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Abstract—We consider the effects of spectrum sensing errors
on the performance of cognitive radio networks from a queueing
theory point of view. In order to alleviate the negative effects
of those errors, a novel design of spectrum access mechanism
is proposed. This design is based on the observation that, ina
binary hypothesis testing problem, the value of the test statistic
can be used as a confidence measure for the test outcome. This
value is hence used to specify a channel access probability for
the secondary network. The access probabilities as a function
of the sensing metric are obtained via solving an optimization
problem designed to maximize the secondary service rate given
a constraint on primary queue stability. The problem is shown
to be convex and, hence, the global optimum can be obtained
efficiently. Numerical results reveal a significant performance
improvement in the maximum stable throughput of both primary
and secondary networks over the conventional technique of
making a hard binary decision and then transmitting with a
certain probability if the primary is sensed to be inactive.

I. I NTRODUCTION

Cognitive radio technology prescribes the coexistence of
licensed (or primary) and unlicensed (secondary or cognitive)
radio nodes on the same bandwidth. While the first group is
allowed to access the spectrum at any time, the second seeks
opportunities for transmission by exploiting the idle periods
of primary nodes. In [1] and [2] the cognitive radio prob-
lem is investigated from an information-theoretic standpoint,
where the cognitive transmitter is assumed to transmit at the
same time and on the same bandwidth of the primary link.
Centralized and decentralized protocols at the media access
control (MAC) layer aiming at minimizing secondary nodes
interference with primary transmissions have been studiedin
[3] and [4] by modeling the radio channel as either busy or
available according to a Markov chain. The question of how
to efficiently and fairly share the spectrum among multiple
dissimilar users has been addressed from a game theoretic
viewpoint in [5], [6].

Spectrum sensing is an essential functionality of cognitive
radios. In general, spectrum sensing techniques can be classi-
fied into three categories: energy detection [7], matched filter
coherent detection [8], and cyclostationary feature detection
[9]. While these classic signal detection techniques are well
known, detecting primary transmitters in a dynamic wireless
environment with noise uncertainty, shadowing, and fadingis
a challenging problem as articulated in [10].

In this paper we consider the effects of spectrum sensing
errors on the performance of cognitive radio networks. While
the issue of spectrum sensing errors has been investigated
at the physical layer [10], [11], [12], [13], [14], cognitive
multiple access design in the presence of sensing errors has
received little attention. To mitigate the negative impactof
sensing errors, we propose a novel spectrum access mechanism
and make the following contribution.

Our design is based on the observation that, in a binary
hypothesis testing problem, the value of the test statisticcan
be used as a measure of detection reliability. The further the
value of the test statistic is from the decision threshold, the
more confident we are that the decision is correct. Therefore,
instead of using the hard decisions of the spectrum sensor to
decide whether to access the channel or not, a secondary user
can have different access probabilities for different values of
the test statistic. For instance, the access probability can be
higher for the values of the test statistic further away from
the decision threshold, and vice versa. Using this technique,
one can significantly reduce the probability of collision with
primary users and also the probability of overlooking spectrum
opportunities. This is reflected in a stable throughput for both
the primary and secondary networks that considerably exceeds
that obtained via the hard-sensing conventional scheme of de-
termining whether the primary is active or not and transmitting
with a certain probability in the case of inactivity. The access
probabilities as a function of the sensing metric are obtained
via maximizing the secondary service rate given a constraint
on primary queue stability. The optimization problem is shown
to be convex and, hence, can be solved efficiently [15].
Note that the idea of “soft” sensing was introduced in [16].
However, the focus was physical layer power adaptation to
maximize the capacity of the secondary link.

The rest of the paper is organized as follows. We provide
the system model and discuss spectrum sensing in Sections II
and III, respectively. Our proposed spectrum access technique
is presented in Section IV, whereas some numerical results are
provided in Section V. Section VI concludes the paper.

II. SYSTEM MODEL

The uplink of a TDMA cellular network is considered
as the primary network. It consists ofMp source nodes
numbered1, 2, ..., Mp communicating with a base station



(BS). A secondary network, consisting ofMs nodes numbered
1, 2, ..., Ms, tries to exploit the unutilized channel resources
to communicate their own data packets using slotted ALOHA
as their multiple access protocol. LetMp = {1, 2, ..., Mp}
denote the set of primary nodes, andMs = {1, 2, ..., Ms}
denote the set of secondary nodes.

Secondary users independently exploit instantaneous spec-
trum opportunities in the channel (in the form of idle time
slots). At the beginning of each time slot, secondary nodes
sense the medium to detect its state. Based on the sensing
outcomes, the secondary user decides whether to access the
channel or not. At the end of the slot, the receiver acknowl-
edges each successful transmission.

A. Channel Model

The wireless channel between a given node and its destina-
tion is modeled as a Rayleigh flat fading channel with additive
white Gaussian noise. The signal received at a receiving node
j from a transmitting nodei at time t can be modeled as

yt
ij =

√

Giρ
−γ
ij ht

ijx
t
i + nt

j , (1)

whereGi is the transmit power, assumed to be the same for
all nodes,ρij denotes the distance between the two nodes,
γ is the path loss exponent, andht

ij is the channel fading
coefficient between nodesi and j at time t. The channel
coefficients are modeled as independently and identically
distributed (i.i.d) zero mean, circularly symmetric complex
Gaussian random variables with unit variance. The termxt

i

denotes the transmitted signal which has an average power of
unity, and is assumed to be drawn from a constant modulus
constellation with zero mean (M-ary PSK for instance). The
noise termsnt

j are modeled as i.i.d additive white complex
Gaussian processes with zero mean and varianceN0. Since
the arrivals, the channel gains, and the additive noise processes
are all assumed stationary, we can drop the indext without
loss of generality.

Success and failure of packet reception is characterized by
outage events and outage probabilities. The outage probability
is defined as the probability that the Signal to Noise Ratio
(SNR) at the receiver is less than a given SNR thresholdζ.
For the channel model in (1) the probability of outage can be
written as,
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)
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(2)
Furthermore, we assume that whenever there is a collision

between a primary transmission and a secondary transmission,
or between two or more secondary transmissions, all the
packets involved are lost.

B. Queueing Model

Each node in the primary or secondary networks has an
infinite buffer for storing fixed length packets (see Fig. 1).
The channel is slotted in time and a slot duration equals
the packet transmission time. The arrivals at theith primary
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Fig. 1. Network queueing and channel model

node’s queue(i ∈ Mp), and thejth secondary node’s queue
(i ∈ Ms) are Bernoulli random variables, i.i.d from slot to
slot with meanλi

p and λj
s, respectively. Hence, the vector

Λ = [λ1
p, ..., λ

Mp

p , λ1
s, ..., λ

Ms
s ] denotes the average arrival

rates. Arrival processes are assumed to be independent from
one node to another.

Primary users access the channel by dividing the channel
resources, time in this case, among them; hence, each node is
allocated a fraction of the time. LetΩp = [ω1

p, ω2
p, ..., ω

Mp

p ]
denote a resource-sharing vector, whereωi

p ≥ 0 is the fraction
of time allocated to nodei ∈ Mp, or it can represent the
probability that nodei is allocated the whole time slot [17].
The set of all feasible resource-sharing vectors is specified as
follows

̥p =







Ωp = (ω1
p, ω2

p, ..., ωMp

p ) ∈ ℜ+Mp :
∑

i∈Mp

ωi
p ≤ 1







,

(3)

whereℜ+Mp is the set ofMp dimensional vectors with real,
non-negative elements.

In a communication network, the stability of the network’s
queues is a fundamental performance measure. Stability can
be loosely defined as having a certain quantity of interest kept
bounded. In our case, we are interested in the queue size being
bounded. For an irreducible and aperiodic Markov chain with
countable number of states, the chain is stable if and only if
there is a positive probability for every queue of being empty,
i.e., limt→∞ Pr{Qi(t) = 0} > 0. (For a rigorous definition
of stability under more general scenarios see [18] and [19]).
An arrival rate vectorΛ = [λ1

p, ..., λ
Mp

p ] is said to be stable if
there exists a resource sharing vectorΩp ∈ ̥p such that all
the queues are stable.

If the arrival and service processes of a queueing system
are strictly stationary, then one can apply Loynes’s theorem
to check for stability conditions [20]. This theorem statesthat
if the arrival process and the service process of a queueing
system are strictly stationary, and the average arrival rate is
less than the average service rate, then the queue is stable,
otherwise it is unstable.



It is important to note that, in the sequel, we assume that
all Mp primary users have the same arrival rateλp, and all
Ms secondary users have the same arrival rateλs. Moreover,
all primary users share the same channel statistics, and all
secondary users share the same channel statistics. That is,the
channels of each network are symmetric.

III. SPECTRUM SENSING

In our study of the effect of sensing errors on cognitive ra-
dios performance, and in our proposed joint design technique,
we adopt the non-coherent energy detection technique because
of its simplicity and versatility. Detection of the presence of the
ith primary user by thejth secondary user can be formulated
as a binary hypothesis test as follows,

H0 : yt
ij = nj

H1 : yt
ij =

√

Giρ
−γ
ij ht

ijxi + nj . (4)

The null hypothesisH0 represents the absence of the primary
user, hence a transmission opportunity for the secondary user.
And the alternative hypothesisH1 represents a transmitting
primary user.

The performance of the spectrum sensor is characterized
by the two types of errors and their probabilities, (i) false
alarms having probabilityα, (ii) and missed detections having
probabilityβ,

α , Pr{decideH1|H0 is true} , (5)

β , Pr{decideH0|H1 is true} . (6)

A false alarm occurs when an idle channel is erroneously
detected as busy, thereby depriving the secondary users from
a possible transmission opportunity. On the other hand, a
miss event, where a secondary user fails to detect primary
activity, results in a collision between primary and secondary
transmissions and a degradation in the performance of the
primary system. With the assumption that secondary users
do not have prior knowledge of primary activity patterns, the
probability of misdetectionβ could be minimized subject to
the constraint that the probability of false alarm is no larger
than a given valueα using the optimal Neyman-Pearson (N-P)
detector [8].

It follows from the received signal model of (1) that under
hypothesisH0 the received signalyij is a complex Gaussian
random variable with zero mean and varianceσ2

0 = N0,
and under hypothesisH1, yij is a complex Gaussian random
variable with zero mean and variance

σ2
1 = Giρ

−γ
ij + N0.

Therefore, the likelihood ratio test for the optimal N-P detector
can be written as follows,
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Pr{yij |H1}
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=
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Fig. 2. CDF of the decision statistic under both hypotheses.The vertical
line marks the position of the decision threshold.

which can be simplified to

||yij ||
2
H1

≷
H0

η′ − log
σ2
0

σ2
1

1
σ2
0
− 1

σ2
1

= η. (8)

From (8), the spectrum sensing problem has been reduced
to a simple comparison of the received signal energy||yij ||

2 to
a thresholdη. The optimum threshold could then be calculated
through the constraint on the false alarm probability. We first
note that, from the received signal model of (1),||yij ||

2 is
exponentially distributed with parameters1/2σ2

1 and 1/2σ2
0,

under H1 and H0, respectively. Therefore, the false alarm
probability is

α = Pr{||yij ||
2 > η|H0} = e

− η

2σ2
0 . (9)

From which η = −2σ2
0 log(α). Finally, the probability of

misdetection is

β = Pr{||yij ||
2 < η|H1} = 1 − e

−
σ2
0 log(α)

σ2
1 (10)

It is noted that in the design above, the spectrum sensor
operates on a single sample of the received signal. Increasing
the number of samples certainly increases sensing reliability.
However, we limit ourselves to this design for the purpose of
mathematical simplicity and without loss of generality.

IV. PROPOSEDSPECTRUMACCESSMECHANISM

In a listen-before-talk cognitive radio network, secondary
nodes’ channel access decisions are solely based on the
outcomes of the spectrum sensing phase. Occurrence of errors
in spectrum sensing is inevitable, and results in either a lost
transmission opportunity or a collision as explained above. To
overcome the negative effects of spectrum sensing errors and
for the secondary users to have better channel access decisions,
it is necessary to find a method with which they can assess the
reliability of the spectrum sensor outcomes. Here we propose
the use of the decision statistic||yps||

2 used by the energy
detector as a measure for the reliability of the spectrum sensor
decisions.

The reasoning behind the use of the value of the decision
statistic is that under hypothesisH0, the value of||yps||

2 has
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Fig. 3. Division of the interval[0, η] into subintervals and the associated
access probabilities.

a much higher probability of being closer to zero and far away
from the threshold, as can be seen in Fig. 2 depicting the CDF
of ||yps||

2 under both hypotheses. Therefore, the lower the
value of||yps||

2, the more likely hypothesisH0 is true, and the
more reliable the decision is. On the other hand, as the value
of the decision statistic approaches the decision threshold it is
more or less equally likely that it is resulting from either one
of the hypotheses. Therefore, the closer the value of||yps||

2

is to the decision threshold, the less reliable the outcome of
the spectrum sensor is.

In order to exploit the reliability measure established above
in taking channel access decisions, we propose the following
scheme for channel access:

• The interval[0, η] is divided inton subintervals as shown
in Fig. 3.

• For each subintervali ∈ [1, n], assign an access proba-
bility ai.

• Whenever the decision statistic falls in theith interval,
secondary user will access the channel with the associated
access probability.

• In the case when||yps||
2 > η, secondary user does not

access the channel.

This scheme enables us to have higher access probabilities
for the subintervals closer to zero, since in these subintervals
there is a very low probability of colliding with primary trans-
missions. Moreover, lower access probabilities are assigned to
the subintervals close to the decision threshold where there is
a higher risk of collisions. It should be noted that under the
proposed scheme, the decision thresholdη is not necessarily
chosen according to the Neyman-Pearson detector design.

In this work we consider the stability of both primary
and secondary networks’ queues as our main measure of
performance and design criteria. The cognitive principle is
based on the idea that the presence of the secondary system
should be “transparent” to the primary, and since we are
interested in the stable throughput of primary and secondary
networks, we define the secondary system “transparency” as
not affecting primary stability. In other words, for a givensta-
ble primary system with arrival rateλp, the secondary activity
is considered transparent if the primary system maintains its
stability during the operation of the secondary system. Our
main design criterion for secondary access is to maximize sec-
ondary throughput under the constraint that primary stability
is not affected. This design criteria can be formulated as the
following constrained optimization problem

max
ai,i∈[1,n]

µs, subject toλp < µp. (11)

To solve the optimization problem of (11), we start by
calculating the average primary and secondary service rates,
µp andµs, respectively, under the proposed secondary access
scheme. First we note that because of collisions between
primary and secondary transmission, the group of primary and
secondary queues form an interacting system of queues. In
other words, the service rate of a given queue is dependent
on the state of all other queues, whether they are empty or
not. Studying the stability conditions for interacting queues
is a difficult problem that has been addressed for ALOHA
systems [19], [21] [22]. The concept of dominant systems
was introduced and employed in [19] to help find bounds on
the stability region of ALOHA with collision channel. The
dominant system in [19] was defined by allowing a set of
terminals with no packets to transmit to continue transmitting
dummy packets. In this manner, the queues in the dominant
system stochastically dominate the queues in the original
system. Or in other words, with the same initial conditions
for queue sizes in both the original and dominant systems, the
queue sizes in the dominant system are not smaller than those
in the original system.

To study the stability of the interacting system of queues
consisting of primary and secondary nodes’ queues, we make
use of the dominant system approach to decouple the inter-
action between queues. We define the dominant system as
follows:

• Arrivals at each queue in the dominant system are the
same as in the original system.

• Time slots assigned to primary nodei ∈ Mp are identical
in both systems.

• The outcomes of the “coin tossing” (that determines
transmission attempts of relay and secondary nodes) in
every slot are the same.

• Channel realizations for both systems are identical.
• The noise terms generated at the receiving ends of both

systems are identical.
• In the dominant system, secondary nodes attempt to

transmit dummy packets when their queues are empty.

Under this dominant system, the service process of theith

primary user can be defined as follows,

Y t
i =

[

At
i

⋂

Ot
id

⋂

l∈Ms

{

B
⋂

Ps

}

]

, (12)

whereAt
i denotes the event that slott is assigned to primary

useri, Ot
id denotes the event that theith primary node link to

its destination is not in outage.B is the event of a missed
detection, andPs is the event that a secondary node has
permission to transmit. The joint event of misdetection and
permission for channel access has a probability

Pr
{

B
⋂

Ps

}

= p1
s =

∑

i∈[1,n]

p1
i ai, (13)

whereai is the access probability associated with subintervali
(see Fig. 3), andp1

i is the probability that the value of||yps||
2

falls in theith subinterval when hypothesisH1 is true (primary



user exists in the channel), which from the signal model of
(1) is given by

p1
i = exp

(

−
(i − 1)η

2nσ2
1

)

− exp

(

−
iη

2nσ2
1

)

. (14)

Similarly, we define the probability that a secondary user
accesses the channel when hypothesisH0 is true as

p0
s =

∑

i∈[1,n]

p0
i ai, (15)

where

p0
i = exp

(

−
(i − 1)η

2nσ2
0

)

− exp

(

−
iη

2nσ2
0

)

. (16)

Therefore, the average primary service rate is given by

µp =
1 − P o

pd

Mp



1 −
∑

i∈[1,n]

p1
i ai





Ms

, (17)

whereP o
pd is the outage probability of the link between any

primary node and its destination.
For a secondary user to gain uncontested access to an idle

time slot, it should correctly identify the slot as idle and have
access permission. At the same time for all other secondary
users not to access that slot, they either do not have access
permission or they detect the time slot as busy. Therefore, the
service process of thekth secondary user can be modeled as

Y t
k =

∑

i∈Mp

[
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i

⋂

{

Qt
i = 0

}

⋂
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kd

⋂

A
⋂
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⋂

l∈Ms\k

{

A
⋃
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}]

, (18)

whereA is the event of false alarm, and{Qt
i = 0} denotes

the event that theith primary node’s queue is empty, i.e., the
node has no packet to transmit. According to Little’s theorem
[23], the probability of the queue being empty is(1−λp/µp).
The average secondary service rate is then given by

µs =


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
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λpMp
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1
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1 −
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p0
i ai





Ms−1

(19)

Fortunately, the optimization problem of (11) using (17) and
(19) can be converted to a convex program. The global
optimum of convex optimization problems can efficiently be
obtained via standard numerical techniques [15].

The convexity of problem (11) given (17) and (19) can
be shown by taking the logarithm, which is a monotonic
function, of both the objective function and the constraint,
and applying the rule that a function is convex if and only
if it is convex when restricted to any line that intersects its
domain [15]. Due to space limits, we consider here only the
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term 1− ǫ
(

1 − pT a
)−Ms with ǫ = λpMp/

(

1 − P o
pd

)

, a is a

column vector with elementsai, p is a column vector ofp1
i ,

andT denotes matrix transposition. We form the function

g (t) = log
(

1 − ǫ
(

1 − pT ā − tpT v
)−Ms

)

(20)

where t is a scalar parameter,̄a belongs to the domain of
the problem, andv is a vector such that̄a + tv also belongs
to the domain of the problem. The domain is specified by the
inequality constraint of the optimization problem (11) andthat
0 ≤ ai ≤ 1 ∀i.

According to the aforementioned property of convex func-
tions, if g (t) is proved to be concave with respect tot
(and, hence, its negative would be convex), then the function
log
(

1 − ǫ
(

1 − pT a
)−Ms

)

is concave with respect to allai.

The concavity ofg (t) can be easily proven via differentiating
twice and examining the sign of the second derivative, which
is given by

g̈ (t) =
ǫMs

(

pT v
)2
[

ǫ − (Ms + 1)
(

1 − pT ā − tpT v
)Ms

]

[

(1 − pT ā − tpT v)
Ms+1

− ǫ (1 − pT ā − tpT v)
]2

Since the queueing stability condition,λp < µp, re-
quires that ǫ <

(

1 − pT ā − tpT v
)Ms , then ǫ <

(Ms + 1)
(

1 − pT ā − tpT v
)Ms . Consequently,̈g (t) is nega-

tive andlog
(

1 − ǫ
(

1 − pT a
)−Ms

)

is concave.

V. RESULTS AND DISCUSSIONS

Here we compare the performance of the proposed joint
design of spectrum sensing and channel access mechanisms
with the conventional approach based on the Neyman-Pearson
detector design. We consider a system withMp = 4 pri-
mary users andMs = 2 secondary users. Distance between
primary users and their destination is set to100m, distance
between secondary users and their destination is also100m,
and distance between primary and secondary users is150m.
SNR threshold is25dB, transmit power is100mW, path loss
exponentγ = 3.7, andN0 = 10−11.

Fig. 4 illustrates the stability regions for the ideal case with
no sensing errors, the N-P based detector, and our joint design
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scheme withn = 4 subintervals, using the same threshold
as the one used by the N-P design for a false alarm rate
α = 0.1. It is clearly seen that due to sensing errors the
conventional design based on the N-P criterion suffers from
a huge performance degradation from the point of view of
the stability of both primary and secondary networks. The
proposed channel access scheme, on the other hand, is able
to achieve a stability region which is at least 80% of the
stability region of the perfect sensing case. This significant
improvement is mainly because the proposed access scheme
does not blindly rely on the outcome of the spectrum sensing
operation, but also takes the reliability of the measurements
into consideration.

To get more insight into how the channel access probabili-
ties are selected, Fig. 5 depicts the channel access probabilities
as a function of primary arrival rate. It is noted thata1, the
access probability for the interval nearest to zero, takes the
highest values. This is expected since measurements that land
in the corresponding interval have the highest probabilityof
being generated when no primary users are in the channel,
hence it is safe that secondary users transmit. As the primary
arrival rate increases, all the access probabilities decrease
to limit secondary interference to primary transmissions in
order to guarantee the stability of primary queues. It is also
noted thata3 and a4 are exactly zero for all values ofλp,
which means that to guarantee queues’ stability transmissions
in the corresponding intervals are not allowed. Furthermore,
it indicates that our access scheme is not affected by the
choice of the thresholdη since access probabilities are adapted
accordingly.

VI. CONCLUSIONS

In this paper we considered the negative effects of spec-
trum sensing errors on the performance of a cognitive radio
networks from a MAC layer perspective. To mitigate these
negative effects a novel design of the spectrum access access
scheme was proposed and analyzed. The joint design made
use of the fact that, in a binary hypothesis testing problem,
the value of the test statistics could be used as a measure
of how reliable the test outcome is. Analytical results of
the system’s performance under the proposed scheme show
significant improvements in terms of the throughput of both

primary and secondary networks.
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