contains a single element from C2 = ξ1 and the

descendants (and not only the children) of that element in
ξ2, . . . , ξL. Similarly, the subsets Ω

(2)
1 , . . . ,Ω

(2)
N ′(K+1) com-

prising the 2nd level partition, each contains a single element
from ξ1 ∪ ξ2 and its descendants in ξ3, . . . , ξL.

Finally, since the step parameters control the intra-subset
distances, we expect that inter-subset distances are also in-
fluenced by the same parameters. Guided by this observation,
we conclude that with careful selection of {ti}2≤i≤L it can be
ensured that a certain distance criterion (be that local or global)
holds. However, the lack of explicit formulas such as (9) in the
global case makes it more challenging to accurately estimate
these parameters.

IV. UNEQUAL ERROR PROTECTION

Consider a MIMO non-coherent communication system in
which the source transmits one of possible N symbols from
the set S = {s1, . . . , sN } by mapping distinct elements of this
set onto distinct constellation points on the Grassmannian. For
this system, assume that N = 2m so that the rate r = m

T bits
per channel use (bpcu). Although the more general case can
be treated in a similar manner, we focus on the case where
it is desired that the data sequence be broken down into two
segments to be transmitted with different reliability. Let f be
the fraction of the transmitted bits such that m1 = fm is
the length of the sequence of the more important bits to be
reliably transmitted and m2 = m − m1 is the length of the
sequence of the less important bits. Define the sets S(1) =

{s(1)
1 , . . . , s

(1)
N ′} and S(2) = {s(2)

1 , . . . , s
(2)
(K+1)} where N ′ =

2m1 and K = 2m2−1. Moreover, define the bijective function
F : S → S(1) × S(2) that maps source symbols onto distinct
pairs of symbols

(
s

(1)
i , s

(2)
j

)
. Clearly, N = N ′(K + 1) and

S(1) now includes the more important data symbols whereas
S(2) incorporates the less important data symbols.

Now consider the signaling scheme described in Section III
with L = 2. Clearly, the overall constellation is comprised of



two layers ξ1 and ξ2 which will be referred to as the parent
and children layers, respectively. Furthermore, the set of step
parameters is now reduced down to a single step parameter
that will be called t. Now let us induce the level one partition
described in the previous section and let Ω1, . . . ,ΩN ′ be the
resulting subsets. One way to achieve UEP is to map the
information symbols to constellation points by letting data
symbols in S(1) choose one of the possible subsets while
letting data symbols in S(2) be conveyed by points within
the subset (cf. [4] for the coherent case). Fig. 1 illustrates the
concept.

Define the inter-subset distance (in the chordal product
sense)

dcp(Ωi,Ωj) = min
X∈Ωi,Y∈Ωj

dcp(X,Y).

Let us use d(1) and d(2) to denote the minimum inter-subset
distance and the minimum constellation distance, then

d(1) = min
i,j,i 6=j

dcp(Ωi,Ωj), (10)

and
d(2) = min

X,Y∈C
dcp(X,Y). (11)

It is clear that d(1) (d(2)) characterizes the probability
of symbol error of the more (less) important data symbols.
Typically, in EEP scenarios, the constellation is designed in
such a way that d(1)

∣∣
EEP

= d(2)
∣∣
EEP

. In UEP however, we
dictate that d(1)

∣∣
UEP

> d(2)
∣∣
UEP

. In the UEP case, it is often
advantageous to measure the coding gain of the parent/children
layer with respect to that of the EEP case. We define the
relative gain of layer i as

Γi = 10 log10

d(i)
∣∣
UEP

d(i)
∣∣
EEP

, i ∈ {1, 2}. (12)

As was previously stated in Section III, selecting t to ensure
some nominal coding gain is not an easy task, due to the
complicated dependence of global metrics in (10) and (11) on
several other factors besides t (e.g., the directions of children
geodesics and the location of parent points on the manifold).
Proposed next are two methods for estimating the sine of this
parameter, namely β = sin t.

A. Geometric Mean Approximation (GMA)
In this section, a simple method for computing β in terms

of a lower bound on d(1) is described. This method is suitable
for M ≤ 2. We first introduce the following lemmas.

Lemma 1: Let ω1, . . . , ωM be a sequence of non-negative
numbers with variance σ2

ω and fixed mean µ, then

σ2
ω ≤ (M − 1)µ2.

Proof: σ2
ω = 1

M

∑M
i=1 ω

2
i − µ2 ≤ 1

M

(∑M
i=1 ωi

)2
− µ2 =

Mµ2 − µ2.
Lemma 2: Let X and Y be two children points such that

X ∈ Ωi and Y ∈ Ωj 6=i and let Xp and Yp be their parents. If
N ′ ≤ T 2, then the following lower bound holds on dc(X,Y)

dc(X,Y) ≥ M(T −M)

T

√
N ′

N ′ − 1
− 2
√
Mβ. (13)

Proof: By the triangle inequality, dc(Xp,Yp) ≤
dc(Xp,X) + dc(X,Y) + dc(Y,Yp). Rearranging terms and
denoting the packing radius of the parent layer by dpack we
arrive at dc(X,Y) ≥ dpack−2

√
Mβ. Where the second term

on the right hand side follows from (9). The proof is complete
by noting that the first term in (13) is the packing distance
when N ′ ≤ T 2 [12].

We will use these lemmas to establish a lower bound on
d(1). Let X ∈ Ωi and Y ∈ Ωj 6=i be two constellation
points whose product chordal distance attains (10). Denote
the squares of the sines of the principal angles between the
subspaces associated with X and Y by {ωi}1≤i≤M such that
(d(1))M =

∏M
i=1 ωi. The well-known approximation in [13]

states that the difference between the AM and GM of a
sequence of positive numbers can be well-approximated by
one half the variance of this sequence if the numbers in the
sequence are close to one. From this we deduce

d(1) ≈ 1

M
d2
c(X,Y)− σ2

ω

2

'
1

M
d2
c(X,Y)− M − 1

2M2
d4
c(X,Y) (14)

where in the second line, the result from Lemma 1 is used.
Observe that the expression on the right hand side of (14)
is increasing in the range 0 ≤ dc(X,Y) ≤

√
M
M−1 , from

which we conclude M ≤ 2. Using Lemma (2), we can further
lower bound (14) in the range for which the chordal distance
is increasing without violating the inequality

d(1) '
1

M
(dpack − 2

√
Mβ)2 − M − 1

2M2
(dpack − 2

√
Mβ)4 (15)

where dpack is the first term on the right hand side of (13).
Equation (15) provides a remarkably simple method for se-
lecting β: For a given minimum inter-subset distance d, find
β that makes the right hand expression identical to d. The
resulting constellation will have an actual minimum inter-
subset distance (in the product chordal sense) that is bounded
below by d. In other words, the actual coding gain Γ1 is going
to be at least as large as the nominal coding gain.

It is crucial to know the limitations associated with ex-
pression (15). Specifically, the GM approximation will not
be adequately accurate when the squares of the sines of the
principal angles are bounded away from one (i.e. X and Y
are nearby). This typically occurs when either the overall
constellation size or the parameter t (or β) is too large. Under
such circumstances, the bound in (15) need not even hold.

B. Polynomial Regression (PR)

As was stated in the previous subsection, the GM ap-
proximation method is likely bound to fail under conditions
where the principal angles between subspaces belonging to
different partitioning subsets of the constellation are small.
A different (and more reliable) method for establishing the
relationship between minimum inter-subset distance and the
step parameter is a one that is borrowed from statistical
analysis and modeling. In essence, it is assumed that the d(1)

is modeled as an nth degree polynomial in β, where the
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Fig. 2. Minimum inter-subset distance against β for 4× 16 constellation.

modeling coefficients are unknown parameters to be estimated.
Given enough observations l > n, the modeling coefficients
are evaluated via least-squares estimation.

Unlike GM approximation, the practicality of this method
depends upon the availability of values of β for which the
corresponding values of d(1) are known. This generally means
that this scheme must be preceded by an offline step in which
these values are acquired. Once this is performed, and the
modeling coefficients are acquired, they can be stored at the
transmitter and reused as many times as needed.

C. Examples

We now assess the utility of our multi-layer scheme. Before
we introduce the examples, it is necessary to point out that (12)
provides a method for computing the nominal coding gain over
the EEP case. The actual code gain incurs additional losses
relative to the nominal value due to a number of reasons.
Typically, the actual gain is reduced by a factor that depends
on the number of nearest neighbors. Moreover, the assumption
made in Section II-C that the coding gain is based on product
chordal distance follows from an asymptotic union bound,
which is known to be loose when either the constellation size is
large or the SNR is small. Having said that, the purpose of the
following examples is not to show how our scheme attains the
exact numeric gains set by the design parameters, but rather to
demonstrate it has the potential of realizing UEP in the context
of non-coherent signaling, which, to our knowledge, has never
been investigated in the literature. In what follows, we present
two examples. In both cases, we compare the parent layer
Symbol Error Rate (SER) of the UEP scheme to that of EEP.
Also, in both cases we assume T = 4 and M = N = 2. The
detection is performed according to the GLRT.

1) Rate 1.5 with 33% of the data is important: In this
example, the size of the multi-layer constellation is N = 64,
corresponding to a rate of 1.5 bpcu. The size of the parent
layer is N ′ = 4. Therefore, the fraction of bits that are
important is 33%. In Fig. 2, we plot the actual minimum
inter-subset distance d(1) as a function against β = sin t.
It is interesting to remark that despite the relationship in
Fig. 2 represents one instance of the family of constellations
described in Section III, the general features of this curve
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Fig. 3. SER of ξ1 and ξ2 when 33% of transmitted data is important

are common to all instances of this family. Specifically, two
main regions are identified for this curve that are common
to all constellations of this family. The first region indicates
consistent decrease of the inter-subset distance in β. For this
particular curve, this is the region extending up to ≈ 0.4.
This consistency can be intuitively explained: Initially, when
β is small, all children points lie in close proximity to their
parents and the regions enclosing the partitioning subsets are
all disjoint. As β increases, these regions continue to expand
in size thus bringing children of different subsets closer. This
consistency maintains until the partitioning subsets blend in
and the associated enclosing regions are no longer disjoint.
In which case we enter the second region where the inter-
subset distances vary uncontrollably with the increase of β.
Clearly, it is of interest to only select β within first region.
The GM approximation lower bound as well as the polynomial
modeling (n = 9 and l = 25) are also plotted.

In Fig. 3, we plot the SER of the parent layer in the EEP
case as well as UEP case when β is estimated via the methods
described in Sections IV-A and IV-B. The nominal coding gain
relative to the EEP case is Γ1 = 3 dB, which corresponds to
a factor of 2 in terms of the minimum inter-subset distance
relative to the EEP case. As high SNR, it can be seen that
the actual gain is roughly about 2.5 dB in the PR case and
3.5 dB in the GMA case. We observe a loss of 0.5 dB relative
to nominal value is incurred in the PR case. In the GMA case,
however, this loss is compensated since the GMA selects β in
such a way that overestimates the gain.

2) Rate 2 with 50% of the data is important: In this case,
the size of the overall constellation is N = 256. The size of
the parent layer is N ′ = 16, which corresponds to a fraction of
50% important data. Again, we set Γ1 = 3 dB. For this case,
the lower bound in (15) does not hold and thus the GMA
method fails. In Fig. 4, the SER of the UEP-PR is compared
with the EEP for the first layer. We can see that the actual
coding gain is roughly 3.5 dB.

V. SIMPLIFIED DECODER

The optimal detector in the case of non-coherent signaling
was introduced in Section II-B. Although optimal, the GLRT
detector must examine every point of the constellation before
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making its decision. As a result, it may become computation-
ally infeasible to employ the usual GLRT detector for mod-
erate to large constellations. Additionally, for multi-resolution
systems in which the channel conditions are unfavorable (e.g.,
low SNR), it is sometimes of interest to receive the more
reliable information without having the need to decipher the
less reliable portion of the received data. In this section, we
propose a more appropriate decoding scheme that overcomes
the exhaustive search of the GLRT. The new decoder makes
use of the hierarchical structure of the design in Section III.
Consider the constellations described in Section III with L = 2
(the structure and analysis of this decoder in the general
L layer case are omitted for space limitations), the decoder
initially examines all points in ξ1 by computing the GLRT
metric and identifying the q parents with the largest GLRT
metric, where q < N ′. Having done that, the decoder then
investigates only the children points in ξ2 associated with
those parents while ignoring all children of other parents.
Finally, a decision is made in favor of some X̂ ∈ C if X̂
maximizes the GLR test over all examined points. With this
setup, the number of GLRT operations needed in the children
layer is reduced by a factor of q/K. Intuitively, the choice
of the step parameter directly influences the performance of
this detector. In particular, as the step parameter grows larger,
the children points come closer to other parent points and
further from their own parents, thus, leading to performance
degradation relative to the usual GLRT detector. However,
as our simulations suggest, this loss in performance can be
overcome by employing more candidates in the parent layer.
In Fig. 5, we plot the SER of both layers of the constellation
described in IV-C2 for the GLRT decoder as well as the
simplified decoder with q = 1, 2. We can see that, in the
case q = 1, a performance loss in the parent layer SER is
incurred relative to the GLRT detector. However, that loss is
compensated in the q = 2 case, and the simplified decoder
becomes essentially equivalent to the GLRT.

VI. CONCLUSION

In this paper, we present a non-coherent multi-layer ap-
proach suitable for UEP scenarios. This approach gives rise
to a natural set partitioning scheme, which is utilized to
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Fig. 5. Performance comparison of the simplified decoder with q = 1, 2
against the GLTR

provide more protection to the more important information.
Also, we introduce two characterizations that simplify the
design procedure by linking a local design parameter to the
more global inter-subset distance. Finally, a simplified detector
is proposed that enables simple detection while maintaining
comparable performance to the optimal detector.
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