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Abstract—This paper studies the queues stability and delay in
cooperative multiple access for cognitive radio systems in which
the secondary user (SU) has finite energy sources. The SU has
two queues with a battery for energy storage. One of the SU’s
queues is used to store the relayed packets from the primary user
(PU) queue. While the other one is used to store its own packets.
Each transmission consumes a fixed amount of energy, and the
battery is replenished through energy harvesting. A PU’s packet
is admitted to the relay queue with an admission probability.
Moreover, the SU serves either the queue of its own data or the
queue of the PU relayed data with certain service probabilities.
The finiteness of energy has an effect on the system throughput
and how it is affected by varying the service and admission
probabilities. The analysis of this system is non-trivial due to the
interdependence between the battery and SU’s packet queues.
This results in an interacting system of queues. To decouple
this interaction, and characterize the stability region, we resort
to a dominant system approach for the analysis. The obtained
stability region is compared with the stability region of the system
without energy constraints, and the losses due to finite energy
are identified. Furthermore, the average delay encountered by
the packets of both PU and SU is shown not to be affected by
the finiteness of the energy within the stability region.

I. INTRODUCTION

Providing wireless communication services is becoming
more challenging due to the spectrum scarcity problem; one
technique to approach this problem is the cognitive radio
technology in which the unlicensed users (or secondary users
(SUs) or cognitive users) are allowed to exploit unused spec-
trum by the licensed users (or primary users (PUs)) so that the
spectrum utilization is improved and consequently the spectral
efficiency is increased [1], [2]. The primary user can use the
channel at any time as long as it has a packet to transmit,
while the coexistence of the secondary user with primary user
is allowed provided that the secondary user does not violate
some Quality of Service (QoS) requirements of the PU.

Cooperative scenarios have been lately introduced in which
a cooperating terminal relays packets for other terminals over
the so called relay channel in order to increase the channel
availability for its own packets [3]. Similar scenarios are
proposed in which the PU has the authority to access the
channel whenever it has a packet to transmit. A primary
packet unsuccessfully transmitted by the PU but successfully
received by the SU is stored in a relay queue at the SU. On
the other hand, the SU waits for the opportunity of an idle

instant to transmit either the relayed packets or its own packets
and in most studies priority is given to the relayed traffic
in a way that guarantees the QoS requirements of the PU.
Randomized cooperative policies for cognitive radio system
are also introduced in [4]. These scenarios have proved to
enhance cognitive node performance.

Energy harvesting and finiteness of energy have also gained
a lot of interest recently. Several works have considered the
losses in connectivity periods due to the limited available
energy. Despite the advancement in energy harvesting and
rechargeable batteries, the study of networks with energy
harvesting nodes is still in its infancy. The common objectives
were usually to maximize the lifetime of the network whose
nodes are powered by rechargeable batteries, while maintain-
ing a certain degree of connectivity [5].

In this paper, we study the effect of finite energy sources and
energy harvesting on the stability and the average packet delay
of cooperative multiple access for cognitive radio systems. We
focus on the class of randomized cooperative policies, whereby
the SU admits the PU’s packet and serves it with certain
probabilities. Besides, we study the effect of energy limitation
on the way that tuning the admission and service probabilities
affects the stable throughput of the PU and SU. Note that, the
analysis involves an interaction between packet queues and
the battery. We solved this difficulty by using the stochastic
dominance technique. Recently, many papers have considered
the problem of interacting queues in different contexts. For
example, [6] considers the problem of interacting queues in
a TDMA system where a relay is used to help the source
nodes in forwarding their lost packets. In [7], the stability
of interacting queues under a random access protocol in the
context of Cognitive Radio Networks was derived. In [8], the
stability region of two interacting queues under random access
protocol with feedback leveraging and energy harvesting was
characterized. Other works can be found in [9], [10], where
derivations of the stability regions in the context of different
cognitive radio networks were considered. Finally, we show
that when the system operates within its stability region, the
average delay encountered by the packets of the PU and the
SU is not affected by the finiteness of energy.

To the best of our knowledge, the problem of characterizing
fundamental stable throughput and delay at both users of the



Fig. 1: System model
cognitive radio system under the proposed randomized service
policy with probabilistic relaying and energy harvesting at SU
queues has not been considered before.

II. SYSTEM MODEL

Fig. 1 depicts the model of the system under consideration.
The system is comprised of a PU and a SU transmitting their
packets to a common destination d. Each user has an infinite
queue, Qp and Qs, to store fixed length packets. Also, the SU
has another relay queue, Qsp, to store the packets overheard
from the PU. The arrival processes at the two queues, Qp and
Qs, are modeled as Bernoulli arrival processes with means
�p and �s, respectively [11]. Under our system model, the
average arrival rates are �p and �s packets per time slot, and
lie in the interval [0,1]1. The arrival processes at both users are
independent of each other, and are independent and identically
distributed (i.i.d) across time slots.

To store energy, the SU has a battery modeled as an energy
queue, QB . Energy is assumed to be harvested in a certain
unit and one unit of energy is consumed by each transmis-
sion attempt. The energy harvesting process is modeled as
Bernoulli arrival processes with mean � [8], [11]. Under our
system model assumptions, the average energy arrival rate is
� energy units per time slot, and is bounded as 0  �  1
[11].

The channel is slotted in time and a slot duration equals one
packet transmission time. A successful transmission requires
receiving the entire packet without error, otherwise, the packet
is discarded. Moreover, we assume that the SU performs
perfect sensing. Thus, the system is collision-free, since at
most one user is allowed to transmit in a given slot. For
a transmission to be successful, the channel must not be in
outage, i.e. the received SNR should not be smaller than a
pre-specified threshold. This threshold is the minimum value
of the SNR required by the receiver to perform an error-
free decoding. Let fpd, fsd, and fps denote the probability
of successful transmission between the PU and destination,
the SU and destination, and the PU and SU, respectively. It is
assumed throughout the paper that fpd < fsd. We assume that
a perfect (error-free) feedback channel exists via which the
destination sends a feedback to acknowledge the reception of

1The maximum service rate in our model is 1 packet/slot, since the slot
duration equals one packet transmission time, then the arrival rates must be
less than 1 otherwise the system will be unstable.

packets. Thus, an ACK is sent if a packet is correctly received.
The SU overhears and exploits this feedback.

Next, we describe our PU and SU channel access policy.
We assume that the PU has the priority to transmit a packet
whenever Qp is non-empty. An ACK is heard by both users
in the network if the packet is successfully decoded by the
destination. Thus, the packet exits the system. If the packet
is not successfully received by the destination but success-
fully decoded by the SU, Qsp either buffers the packet with
probability pa or discards it with probability (1 � pa). This
constitutes the probabilistic relaying admission policy. If the
packet is buffered in Qsp, the SU sends back an ACK to
announce successful reception of the PU’s packet. Therefore,
the packet is dropped from Qp and becomes the responsibility
of the SU to deliver it to the destination. If the packet is
neither successfully received by the destination nor decoded
by the SU or decoded but not admitted to Qsp, then it is
kept at Qp for retransmission in the next time slot. When the
PU is idle, the SU has the opportunity to transmit a packet
depending on the battery and data queues status. If the battery
queue is empty, then the SU is unable to transmit a packet.
In contrary, if the battery queue is not empty, then the SU
transmits a packet from either Qs or Qsp with probabilities
pq and (1 � pq), respectively. If the packet is successfully
decoded by the destination, it sends back an ACK and the
packet exits the system. Otherwise, it is kept at its queue for
later retransmission.

III. STABLE THROUGHPUT REGION

In this section, we characterize the stability region of the
system in Fig. 1 under the proposed randomized service policy
with probabilistic relaying and energy constraint at the SU
queues. In particular, we characterize the shrinkage in the
stability region due to the limited energy, which constitutes one
of the major contributions of this work. Moreover, we study
the effect of tuning system parameters, (pa, pq), on the stability
region of the system and how it may help increasing the
throughput of a certain user by tuning these parameters within
different cases, depending on the PU and SU performance
requirements and QoS constraints.

Stability can be loosely defined as having a certain quantity
of interest bounded. In the queuing theory context, we are
interested in the queue size being bounded. For a rigorous
definition of stability under more general scenarios, see [12]
and [13].

Lemma 3.1: For our system with energy limitations, and
for a fixed value of (pq, pa), the system is stable if the arrival
rates of Qp and Qs satisfy the following conditions:

�p <

�(1� pq)fsd(fpd + pafps(1� fpd))

pafps(1� fpd)
, �s < pqfsd�.

(1)

Proof: If the arrival and service processes of a queueing
system are strictly stationary, then one can apply Loynes’
theorem to check for stability conditions [14]. This theorem
states that if the arrival process and the service process of a



queueing system are strictly stationary, and the average arrival
rate is less than the average service rate, then the queue is
stable, otherwise it is unstable.

For Qp stability, the condition �p < µp must be satisfied,
where µp denotes the service rate of Qp. A packet departs Qp

if it is successfully received by the destination or is decoded
by the SU and is admitted to its relay queue. Thus, µp is given
by

µp = fpd + pafps(1� fpd). (2)

It is worth noting that, the service rate of packets in both
queues, Qs and Qsp, depends on the state of the battery queue,
QB at the secondary node and vise versa. This results in an
interacting system of queues, and complicates the stability
region characterization. We bypass this hurdle by using the
Dominant System concept originally proposed by Rao and
Ephremides in [12] in which we assume that Qs and Qsp

continue to transmit dummy packets even when they are
empty. This system “stochastically dominates” our system, that
is the SU queues lengths in the dominant system are always
larger than the SU queues lengths in our system if both, the
dominant system and our system, start from the same initial
state and have the same arrivals and encounter the same packet
losses.

By this dominant system, the battery queue, QB , is de-
coupled from Qs and Qsp and forms a discrete-time M/M/1
system with arrival rate � and service rate (1 � �p/µp). The
energy is consumed if and only if the PU’s queue is empty
which occurs with probability (1��p/µp). Therefore, we have
two different cases depending on comparing � to (1��p/µp).
If � > (1� �p/µp), the role of QB is ruled out as the energy
arrival rate is greater than the energy consumption rate and
the energy queue will saturate (no energy limitation). In this
case, the stability conditions are derived from the stability of
the data queues only as studied in [4] which are given by

�p <

fsd(1� pq) [fpd + pafps(1� fpd)]

fsd(1� pq) + pafps(1� fpd)
,

�s < pqfsd


1� �p

fpd + pafps(1� fpd)

�
.

(3)

On the other hand, if �  (1 � �p/µp), the effect of QB

prevails as the system becomes energy-limited. We expect the
stability region to shrink, compared to the no energy limitation
case, which is shown later. It follows from Little’s theorem
that QB is non-empty for a fraction of time

�

(1� �p/µp)
. We

will consider this case in our analysis. For Qsp stability, the
following condition must be satisfied

pafps(1� fpd)
�p

µp
< (1� �p/µp)(1� pq)fsd

�

(1� �p/µp)
.

(4)

A PU’s packet is buffered at Qsp if the link between the PU
and the destination is in outage which happens with probability
(1�fpd), whereas the link between the PU and the SU is not in
outage which happens with probability fps, and the packet is

admitted to Qsp which occurs with probability pa, while Qp is
not empty which has a probability of �p/µp. This explains the
left hand side of (4) which is the rate of packet arrivals to the
SU relay queue. The right hand side represents the service rate
seen by the packets of Qsp. A packet departs the relay queue if
Qp is empty, Qsp is selected to transmit a packet which occurs
with probability (1 � pq), the link between the SU and the
destination is not in outage and the battery queue is non-empty

which occurs with probability
�

(1� �p/µp)
. Rearranging the

terms of the above inequality yields the following condition
on the maximum achievable arrival rate at the PU

�p <


�(1� pq)fsd
pafps(1� fpd)

�
µp. (5)

substituting from (2) in (5) we get

�p <

�(1� pq)fsd(fpd + pafps(1� fpd)

pafps(1� fpd)
. (6)

From the condition �  (1� �p/µp), we conclude that �p

cannot exceed the value (1� �)µp. Therefore, (6) provides a
tighter bound on �p than the condition �p < µp.

For Qs stability, the following condition must be satisfied

�s < pqfsd(1� �p/µp)
�

(1� �p/µp)
, (7)

which leads to

�s < pqfsd�. (8)

Using the same argument, a packet departs Qs if Qp is
empty, Qs is selected to transmit a packet, the link between
the SU and the destination is not in outage, and the battery
queue is non-empty. This explains the service rate seen by the
packets of Qs given in the right hand side of (7) which is
independent of primary service and arrival rates and its queue
state. As a result, it does not depend neither on the state of the
Qp nor on pa. The reason for this behavior will be explained
later. By (6) and (8), we establish the result in (1).

Next, we study the effect of tuning pq and pa on the stability
region of the system. At first we begin by varying pq while
keeping pa constant, followed by varying pa while keeping pq

fixed.
Lemma 3.2: In case of �  (1 � �p/µp), the maximum

achievable arrival rate at the PU, �p, is monotonic decreasing
in both pq and pa. Furthermore, for a fixed �p, the maximum
achievable arrival rate at the SU, �s, is monotonic increasing
in pq and does not depend on pa.

On the other hand, for the case of � > (1 � �p/µp), the
maximum achievable arrival rate at the PU, �p, is monotonic
decreasing in pq . It is monotonic increasing in pa if pq lies
in the interval

⇣
0, 1� fpd

fsd

⌘
, and is monotonic decreasing in

pa if pq lies in the interval
⇣
1� fpd

fsd
, 1
⌘

. Furthermore, for a
fixed �p, the maximum achievable arrival rate at the SU, �s,
is monotonic increasing in both pq and pa.



Proof: For �  (1� �p/µp), taking the derivative of the
maximum achievable arrival rate at the PU , �p given by (6),
with respect to pq yields

@�p

@pq
=

��fsd(fpd + pafps(1� fpd))

pafps(1� fpd)
. (9)

Since pa, fsd, fps, fpd, and � are all positive numbers less than
one, then @�p

@pq
is negative definite irrespective of the choice of

pa > 0. Therefore, the maximum achievable �p is monotonic
decreasing in pq when �  (1� �p/µp).

Taking the derivative of (6) with respect to pa yields

@�p

@pa
=

��fps(1� fpd)fsdfpd
(pafps(1� fpd))2

. (10)

Since pa, fsd, fps, fpd, and � are all positive numbers less than
one, then @�p

@pq
is negative definite independent of the choice of

pq > 0. Therefore, the maximum achievable �p is monotonic
decreasing in pa when �  (1� �p/µp).

At the SU side, taking the derivative of (8), with respect to
pq yields

@�s

@pq
= �fsd. (11)

Since fsd and � are positive numbers less than one, then @�s
@pq

is positive definite irrespective of the choice of pa. Therefore,
the maximum achievable �s in case of �  (1 � �p/µp) is
monotonic increasing in pq .

Also, the maximum achievable arrival rate at the SU, �s,
does not depend on pa. This behavior can be explained as
follows: As the number of admitted packets from PU to SU’s
relay queue increases (which depends on the probability pa),
the amount of energy, which is consumed to deliver these
packets, increases. This means that, the effect of pa vanishes
by the additional consumed energy. Also, SU will not be able
to utilize the free time slot unless the battery has energy.
Therefore, �s does not depend on pa, while it depends on
�.

The case of � > (1 � �p/µp) has been proven in [4]. It
is worth noting that, pq does not affect the relation between
�p and pa in case of �  (1 � �p/µp), while it affects the
relation between them in case of � > (1��p/µp). An intuitive
explanation for this behavior is the following: in case of � 
(1 � �p/µp), the finite energy at the SU limits its ability to
relay the PU packets. In other words, when the battery queue
is empty the SU is unable to transmit PU’s packets in the
relay queue. Therefore, a fraction of the time slots in which
the PU is idle are wasted due to the SU’s finite battery. In
order not to waste any time slots, it is always better that the
PU retransmits its lost packets instead of relying on the SU to
forward them to the destination. That is why using the SU as a
relay in this case will decrease the PU throughput irrespective
of the channel quality between the SU and the destination.

In Fig. 2 and Fig. 3, we depict the effect of tuning (pq, pa)
on the maximum achievable �p. The PU throughput of both
systems, with and without energy limitation, is plotted against
pq and pa for � = 0.42. The system parameters are chosen as
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Fig. 2: Maximum achievable �p versus pq for pa = 0.5 and
� = 0.42.
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Fig. 3: Maximum achievable �p versus pa for pq = 0.5 and
� = 0.42.

follows: fpd = 0.31, fps = 0.42, and fsd = 0.8. It is worth
noting that, the split point of the two curves in both figures is
the point after which the condition �  (1��p/µp) holds and
the system becomes energy-limited. According to these fig-
ures, the maximum achievable arrival rate at the PU decreases
with the increase of pq and pa for the case �  (1� �p/µp).
The relation between �p and pq is intuitive, since increasing
the value of pq gives more chance for transmitting the SU own
packets at the expense of PU’s relayed packets. This, in turn,
reduces the degree of cooperation the PU experiences from
the SU and, hence, the maximum achievable �p decreases. For
the energy-limited scenario (beyond the curves split point), the
shortage in energy affects the transmission operation of the SU
queues. Therefore the SU cannot serve the relayed packet from
the PU if the battery queue is empty. As a result, the maximum
achievable �p decreases with the increase of pa. Moreover, the
energy limitation causes a loss in the PU throughput as shown
in the figures.

In Fig. 4 and Fig. 5, we depict the effect of tuning (pq, pa)
on the maximum achievable �s. The SU throughput is plotted
against pq and pa for � = 0.42, respectively. We also plotted
the SU throughput without energy limitation. The channel
success probabilities are the same as above. Once more, the
curves split point in both figures is the point after which the
condition �  (1 � �p/µp) holds and the system becomes
energy-limited. According to these figures, the maximum
achievable arrival rate at the SU increases with the increase
of pq while it remains constant with the change of pa for the
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Fig. 4: Maximum achievable �s versus pq for pa = 0.5 and
� = 0.42.

0 0.2 0.4 0.6 0.8 1
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

pa

λ s

 

 
System with energy limitation
System without energy limitation

Fig. 5: Maximum achievable �s versus pa for pq = 0.5 and
� = 0.42.

case when �  (1 � �p/µp). The relation between �s and
pq is intuitive, since increasing pq leads to an increase in the
number of SU own packets to be served. Thus, we conclude
that increasing pq is always in favor of the SU. On the other
hand, the maximum achievable �s is constant irrespective of
the value of pa due to the energy restrictions. Also, the energy
limitation causes a loss in the SU throughput as shown in the
figures.

We present next a complete characterization of the boundary
of the stability region for the whole system. In case of
�  (1 � �p/µp), we find the union over 0  pa  1
and 0  pq  1 of the stability regions given in (1). For
the region defined, we should either maximize �s for a given
�p or maximize �p for a given �s. We consider maximizing

�p =
�(1� pq)fsd(fpd + pafps(1� fpd)

pafps(1� fpd)
under the condition

�s = pqfsd�. It has been proven that �p is monotonically
decreasing in pa. We can get the minimum value of pa from
the condition � < (1��p/µp) which is pa = �p�(1��)fpd

(1��)fps(1�fpd)
.

For pq , we can get its value from the given condition in our
optimization problem which is given by pq = �s

fsd�
. Now,

substitute by pa and pq in �p to get a relation between �p

and �s which can be characterized as

�s = �fsd + (1� �)fpd � �p. (12)

This equation is valid in the region 0  pa  1 which implies
that (1��)fpd  �p  (1��)(fps(1�fpd)+fpd). By parallel
arguments, we can characterize the boundary of the stability
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Fig. 6: The stability boundaries for our system with � = 0.2,
0.5 and 0.8 and the system with no energy limitation.

region in case of � > (1� �p/µp) which is given by

�s = fsd �

fsd + fps(1� fpd)

fpd + fps(1� fpd)

�
�p. (13)

The stability region boundary depends on the values of �,
fps, fpd and fsd. If �  fps�fpdfps

fps+fsd�fpdfps
, the boundary of the

stability region for the whole system is given by (14) on the
top of the next page and if � >

fps�fpdfps
fps+fsd�fpdfps

, the boundary
of the stability region of the whole system is given by (15) on
the top of the next page.

In Fig. 6, the stability boundaries of the proposed sys-
tem with energy limitation are plotted for � = 0.2 where
�  fps�fpdfps

fps+fsd�fpdfps
and � = 0.5 and 0.8 where � >

fps�fpdfps
fps+fsd�fpdfps

, respectively. We also plotted the stability
boundary of the system without energy constraint. From the
figure, we can conclude that due to the energy constraint, there
is a loss in the stability region recognized by the gap between
the stability boundaries of the systems. This loss occurred as
Qs cannot be served at a rate greater than the energy harvesting
rate multiplied by the channel outage rate. This explains why
the stability boundaries of the system with energy constraint
cut the �s axis at �s = �fsd.

IV. DELAY ANALYSIS

In this section, we characterize the delay of the energy-
limited system. It is shown that under the conditions of
stability, the delay performance of the energy constrained
system does not differ from that of the system without energy
constraints.

First we consider a system with no outages in the channel
i.e. fsd = 1. Moreover, we assume the SU has a combined
queue Q

0

s to store its own packets and the relayed packets
from the PU. The combined arrival rate at Q

0

s is �

0

s and the
service rate is µ

0

s
2. It is well known that in a stable queue,

the departure rate is equal to the arrival rate, also each packet
departure consumes one unit of energy. Therefore, the energy

2Note that the fact that the system used for analysis has only one queue to
store the PU relayed packets and the SU packets does not change the energy
consumption rate of the battery queue since for a stable system all the packets
in the data queue will be served; therefore, the total amount of energy used
for data packet transmissions will be the same for our system and the system
used for analysis.



�s =

8
<

:

�fsd 0  �p  (1� �)fpd
�fsd + (1� �)fpd � �p (1� �)fpd  �p  (1� �)(fps(1� fpd) + fpd)
0 (1� �)(fps(1� fpd) + fpd)  �p  1

(14)

�s =

8
>>>>>><

>>>>>>:

�fsd 0  �p  (1� �)fpd
�fsd + (1� �)fpd � �p (1� �)fpd  �p  (1� �)(fps(1� fpd) + fpd)

fsd �
h
fsd+fps(1�fpd)
fpd+fps(1�fpd)

i
�p (1� �)(fps(1� fpd) + fpd)  �p  fsd(fpd + fps(1� fpd))

fsd + fps(1� fpd)

0
fsd(fpd + fps(1� fpd))

fsd + fps(1� fpd)
 �p  1

(15)

consumption rate, E
0
, is equal to the the packet arrival rate,

i.e. E

0
= �

0

s. Also, from the definition of the stability, the
following condition must be satisfied �

0

s < µ

0

s.

Since µ

0

s cannot exceed the energy harvesting rate �, it is
noted that, the energy consumption rate is less than the energy
harvesting rate E

0
< � and the battery will be saturated (i.e.,

never becomes empty).
Now, we move to the case in which packets can be lost

due to channel outage events, i.e., fsd < 1. In this case, the
service rate will be decreased by a factor fsd as packets will
be successfully received with probability fsd. As a result, the
data arrival rate, �

00

s , will be decreased by a factor fsd too,
i.e., �

00

s = fsd�
0

s. The energy consumption rate in this case,
E

00
, depends on the packet arrival rate as well as the fraction

1� fsd of lost packets due to channel outage. Therefore, the
energy consumption rate in this case is given by

E

00
= �

00

s + �

00

s (1� fsd) = �s
00(2� fsd), (16)

but since �

00

s = fsd�
0

s, then E

00
= �

0

sfsd(2 � fsd). From the
case with ideal channel we have �

0

s = E

0
then,

E

00
= E

0
fsd(2� fsd). (17)

In the last equation, note that the maximum value of fsd(2�
fsd) is 1 at fsd = 1. This means that, fsd(2� fsd)  1. As a
result, E

00
< E

0
< � and the battery will be saturated.

From previous discussion we can conclude that, “inside
the stable throughput region of the energy-limited system the
battery queue is always saturated and the average delay is
not affected by the finiteness of energy”. In other words, the
delay performance for the system with energy constraint will
be the same as the delay performance for the system without
energy constraint, where the delay of the latter system has
been derived in [4].

Now, to characterize the average delay encountered by the
packets of the PU as well as the SU, we have to calculate
the average length for each queue. It is worth noting that,
service processes at both Qs and Qsp depend on the state
of Qp. However, Qs and Qsp are independent, i.e., having
independent arrivals and departures. So that, we can use the
moment generating function and follow the same footsteps
in [4] to calculate the average length of Qs and Qsp. The
moment generating function of the joint lengths of Qp and

Qs is defined as

G(x, y) = lim
t!1

E

h
x

Qt
p
y

Qt
s

i

= lim
t!1

1X

i=0

1X

j=0

x

i
y

j
P

⇥
Q

t
p = i, Q

t
s = j

⇤
,

(18)

where E and P denote the statistical expectation and the
probability operators, respectively.

Thus, the sequence of characterizing Ns goes as follows.
First, we derive G(x, y), then take its derivative with respect
to y and put x = y = 1. After following previous procedures
Ns is given as following

Ns =
�p�sA+ (�2

s � �s)B(B + �p)

BC

,

(19)

where

A =pqfsd[fpd + pafps(1� fpd)� 1]

B =fpd + pafps(1� fpd)� �p

C =(�s � pqfsd)[fpd + pafps(1� fpd)] + pqfsd�p.

(20)

Also, by following same procedure to calculate the average
length of Qsp, Nsp. Nsp can be characterized as

Nsp =
m�

2
p + n�p

↵�

2
p + ��p + �

, (21)

where

m =pafps(1� fpd)[
(1� pq)fsd � fpd

fpd + pafps(1� fpd)

� (1� pq)fsd � pafps(1� fpd)]

n =pafps(1� fpd)[fpd + pafps(1� fpd)]

↵ =(1� pq)fsd + pafps(1� fpd)

� =[fpd + pafps(1� fpd)][�2(1� pq)fsd � pafps(1� fpd)]

� =(1� pq)fsd[fpd + pafps(1� fpd)]
2
.

(22)

For the PU, we can easily calculate Np by observing that Qp

is a discrete-time M/M/1 queue with arrival rate �p and service
rate µp. Thus, applying the Pollaczek-Khinchine formula [15],
Np is directly given as

Np =
��

2
p + �p

fpd + pafps(1� fpd)� �p
.

(23)
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Fig. 7: Comparison between simulation results and
theoretical results of the PU delay at pa = 1, pq = 0.5 and

� = 0.7.

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

λ

D s

 

 
System without energy limitation theoretical result
System with energy limitation simulation

Fig. 8: Comparison between simulation results and
theoretical results of the SU delay at pa = 1, pq = 0.5 and

� = 0.7.

The average packet delay for each queue can be calculated as
follows.

Dp =
Np +Nsp

�p
, Ds =

Ns

�s
, (24)

where Dp and Ds are the average packet delay for the primary
and secondary users, respectively.

In Fig. 7 and Fig. 8, the average delay encountered by the
packets of the PU and SU, respectively, are plotted against
� where we choose �p = �s = � for simplicity. These
figures compare the average delay of the system with energy
limitations to the simulation results for the energy-limited
system’s delay. In these figures, pa, pq and � are fixed at 1,
0.5 and 0.7, respectively.

It is noted from Fig. 7 and Fig. 8 that the simulated average
delay of the energy-limited system coincides with the delay
of the system without energy limitations for all values of �.
This verifies the proof at the beginning of this section that
inside the stability region the average delay is not affected by
the finiteness of energy. While the stability region is the only
factor that will be affected by the energy constraint.

V. CONCLUSIONS

This paper studied the queues stability and delay of cooper-
ative multiple access for cognitive radio systems in which the
secondary user (SU) has a rechargeable finite energy source.
The system in consideration has a randomized service policy

whereby the SU probabilistically selects to serve either the
queue of its own data or the relay queue. Moreover, the relayed
packet that fails to reach the destination is admitted to the relay
queue with some probability upon being successfully decoded
by the SU. The rechargeable energy source is modeled as
a queue, along with the data queues at the SU they form
an interacting system of queues. The stability region of this
system is characterized through the use of the dominant system
analysis approach, and the reduction in the stability region due
to the energy finiteness as well as the effect of the system
parameters on this region are characterized. Moreover, the
average packet delay encountered by the packets of the PU
and SU in the system with energy constraint is verified not to
be affected by the finiteness of the energy.
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