
Feedback-based Access Schemes in CR Networks:
A Reinforcement Learning Approach

Ehab M. El-Guindy‡, Karim G. Seddik‡, Amr A. El-Sherif+†, Tamer ElBatt⊥

‡Electronics and Communications Engineering Department, American University in Cairo, New Cairo 11835, Egypt.
+Wireless Intelligent Networks Center (WINC), Nile University, Giza 12588, Egypt.

†Department of Electrical Engineering, Alexandria University, Alexandria 21544, Egypt.
⊥Computer Science and Engineering Department, American University in Cairo, New Cairo 11835, Egypt.
Email: eelguindy@aucegypt.edu, kseddik@aucegypt.edu, aelsherif@nu.edu.eg, tamer.elbatt@aucegypt.edu

Abstract—In this paper, we propose a Reinforcement Learning-
based MAC layer protocol for cognitive radio networks, based on
exploiting the feedback of the Primary User (PU). Our proposed
model relies on two pillars, namely an infinite-state Partially
Observable Markov Decision Process (POMDP) to model the
system dynamics besides a queuing-theoretic model for the PU
queue, where the states represent whether a packet is delivered
or not from the PU’s queue and the PU channel state. Based
on the stability constraint for the primary user queue, the
quality of service (QoS) for the PU is guaranteed. Towards the
paper’s objectives, three Reinforcement Learning approaches are
studied, namely Q-Learning, Deep Q-Network (DQN), and Deep
Deterministic Policy Gradient (DDPG). Our ultimate objective is
to enhance the channel access techniques in the MAC protocols
by solving the POMDP without any prior knowledge of the
environment.

Index terms— Cognitive Radio, Reinforcement learning,
Queue Stability

I. INTRODUCTION

The evolution of cognitive Radios by authorizing Secondary
Users (SUs) to exploit the underutilized spectrum of Primary
Users (PUs) is essential to solving the scarcity problem of the
unused frequencies. However, SUs access is constrained by
not affecting the PUs network. Quality of service (QoS) level
is always guaranteed for the PUs in the presence of SUs. SUs
medium access control (MAC) schemes have attracted a lot of
interest over the last few years [1].

Many papers have focused on the use of the PU(s) feedback
information to devise better SUs’ MAC schemes. Eswaran
et al. [2] has considered the use of automatic repeat request
(ARQ) messages, that were received by the SU, to perceive
the packet rate achieved by the PU; the aim is to maximize
the secondary throughput while ensuring a minimal PU packet
rate. Furthermore, based on the primary link feedback, sec-
ondary power control is explored in [3]. While maintaining
particular PU QoS requirements, the goal was to maximize
the SU utility in a distributed scheme. Moreover, in [4], a
PU re-transmission based error control scheme is studied for
the sake of designing an optimal transmission policy for the
SU. Based on the PU re-transmission packet state, the SU
determines its transmission strategy.

Seddik et al. presented in [5] a secondary access scheme
that exploits the PU automatic repeat request (ARQ) feedback;

the SU refrains from accessing the channel upon it hears a
NACK feedback (FB) from the primary receiver (to allow
for collision-free re-transmission, thus avoiding sure colli-
sions). The scheme is shown to achieve higher secondary user
throughput while guaranteeing the PU QoS constraint. Further-
more, in [6], besides soft-energy sensing, the authors propose
the use of PU feedback information for designing the SUs’
access scheme under a PU stability constraint. Afterward, the
work in [7] introduced a partially observable Markov decision
process (POMDP) framework to design a SUs’ MAC protocol
exploiting the history of the PU feedback bits. Intuitively, A
greedy algorithm was proposed to simplify the solution for
the proposed POMDP problem. The greedy algorithm’s goal
was to maximize the instantaneous SU reward. However, the
work assumed perfect knowledge of the PU arrival rate, which
might not be available in many real-life scenarios.

Moreover, there has been another direction for designing
SUs’ access schemes by exploiting the channel quality in-
dicator (CQI) feedback [8]. Besides, the work in [9] has
examined the design of hybrid schemes that exploit both ARQ
and CQI feedback. However, all of the above works have
some assumptions (like the knowledge of the PU arrival rate
to optimize the SUs’ access decisions), which might not be
practical scenarios.

In this paper, we focus on the design of SUs’ access schemes
exploiting the primary network available feedback information
in the form of ARQ and CQI feedback bits. The problem of the
design of the SUs’ access scheme is formulated as a POMDP.
We focus on the use of different reinforcement learning (RL)
approaches, namely Q-Learning, Deep Q-Network (DQN), and
Deep Deterministic Policy Gradient (DDPG), to design SUs’
access schemes (i.e., solve the formulated POMDP problem)
that require minimal knowledge about the PU parameters.
The proposed RL based schemes are shown to achieve the
same performance of the previously proposed schemes (which
have some impractical, or hard to achieve, assumptions like
knowing the PUs’ arrival rates). Our proposed schemes would
allow for online implementations that can adapt to variations in
the primary network, which is not the case with the previously
proposed “static” algorithms.

II. SYSTEM MODEL

A time-slotted system is considered in our model, which
consists of one PU and one SU for the ease of exposition 1.
The PU hosts an infinite buffer to store incoming packets. The
PU average arrival rate is λp packets per time slot; the arrival
process is assumed to be a Bernoulli process with independent
and identically distributed arrivals. The packet’s transmission
time is assumed to fit exactly within the duration of one slot.
Therefore, λp will assume values in the range 0 ≤ λp ≤ 1.
Otherwise, the stability of the PU queue will not be attained.
Also, it is assumed that the SU queue is always backlogged,
i.e., the SU will always have a packet to transmit.

The SU employs a random access scheme with access
probability as(.), i.e., a slotted ALOHA access scheme is
adopted. The access probability will be adapted depending on
the SU estimate of the PU activity (PU state). In our proposed
model, and as will be discussed later, the access probability
will be a function of the PU feedback, whether ARQ and/or
CQI feedback states.

Finally, we assume a collision channel model. If either the
PU or the SU transmits in any time slot, this will result in a
successful transmission. Packets can only be lost in transmis-
sion in the case of concurrent PU and SU transmissions. In this
case, a collision is declared, and all the packets involved will
be lost. The PU receiver will send a NACK feedback for the
PU to re-transmit its packet. We also assume that all feedback
information is always received correctly at the receiving nodes
as these feedback bits are normally well protected by strong
channel codes.

A. POMDP Framework

We model the system dynamics using a POMDP model,
as explained next. RL algorithms are used to learn policies
to solve the proposed POMDP. For ease of exposition, and
due to space limitations, we refer the reader to [7] for the
full details of the POMDP model for the system exploiting
the ARQ feedback. The model can be readily extended to the
cases of CQI and hybrid (ARQ-CQI) systems.

In the ARQ based system, we have three possible PU
ARQ feedback states: ACKs, NACKs, and No-Feedback (No-
FB). An ACK denotes a successful transmission, a NACK
denotes a failed transmission, and No-FB means that the PU
did not attempt any transmission in the last time slot. In our
system, we assume that the SU has access to the PU feedback
information only. Therefore, a POMDP model fits well to our
problem, since the SU has partial information about the PU
activity. As a consequence, a belief vector is constructed at
the SU which represents the Markov chain states of the PU
queue.

As shown in Fig. 1, two classes of states are defined, which
are the iF ’s and iR’s states. The subscript F refers to the
first transmission, while the subscript R indicates a PU re-
transmission state, after receiving a NACK feedback.

1Extending the model to the case of multiple PUs and SUs, under TDMA
in the primary network is straightforward.

0
F

1
R

1
F

2
R

2
F

Arrival

N
o

Arri
va

l

A
rr

iv
a
l

No Arrival

N
o

 A
rr

iv
a

l,

C
o

ll
is

io
n

No Arrival, No

Collision

Arrival, No Collision

No Arrival, No

Collision

N
o

Arri
va

l

Arri
va

l,
C
ol

lis
io

n

A
rr

iv
a
l

N
o

 A
rr

iv
a

l,

C
o

ll
is

io
n

Arrival, No Collision

Fig. 1: The PU queue Markov chain model

A POMDP is defined by the tuples (S, A, O, T, Ω, R),
where the set A denotes the set of SU actions (which corre-
spond to different SU access probabilities). The set S denotes
the PU Markov chain states S = {{iF } , {jR}}, i = 0, 1, · · ·
and j = 1, 2, · · ·. The set O defines the observations set that
is presented by O = {ACK, NACK, No-FB}.

The function T (.) denotes the transition probabilities func-
tion, where T (s′|s, a) indicates the likelihood to go from state
s to state s′ given action a. The function Ω(o|s′, a) denotes
the probability of observing o given that action a is applied
to result in state s′. The function R(.) denotes the reward
function calculated as follows.

R(s, a) =

w a = access, s = 0F

−1 a = no access, ∀s = 0F

1 a = no access, ∀s 6= 0F

−1 a = access, s 6= 0F

. (1)

It is an immediate reward that the SU has earned for taking a
specific action and reaching a new state. If the queue of the
PU is empty, i.e., s = 0F and the SU accessed the channel, it
will gain a positive reward. However, in this same case and if
the SU does not access the channel, it receives a penalty due
to the lost transmission opportunity. Moreover, if the queue
is not empty and the SU accessed, it also receives a penalty.
On the other hand, if the SU does not access the channel, it
receives a positive reward for avoiding a sure collision with
the PU.

The belief vector is given by b(st) =
[b(0F)t, b(1F)t, b(1R)t, · · ·], where t is the time index.
After taking an action at and observing some ot+1, the new
belief for some state st+1 at time (t+ 1) is given by

b(st+1) = ηΩ(ot+1|st+1, at)
∑
st∈S

T (st+1|st, at)b(st), (2)

where η is a probability normalization factor given by

η =
1∑

st+1∈S Ω(ot+1|st+1, at)
∑
st∈S T (st+1|st, at)b(st)

.

For the system using CQI feedback values, the SU is
assumed to have access to the PU CQI feedback. We assume to
have a binary CQI feedback in the form of “GOOD” or “BAD”
channel. Upon receiving a good channel CQI feedback, the PU
accesses the channel to transmit the packet on the top of its

data queue. Upon receiving a bad channel CQI feedback, the
PU refrains from accessing the channel as the PU transmission
will certainly fail in this case. Again, allowing the SU to have
access to the PU CQI would allow the SU to have some extra
information to have better insight into the PU activity.

The PU channel is modeled as a two-state Markov chain
with “GOOD” and “BAD” states, as mentioned above. Let
pG denotes the probability of the channel being in the Good
state, and pB denotes the probability of the channel being in
the bad state. Let ζG and ζB be the steady-state probabilities
of the channel being in the good and bad states, respectively.
They can be easily shown to be given by

ζG =
1− pB

2− pB − pG
, and ζB =

1− pG
2− pB − pG

.

Finally, in the hybrid ARQ-CQI system, we assume that the
SU will have access to, both, the PU ARQ and CQI feedback.
In all of the above systems, the SU access decision can be
modeled as a POMDP. Allowing the SU to access the PU
feedback enables the SU to have “partial knowledge” about the
PU activity and this should result in better SU access decisions.

It should also be noted that solving the formulated POMDP,
using an RL-based approach, will always guarantee the stabil-
ity of the PU queue. As in the case of an unstable PU queue,
the SU will always collide with the PU packets whenever
it attempts to transmit any packet. In this case, the reward
function is minimized, not maximized, and this cannot be the
solution resulting from our RL-based algorithms.

B. POMDP MAC Policy
This section describes the mapping of the belief vector to

the action space. This mapping is affected by the reward of the
current state as well as the expected reward in the following
states, which is governed by the dynamics of the Markov
chain. This is attributed to the fact that the belief vector in
the next time instant will be affected by the present action. It
is possible to model the MAC policy as a Markov decision
process based on the belief vectors (belief MDP). Based on a
belief vector b and an action a, the expected reward is given
by

r(b, a) =
∑
s∈S

b(s)R(s, a). (3)

For any belief vector b, the SU access policy π is defined
by an action aπ = π(b)2. Over an infinite horizon, the
accumulated reward is the objective function to be maximized.
Starting with a belief vector b0, the estimated reward for
policy π is given by

Jπ(b0) =

∞∑
t=0

γtr(bt, at) =

∞∑
t=0

γtE
[
R(st, at) | b0, π

]
(4)

where 0 ≤ γ < 1 is a discount factor. The optimal policy π∗

is given by
π∗ = argmax

π
Jπ(b0) (5)

2Note the optimal policy can be defined as a probability measure over the
action space that is a function of the belief vector, i.e., the policy defines the
probability for each action under a certain belief vector.

where b0 is the initial belief vector as defined above.
For each belief state, the maximum expected reward value

specifies the optimal policy, π∗. It is closely modeled by the
best value function V ∗, which is the solution for the following
Bellman equation

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈O

Ω(o | b, a)V ∗(τ(b, a, o))
]
,

(6)
where τ(·, ·, ·) is the belief state transition function.

After introducing our POMDP model and the MAC design
policy, it should be noted that in a real-life scenario we might
not be able to construct our belief vectors b based on the
transition probability function T (.). For example, if the SU
does not know λp then it will not be able to construct the
belief vector, b, of the PU. Therefore, and unlike the work
in [7], we propose to implement an RL based MAC that
can efficiently learn in a model-free systems in which the
underlying dynamics are not fully characterized. Next, we will
present different RL algorithms that can be employed to design
our SU MAC scheme and compare their performance later via
extensive simulations.

III. ε-GREEDY Q-LEARNING ALGORITHM

Q-Learning is one of the most common approaches in
reinforcement learning. As in [10], at each time step, the SU
in state st chooses an action at and goes to the next state st+1

while receiving reward rt. Through computing and collecting
the experiences st, at, rt, and st+1, the RL agent (SU in
our case) can compute the state-action value function Q(s, a),
which is the expected overall future discounted reward when
the SU takes an action a in state s. The update equation for
the Q-values is given by:

Q(st, at)←Q(st, at)+α
[
rt+γmax

a
Q(st+1, a)−Q(st, at)

]
.

(7)

In the given formula, two major parameters that influence
the equation are α and γ. The parameter α is the learning rate
where 0 < α ≤ 1. It affects the extent to which the Q-values
are changed by following an action. On the other hand, γ
denotes the discount factor. It takes values in the range from
zero to one and controls the influence of future rewards on
the Q-value. The Q-Learning algorithm builds a lookup table
that lists a Q-value for each state-action pair. The SU optimal
policy is the deterministic policy that selects the action that
has the highest Q-value in each state. Therefore, the optimal
policy, π∗(s), is given by

π∗(s) =a Q(s, a).

To learn the Q-values, we adopt the ε-greedy approach
[11]. Accordingly, the agent decides between exploiting the
best-known action so far (i.e., the one that results in the
highest Q-value) and exploring new actions that might result
in higher rewards. The parameter ε is used as the probability
of exploring new actions. Normally, we start with a high ε
to explore more, not to be trapped in a local minimum. The
value of ε should decay with time.

A. Deep Q-Learning (DQN) Algorithm

Deep Q-Learning is a combination of Reinforcement Learn-
ing and Deep Learning. DQN emerged to solve infinite-state
MDP problems by learning a parametric approximation to the
Q(s, a) function. Moreover, the ε-greedy policy is used with
DQN. This gives more opportunity for random exploration of
actions as our machine learns to approximate the Q-values.
Through exploration, the SU will be able to explore a variety
of actions in different states at different arrival rates.

By discretizing the action space (i.e., discretizing the values
of the access probabilities), DQN can be used to learn the
best action for each PU feedback state. We model the access
decision as a classification neural network, and for each
feedback state, the machine should output the best action from
the set of discrete actions. The machine does this by estimating
the Q-value for each action (i.e., the machine will have a
number of outputs that equals the number of actions, each
estimating the Q-value corresponding to a specific action). The
best action at each state will be the action that results in the
highest Q-value.

For forward and backward propagation, the expected Q-
value for the state is called the target function. The Q-value
related to the action taken by the agent is updated while the
other actions’ Q-values are kept untouched. The target function
uses the Bellman equation to estimate the value function of
the action as in (7). Therefore, we have the following update
rule for the target Q-value at the i+ 1-th iteration

Qi+1(s, a) = r + γmax
a′

Qi(s′, a′), (8)

where s represents the state, a corresponds to the action, r
is the instantaneous reward, and s′ is the next state. (13)
estimates Q(s, a) as the reward plus the maximum predicted
Q-value of the following state discounted by γ, which is a
discount factor as defined before. Eventually, this value is sup-
posed to be predicted and learned by the model for every pair
(s, a). After estimating the action-value target function, the
best policy is shown to be a greedy policy, i.e., in each state s,
the policy selects the action a as π∗(s) = arg maxaQ

∗(s, a).
The loss function we adopt in our work is the Mean square

error (MSE), which calculates the square of the difference
between the predicted Q-value and the current estimated Q-
value as follows [12]

L(θ(i)) = E
[
(y(i) −Q(s, a; θ(i)))2

]
y(i) = E

[
r + γmax

a′
Q(s′, a′ : θ(i−1))|s, a

]
,

where θ(i) represents the set of the neural network parame-
ters at iteration i. Afterwards, back-propagation is done by
applying a gradient descent based update to the parameters to
minimize the loss function until reaching convergence.

B. Deep Deterministic Policy Gradient

As we will show later, both Q-Learning and DQN achieve
better performance compared to conventional schemes. How-
ever, both still have their drawbacks; they do not entirely

explore the full action space due to their discretization of
the action space. Motivated by this, a model-free Deep De-
terministic Policy Gradient (DDPG) algorithm is proposed
[13]. As an actor-critic off-policy algorithm, it uses a Deep
Neural Network (DNN) to learn and explore continuous access
probabilities in the action space. The DDPG approach is
divided into four networks, two networks for the actor and the
critic, and two for the target actor and target critic. Through a
parameterized actor function µ(s; θµ), with parameter vector
θµ, the actor maps states to actions that specify the current
policy. On the other side, the critic Q(s, a) maps states and the
actor output (action) to a Q-value function using the Bellman
equation.

The actor-network is updated by calculating the loss to the
target actor-network, which is updated slowly to ensure its
convergence. The actor update equation can be derived as

∇θµ ≈ E[∇θµQ(s, a; θQ)|s=sk,a=µ(sk|θµ)]

u E
[
∇aQ

(
s, a; θQ

)
|s=sk,a=µ(sk)∇θµ(s; θµ)|s=sk

]
,

(9)
where θQ is the parameter of the critic network (used to predict
the Q-values) and sk is the current state. The actor-network
aims to drive the policy that maximizes the long term reward
defined as

µ∗ = argmaxµEµ

[
r1 + γr2 + γ2r3 + · · ·+ γk−1rk

]
.

(10)

IV. NUMERICAL RESULTS

In our simulations, and for the case of discrete action
space (i.e., the case of Q-Learning and DQN), we assume
11 possible actions: A = {no access, access with probabilities
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We start with ε = 1
to favor exploration as the machine begins to learn, not to
be trapped in a local minimum. We set a decaying ε; the
decaying factor is 0.999, with a min exploration rate of 0.01.
The learning rate is set to be α = 0.0001; although it is very
small and the machine takes a longer time to converge, it
resulted in a stable set of actions each time the model is
trained based on our trials. The discount factor is set to be
γ = 0.95, which is the discount factor for future rewards. It
should be noted that the selection of our hyperparameters (like
the learning rate, discount factor, etc) is based on many trials
and we have selected the set of hyperparameters that resulted
in the best SU throughput results.

Fig. 2 depicts a performance comparison, in terms of the SU
throughput, between the Q-Learning algorithm and the greedy
algorithm proposed in [7] as well as the FB-based approach
proposed in [5]. We assume that collisions between the PU and
the SU are the only source of error. In the greedy approach of
[7], w = 0 means that the SU will always attempt transmission
in the case of ACK or no feedback. As a consequence, it
degrades the SU throughput at high PU arrival rates due to
frequent collisions. As w increases, there is less tendency for
the SU to access the channel. Hence, losing more transmission
opportunities over the channel for low PU arrival rates.

PU Arrival Rate
0 0.2 0.4 0.6 0.8 1

SU
 T

hr
ou

gh
pu

t

0

0.2

0.4

0.6

0.8

1
FB − no sensing

Greedy w = 0
Greedy w = 1
Greedy w = 1.5
Greedy w = 2
RL(Q− Learning r = 50)

Fig. 2: ARQ feedback-based access using RL (Q-Learning)
with r = 50 versus the greedy algorithm [7] and the

FB-based approach of [5]

As noticed from fig. 2, the best performance corresponds
to the case of RL with r = 50 (note that the value of r
was optimized as a hyperparameter in our model and r = 50
resulted in the best SU throughput over a wide range of PU
arrival rates). It causes the SU to aggressively access the
channel compared to the cases with a lower r. For example,
at an arrival rate of 0.6, the access probability is 1 for the
cases of no feedback and ACK, while with r = 1, the access
probabilities are 0.4 for the no feedback and 0.2 for the ACK.
For the case of r = 50, the access probability for the NACK
observations is always zero for all arrival rates as the SU
refrains from accessing the channel in this case, giving a
chance for the PU to transmit its packet collision-free.

Next, we consider the deep Q-Learning network (DQN)
approach. The deep Q-Learning network architecture consists
of three layers: the input layer, one hidden layer, and the output
layer. First, the network input layer is composed of three nodes
with a one-hot encoded state vector (3× 1). It represents the
three observations (ACK, NACK, and no feedback). Second,
we have a hidden layer with ten fully connected neurons
(10×1) with a Sigmoid activation function. Finally, the output
layer consists of eleven nodes that correspond to the eleven
actions of the SU (11 × 1) with a linear activation function.
The optimizer used in the prediction is the Adaptive Moment
Estimation (ADAM) [14].

Fig.3 compares the performance of the DQN approach for
r = 10 (again, the value of r was optimized as a hyperparam-
eter) to the greedy algorithm for different w values [7] and
also to the FB-based approach of [5]. Clearly, the DQN-based
approach outperforms the two access scheme while assuming
minimal information about the primary user (e.g., it does not
assume any knowledge of the PU arrival rate while the other
approaches assume perfect knowledge of the PU arrival rate).

It should be noted that comparing Q-Learning to DQN, we
get very similar performance in terms of the SU throughput.
DQNs are designed for large input state spaces that can not
be totally visited by Q-learning [12]. However, in our case,

PU Arrival Rate
0 0.2 0.4 0.6 0.8 1

SU
 T

hr
ou

gh
pu

t

0

0.2

0.4

0.6

0.8

1
FB − no sensing

Greedy w = 0

Greedy w = 1

Greedy w = 1.5

Greedy w = 2

RL(DQN r = 10)

Fig. 3: ARQ feedback using RL (DQN with r = 10) vs
conventional methods

Fig. 4: CQI feedback with RL (Q-Learning, DDPG) vs
HD-CQI [16]

we have a small input state space. In terms of convergence
time, DQN takes longer to converge compared to Q-Learning,
which gives an advantage to Q-Learning.

Next, we consider the DDPG-based approach. The actor-
critic network architecture consists of four layers: one input
layer, two hidden fully connected layers of 64 neurons each,
and one output layer. ADAM is used to learn the parameters
of the neural network with a learning rate of 10−4 and
10−3, respectively. A non-linear rectifier is used in all hidden
layers beside a tanh function in the output layer for bounding
the actions. The mini-batch size is set to be 64, and the
replay buffer size is set to be 106. For exploration, Ornstein-
Uhlenbeck noise was added to the action output. [15]

Fig. 4 compares the performance of the CQI-based access
schemes of the two proposed RL algorithms, namely, Q-
Learning and DDPG, to the baseline approach of [16] (where
a closed-form expression is derived) and the perfect sensing
upper bound. The probability of false alarm pF is set to 0.1
and the probability of detection pD is set to 0.9. Moreover, the
probability of the channel staying in the good pG, and the bad

PU Arrival Rate
0 0.2 0.4 0.6 0.8 1

SU
 T

hr
ou

gh
pu

t

0

0.2

0.4

0.6

0.8

1
Perfect sensing

(HD −Hybrid)

Hybrid(Q− Learning r = 20)

Hybrid(DDPG r = 10)

Fig. 5: Hybrid feedback with RL (Q-Learning, DDPG) vs
HD-Hybrid [9]

pB are 0.9 and 0.3, respectively. From this figure, it is clear
that the DDPG approach yields the best performance with a
slight performance gain over the Q-Learning approach. This
is attributed to the fact that DDPG exploits the whole space
of action probabilities and it does not discretize the action
space. The conventional method in [16] results in the worst
performance. It should be noted that at zero PU arrival rate, the
throughput is limited by the false alarm probability as the PU
queue is always empty in this case, which is 1 − pF = 0.9.
Also, at high arrival rates, the throughput converges to the
steady-state probability of the channel being in the bad state,
which is 0.125 in our case.

Finally, Fig 5 compares the SU throughput for four access
schemes, namely, the conventional (HD-Hybrid) approach [9],
the proposed Q-Learning and DDPG approaches, in addition
to the perfect sensing upper bound. Again, and as mentioned
above, at zero PU arrival rate, the throughput is limited by the
false alarm. We use the same simulation parameters of Fig
4. Clearly, the DDPG-based approach yields the best perfor-
mance, achieving a slight throughput gain over Q-learning. For
example, at a PU arrival rate of 0.6, the SU access probability
learned by Q-Learning in the ACK and good-CQI feedback is
0.5 achieving a throughput of 0.209. On the other hand, with
DDPG, the learned access probability is 0.44, which achieves
a slightly better SU throughput of 0.219. Allowing continuous
action space in the case of DDPG can, in general, result in
attaining higher rewards.

V. CONCLUSION

In this paper, we consider the problem of designing SUs’
access scheme in a cognitive radio system exploiting the
available PUs feedback information in the form of ARQ and
CQI feedback. We consider three systems; one in which the
SU has access only to the ARQ feedback, one in which the SU
has access only to the CQI feedback, and one in which the SU
has access to both the ARQ and CQI feedback. The problem
of SUs access decision is modeled as a Partially Observable

Markov Decision Process (POMDP) which is solved using dif-
ferent reinforcement learning (RL) based approaches, namely,
Q-Learning, DQN and DDPG. Contrary to prior work, all of
the RL based approaches assume minimal knowledge about the
PU in terms of PU arrival rate. Our results show the merits of
the proposed RL approaches in learning the PU activity based
only on observing its feedback. Finally, it should be noted that
the proposed approaches in this paper can be used on top of
any PU sensing scheme (e.g., energy sensing) and they are
always guaranteed to result in a performance gain.

REFERENCES

[1] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “Next genera-
tion/dynamic spectrum access/cognitive radio wireless networks: a sur-
vey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, Sep. 2006.

[2] K. Eswaran, M. Gastpar, and K. Ramchandran, “Bits through arqs: Spec-
trum sharing with a primary packet system,” in 2007 IEEE International
Symposium on Information Theory, June 2007, pp. 2171–2175.

[3] S. Huang, X. Liu, and Z. Ding, “Distributed power control for cognitive
user access based on primary link control feedback,” in IEEE Inter-
national Conference on Computer Communications (INFOCOM), San
Diego, CA, March 2010.

[4] M. Levorato, U. Mitra, and M. Zorzi, “Cognitive interference manage-
ment in retransmission-based wireless networks,” IEEE Transactions on
Information Theory, vol. 58, no. 5, pp. 3023–3046, 2012.

[5] K. Seddik, A. Sultan, A. El-Sherif, and A. Arafa, “A feedback-based
access scheme for cognitive radio systems,” in IEEE International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), San Francisco, CA, June 2011.

[6] A. Arafa, K. Seddik, A. Sultan, T. ElBatt, and A. El-Sherif, “A feedback-
soft sensing-based access scheme for cognitive radio networks,” Wireless
Communications, IEEE Transactions on, vol. 12, no. 7, pp. 3226–3237,
2013.

[7] K. G. Seddik and A. A. El-Sherif, “A POMDP framework for cognitive
mac based on primary feedback exploitation,” in 2014 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). IEEE,
2014, pp. 1281–1285.

[8] S. A. Attalla, K. G. Seddik, A. A. El-Sherif, and S. I. Rabia, “Soft-
sensing CQI feedback-based access scheme in cognitive radio networks,”
IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 3, pp. 486–499, 2018.

[9] ——, “Hybrid ARQ-CQI feedback-based access scheme in cognitive
radio networks,” IEEE Transactions on Cognitive Communications and
Networking, vol. 6, no. 2, pp. 728–739, 2020.

[10] J. Schilperoort, I. Mak, M. M. Drugan, and M. A. Wiering, “Learning
to play pac-xon with q-learning and two double q-learning variants,”
in 2018 IEEE Symposium Series on Computational Intelligence (SSCI),
2018, pp. 1151–1158.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[12] J. Liu, B. Krishnamachari, S. Zhou, and Z. Niu, “Deepnap: Data-driven
base station sleeping operations through deep reinforcement learning,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4273–4282, 2018.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[16] S. Attalla, K. Seddik, A. El-Sherif, and S. Rabia, “Channel quality
feedback-based access scheme for cognitive radio systems,” in accepted
for publication in IEEE Globecom Workshops: 5th International Work-
shop on Emerging Technologies for 5G Wireless Cellular Networks
(GC16 Workshops ET5G), Dec. 2016.

