
Fed-Sophia: A Communication-Efficient
Second-Order Federated Learning Algorithm

Ahmed Elbakary1,2, Chaouki Ben Issaid1, Mohammad Shehab1, Karim Seddik2, Tamer ElBatt3,4, Mehdi Bennis1
1Centre for Wireless Communications (CWC), University of Oulu, Finland

2Department of Electronics and Communications Engineering, American University in Cairo, Egypt
3Department of Computer Science and Engineering, American University in Cairo, Egypt
4Department of Electronics and Communications Engineering, Cairo University, Egypt

Abstract—Federated learning is a machine learning approach
where multiple devices collaboratively learn with the help of
a parameter server by sharing only their local updates. While
gradient-based optimization techniques are widely adopted in this
domain, the curvature information that second-order methods
exhibit is crucial to guide and speed up the convergence. This
paper introduces a scalable second-order method, allowing the
adoption of curvature information in federated large models.
Our method, coined Fed-Sophia, combines a weighted moving
average of the gradient with a clipping operation to find the
descent direction. In addition to that, a lightweight estimation of
the Hessian’s diagonal is used to incorporate the curvature infor-
mation. Numerical evaluation shows the superiority, robustness,
and scalability of the proposed Fed-Sophia scheme compared to
first and second-order baselines.

Index Terms—Distributed optimization, federated learning,
second-order methods, deep neural networks, communication
efficiency.

I. INTRODUCTION

Recent advances in edge computing have paved the way to
enable new machine learning paradigms (ML). One promising
paradigm is federated learning (FL) [1], [2], where devices
preserve their local data and only share, with a parameter
server (PS), their local models. Privacy preservation and data
locality are two major benefits of FL, in contrast to traditional
centralized ML models, which require the entire dataset to
be stored in a central cloud. On the contrary, FL relies on a
two-stage approach. First, each device performs local training
independently, using its own local data. After one or more
iterations of local training, each device sends its local model or
gradient to the PS. Afterward, the models are aggregated using
one of the known aggregation schemes in the literature [3].
Finally, after aggregation, the PS shares the refined model with
all devices for enhanced performance. This process continues
in an iterative manner over multiple communication rounds
until convergence. The ultimate goal of FL is to reach a
consensus and find a global model that solves the task at hand.

When using first-order methods, clients employ the gradient
to find a descent direction that could guide the convergence.
Meanwhile, the default second-order optimization technique is
Newton’s method, which requires computing the full Hessian
and using it as a pre-conditioner for the gradient. In our
work, instead of computing the full Hessian as in Newton’s

method, which comes with a heavy computational cost, we
rely on an estimation of the Hessian’s diagonal to incorporate
the curvature information across each dimension into the
convergence process. One problem stemming from Newton’s
method is that it might converge to a saddle point instead of a
local minimum. Another issue with Hessian-based methods is
that the Hessian entries might mislead the convergence process
by capturing non-accurate curvature information due to sudden
changes in the loss function’s curvature [4]. To mitigate these
problems, a clipping operation is introduced to guard against
non-positive entries of the Hessian.

The main contributions of this paper can be summarized as
follows

• We propose Federated Sophia (Fed-Sophia), a scalable
second-order method that enables large models to make
use of the curvature information of the loss function. In
addition to that, Fed-Sophia can handle heterogeneous
settings where the data distribution differs among devices.

• The proposed method uses a lightweight estimation of the
Hessian and only shares the model’s parameter vector,
making it computation and communication-efficient.

• Several numerical experiments are conducted to show
that Fed-Sophia outperforms other baselines for solving
an image classification task using convolutional neural
network (CNN) or multi-layer perception (MLP) models.
Furthermore, we compare the energy consumption and
the carbon footprint of Fed-Sophia to other baselines.

The rest of this paper is organized as follows. We highlight
some of the available methods in Section II. In Section III, the
problem formulation and the system model are introduced. We
introduce our proposed method in Section IV. The details of
our experimental results are laid out in Section V, where the
proposed method is compared to other baselines.

II. RELATED WORK

In what follows, we highlight some differences between first
and second-order methods and motivate the need for scalable
optimizers in the FL setting.

A. First-order FL Methods

Federated averaging (FedAvg) introduced a generalization
of stochastic gradient descent (SGD). The underlying idea is to



have every device run several local updates before sending the
local model parameters to the PS. The server then averages the
local models’ parameters and sends back the refined, global
model parameters. In [5], the authors proposed a federated
version of a set of popular centralized optimization methods
like AdaGrad [6] and Adam [7], using the same two-stage
approach employed in FedAvg. To handle data heterogeneity,
Scaffold [8] used variance reduction to overcome the drift
in local updates at each device. In [9], the authors reduced
the communication overhead and the data heterogeneity using
both compression and gradient tracking. The fundamental
problem with first-order methods is their inability to capture
the curvature information of the loss landscape, which leads to
a uniform step size across all dimensions of the loss function.

B. Second-order FL Methods

Second-order methods have the advantage of capturing
the effect of the curvature information of the loss function
in the training process. FedNL [10] is the first framework
for using Newton’s method in FL settings. The paper in-
troduced compression techniques to improve communication
efficiency between the PS and the devices. Still, the problem
of computing the full Hessian at each device persists, making
the idea impractical for large models. FedNew [11] added
another layer of privacy by hiding the gradient information.
It also proposed stochastic quantization as a solution for the
problem of communicating the Hessian with the PS while still
approximating the inverse-Hessian-gradient product. FLECS
[12] proposed a framework for second-order methods, utilizing
a lower dimensional representation of the Hessian to make the
computation lightweight. A major bottleneck in this idea is that
the server has to save the full Hessian. Meanwhile, DONE
[13] uses an approximate Newton-type method and employs
Richardson’s iteration to find an approximation for the search
direction at each client. Furthermore, DONE requires a large
number of local iterations to converge, making it unreliable
for practical settings.

C. Optimizers in Deep Learning

The choice of an optimizer in deep learning is often a
task-dependent case. For example, SGD has dominated the
computer vision field, while Adam [7] excels in transformers-
based language models. On the other hand, second-order
methods are not widely adopted in training deep neural net-
works (DNN). One attempt to apply second-order methods is
AdaHessian [14], a second-order method that estimates the
Hessian’s diagonal using Hutchinson’s method [15] with a
spatial averaging mechanism to control misleading Hessian
entries. In [16], the authors proposed Sophia, a second-order
optimizer that exploits a lightweight estimation for the diag-
onal of the Hessian to incorporate curvature information into
the optimization process. Originally introduced as an optimizer
for large language models (LLMs), one advantage of Sophia
is that it does not estimate the diagonal of the Hessian in
each iteration, a key feature that can be well leveraged in FL
settings.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a network of N devices and a PS, where each
device can communicate with the PS only. Each device has
its local data set Di(X,y) and loss function fi(θ) : Rd −→ R,
where X is the features matrix, y is the label vector, and
θ is the ML model we aim to train, e.g., the weights and
biases of a NN. Devices train a local model θi ∈ Rd and
send the trained model to the PS. The server can aggregate
the information sent from the devices using some aggregation
scheme to guide the convergence process. After aggregation,
the server sends back the updated information to all clients,
which starts another round of local training. This process
continues until convergence. The objective of the training
process is to perform empirical risk minimization in the form

min
θ∈Rd

f(θ) ≜
1

N

N∑
i=1

fi(θ). (1)

In the remainder of this paper, let Hi ≜ ∇2fi(θ) and
gi ≜ ∇fi(θ) denote the Hessian and the gradient of the
loss function of the ith device, respectively. The entries of the
Hessian matrix could be divided into two classes: the diagonal
elements and the off-diagonal elements. The diagonal elements
indicate the curvature information across each dimension.
High values for diagonal elements mean steep curvature,
which requires smaller steps. Meanwhile, small values reflect
a flat dimension, in which case faster steps could be adopted.
On the other hand, off-diagonal elements represent the cross-
curvature information. To illustrate the effect of the Hessian’s
elements, let’s consider the following loss function

f(θ1, θ2) = θ21 + 2θ1θ2 + 3θ22, (2)

where θ = [θ1, θ2] is the model we aim to learn. The Hessian
matrix for this function is given by

H = ∇2f(θ) =

[
∂2f
∂θ2

1

∂2f
∂θ1∂θ2

∂2f
∂θ2∂θ1

∂2f
∂θ2

2

]
=

[
2 2
2 6

]
. (3)

The optimal step size to take across a dimension should
be proportional to the Hessian entries corresponding to those
dimensions. For example, the optimal step size for θ1 and θ2
should be proportional to 1/2 and 1/6, respectively. Those
entries are the diagonal of the Hessian. Figure 1 demonstrates
the effect of the optimal step size on the convergence. As we
can see, the gradient-based method using uniform step size
takes a lot of steps to converge, while a Hessian-based method
can converge in two steps.

IV. PROPOSED ALGORITHM

Our proposed algorithm, Fed-Sophia, is a second-order
method that leverages the Sophia optimizer [16] into the FL
setting. The algorithm’s computational and communication ef-
ficiency is attributed to two primary factors: (i) the lightweight
estimation of the Hessian matrix, which, owing to its diagonal
structure, is analogous to computing a vector, and (ii) the
Hessian estimation does not occur in every communication



4 2 0 2 4
1

4

2

0

2

4
2

Uniform Step Size
Optimal Step Size

Fig. 1: The effect of the Hessian-based step size against the gradient-based
method.

round. Similar to FedAvg, every device in Fed-Sophia shares
its model’s parameters with the PS. Then, the server aggregates
the parameters using their average as follows

Θk+1 =
1

N

N∑
i=1

θk
i , (4)

where Θ is the server’s parameters at iteration (k + 1), and
θi is the model’s parameters of the ith device. As shown in
[1], [17], this idea of averaging the models works surprisingly
well with over-parameterized NNs.

A. Hessian as a Pre-conditioner

One problem with first-order methods, like FedAvg, is
their inability to incorporate curvature information during the
optimization process. Curvature information is best obtained
using the Hessian matrix. At the kth communication round, a
general descent direction can be obtained as follows

∆θk
i ≜ θk+1

i − θk
i = (Hk

i )
−sgk

i . (5)

Herein, s = 1 corresponds to the vanilla Newton method,
while s = 0 rolls back to the gradient descent method. The
idea of the Hessian as a pre-conditioner, as shown in (5), is
that it adapts the step size taken along the descent direction
by (Hk

i )
−1.

Computing the full Hessian is almost impossible in the case
of a very large NN. This makes certain FL algorithms imprac-
tical in real-world settings. One way to estimate the Hessian is
by computing the diagonal information only [18]. The diagonal
elements of the Hessian contain curvature information across
each dimension. Thus, (5) can be approximated as

∆θk
i ≈ diag(Hk

i )
−1gk

i . (6)

Several techniques for such diagonal estimation have been pro-
posed, e.g., Hutchinson’s and Gauss-Newon-Bartlett (GNB)
methods [16]. Fed-Sophia uses the GNB estimator to estimate
the Hessian as it has been shown to exhibit a better gener-
alization performance [16]. Given a loss function f(θ), the

Algorithm 1: Federated Sophia (Fed-Sohpia)
1: Parameters: learning rate η, number of local iterations

J , hyperparameters (λ, β1, β2, ϵ, ρ, τ).
2: Initialize: Θ0, m0 = 0, h−τ

i = 0
3: for communication round k = 0 to K do
4: for each device i ∈ [N ] do
5: Receive the global model Θk and set the local

model as θk
i = Θk

6: for local iterations j = 0 to J do
7: Compute the local gradient gk

i = ∇hi(θ
k
i )

8: Update the local moving average of the
gradient: mk

i = β1m
k−1
i + (1− β1)g

k
i

9: if k mod τ = 0 then
10: Compute the local estimated Hessian:

ĥk
i = Estimator(θk

i ) using GNB Algorithm 2
11: Update the local moving average of the

Hessian estimator:
hk
i = β2h

k−τ
i + (1− β2)ĥ

k
i

12: else
13: hk

i = hk−1
i

14: end if
15: Update the local model with weight decay:

θk
i = θk

i − ηλθk
i

16: Update the local model:
θk+1
i = θk

i − ηclip
(

mk
i

max(hk
i ,ϵ)

, ρ
)

17: end for
18: Send the updated local models θk+1

i back to the
server

19: end for
20: Update the global model: Θk+1 = 1

N

∑N
i=1 θ

k+1
i

21: end for

Hessian matrix can be computed using the following Gauss-
Newton decomposition

H = Jθϕ(θ,x) · S · Jθϕ(θ,x)
T + Jθθϕ(θ,x) · q, (7)

where J is the Jacobian of ϕ with respect to θ, ϕ is the logits
function or the mapping from input to raw output values, S
is the second-order derivative of the loss with respect to the
logits, Jθθϕ(θ,x) is the second-order derivatives of the logits
function with respect to θ, and q is the first-order derivative
of the loss with respect to the logits. The first term is often
called the Gauss-Newton matrix, while the second is usually
very small and could be negligible. The idea is to estimate
the diagonal of the Gauss-Newton matrix and use this as the
Hessian’s diagonal. The procedure to estimate the diagonal of
the Hessian is depicted in Algorithm 2, where ⊙ denotes the
element-wise product. Hence, the estimated Hessian for the
kth communication round is given by

ĥk
i = Estimator(θk

i ) (8)

where the estimator is the GNB method in our case.
A big advantage of Fed-Sophia is its ability to compute the

estimated Hessian’s diagonal every τ iteration, where τ is an



Algorithm 2: Gauss-Newton-Bartlett (GNB)
1: Parameters: θ
2: Draw a mini-batch of the input {xb}Bb=1

3: Compute the logits on the mini-batch {ϕ(θ,xb)}Bb=1

4: Sample ŷb ∼ Softmax(ϕ(θ,xb))
5: Calculate ĝ = ∇(1/B

∑
f(ϕ(θ,xb), ŷb)

6: return B · ĝ ⊙ ĝ

integer usually between 1 and 10. Another advantage for Fed-
Sophia is that it uses mini-batches to compute the loss, not the
complete data. This might reflect some noise in the gradient
and the Hessian. To avoid this issue and smoothen both the
gradient and the Hessian, an exponential moving average is
computed instead of the raw value for both of them. The
update for the gradient is given by

mk
i = β1m

k−1
i + (1− β1)g

k
i , (9)

while the Hessian is updated, every τ iterations, using

hk
i = β2h

k−τ
i + (1− β2)ĥ

k
i , (10)

where β1 and β2 are two hyperparameters.

B. Adaptive Step Size

The update at the ith device is performed by dividing the
moving average of the gradient by the moving average of the
estimated diagonal Hessian, i.e., mk

i /h
k
i . The motivation for

this update is the fact that the ideal step size to take should be
proportionally inverse to the Hessian across each dimension
to avoid uniform steps across all dimensions. In other words,
we need to make weighted steps at each dimension, where the
weights are the Hessian’s information across those dimensions.
Rather than using a fixed update step across all dimensions of
the loss function, the idea is to adjust this step to enable sharp
dimensions and flat dimensions to behave accordingly. For
sharp dimensions, the step size is expected to be less than in
flat dimensions. Dividing by the estimated Hessian enables the
adaptive step size mechanism, which in turn assigns different
step sizes depending on the shape of the loss curvature.

C. Clipping Operation

Along with the problem of converging to a saddle point in
the case of a non-convex loss function, the Hessian entries
might be misleading the convergence process in case there
are sudden changes along the loss function curvature. To help
mitigate these problems, a clipping operation is introduced.
The clipping operation guards against inaccurate information
that might be incorporated into the Hessian’s diagonal. Given
a vector z, the formula for the clipping operation is given by

clip(z, ρ) = max{min{z, ρ},−ρ}, (11)

where ρ is a positive real number that controls the maximum
update magnitude. Using the clipping operation, the descent
direction (6) becomes

∆θk
i = clip

(
mk

i

max{hk
i , ϵ}

, ρ

)
, (12)

where mk
i and hk

i are computed according to (9) and (10),
respectively, and ϵ is a very small positive constant used to
prevent division by zero. Algorithm 1 shows the full details
of Fed-Sophia.

V. NUMERICAL RESULTS

In this section, we lay out the details of the experiments
along with the results. First, we compare the performance of
Fed-Sophia to the other baselines in terms of communication
and computation efficiency. Then, we study the effect of the
hyperparameters on Fed-Sophia’s performance. Finally, we
investigate the energy and carbon footprint of all algorithms.

A. Experimental Settings

We conducted several experiments to compare the perfor-
mance of Fed-Sophia with two baselines: FedAvg, a first-order
method that utilizes only the gradient information, and DONE,
an approximate Newton-type method. Two data sets are used:
MNIST and Fashion MNIST. The data is distributed among
32 devices, and each partition is split into 75% and 25%
for training and testing, respectively. All the experiments are
in the non-IID setting. In our experiments, we consider two
different classification models, MLP and CNN, with the loss
function being cross-entropy in both of them. The number of
local iterations for both Fed-Sophia and FedAvg is taken to
be J = 10. For DONE, we tune the number of local iterations
to maintain a fair comparison.

To monitor the energy footprint of each device i, both com-
putation and communication costs are computed as follows

Etotal(k) = Ec(k) + Et(k), (13)

with

Ec(k) =

k∑
n=1

J∑
j=1

ej,ni and Et(k) =

k∑
n=1

b(θk
i )e

k
i,PS , (14)

where k is the number of communication rounds, ej,ni is the
energy consumed by the device i for one local iteration, b(θk

i )
is the size of the model vector in bits, and ei,PS is the energy
needed to transmit information between the device i and the
PS. The transmitted model’s parameters are assumed to be in
the 32-bit form. We use the same channel model as in [19] and
assume a uniform distance between the server and all clients
within a space of size 100×100 m2. According to Shannon’s
formula, the maximum achievable rate for each client is given
by R = B log2(1 + Pt

di,PSBN0
), where B is the bandwidth,

TABLE I: Effect of the learning rate and the number of local iterations on
the test accuracy for the Fashion MNIST dataset with CNN.

Learning rate (η) Local iterations (J) Test accuracy(%)
0.01 76.3
0.003 10 80.3

0.0005 71.9
1 58.7

0.001 5 73.3
10 76.5



0 25 50 75 100
Communication Rounds

0.2

0.4

0.6

0.8

Te
st 

Ac
cu

ra
cy

FED-AVG
FED-SOPHIA
DONE

(a) CNN-MNIST

0 25 50 75 100
Communication Rounds

0.2

0.4

0.6

0.8

Te
st 

Ac
cu

ra
cy

FED-AVG
FED-SOPHIA
DONE

(b) CNN-FMNIST

0 25 50 75 100
Communication Rounds

0.2

0.4

0.6

0.8

Te
st 

Ac
cu

ra
cy

FED-AVG
FED-SOPHIA
DONE

(c) MLP-MNIST

0 25 50 75 100
Communication Rounds

0.2

0.4

0.6

0.8

Te
st 

Ac
cu

ra
cy

FED-AVG
FED-SOPHIA
DONE

(d) MLP-FMNIST

Fig. 2: Test accuracy for Fed-Sophia against other baselines in terms of communication rounds for MNIST/FMNIST datasets using MLP and CNN models.

Pt is the transmission power, di,PS is the distance between
client i and the PS, and N0 is the noise spectral density. We
set Pt = 100mW, B = 2MHz, and N0 = 10−9W/Hz.

B. Performance Comparison

Herein, we compare the performance of Fed-Sophia against
FedAvg and DONE in terms of the test accuracy on both
MNIST and FMNIST datasets. For Fed-Sophia and FedAvg,
we utilize mini-batches of size 512, a common way to train
DNNs. On the other hand, DONE requires the full data
for each client, which comes at a computational cost. As
shown in Fig. 2, the proposed Fed-Sophia scheme requires
fewer communication rounds than FedAvg and DONE in all
experiments. It also outperforms both of them in terms of the
test accuracy for the CNN model Fig. 2(a) and 2(b) with the
two datasets. For the MLP model, Fed-Sophia outperforms
the two baselines with the MNIST dataset, requiring only
30 communication rounds to converge compared to 70 and
100 for DONE and FedAvg, respectively as shown in Fig.
2(c). For the FMNIST dataset in Fig. 2(d), DONE and Fed-
Sophia are almost identical in terms of test accuracy, with the
advantage of early convergence for Fed-Sophia. In Fig. 3, we
plot the test accuracy of all algorithms against the total number
of iterations to grasp an idea of the computational cost. For
the MNIST dataset, it turns out that Fed-Sophia reaches a
target test accuracy of 75% after almost 30 iterations, while
FedAvg and DONE require 200 and 750 iterations to achieve
the same target accuracy, respectively. On the other hand,
Fed-Sophia with FMNIST dataset requires 200 iterations to

converge, while FedAvg and DONE require almost the full
number of iterations.

C. Effect of the Hyperparameters

In this subsection, we study the effect of the learning rate
(η) and the number of local iterations (J) on the performance
of Fed-Sophia. We fix J = 10 and experiment with differ-
ent learning rates for the Fashion MNIST dataset. The test
accuracy for the three different values of the learning rate
is summarized in Table I. Next, we study the effect of the
local iterations to see if it is worth adding more computational
overhead to achieve some performance gain. As shown in
Table I, as we increase the local number of iterations, Fed-
Sophia gains a reasonable performance. It is also clear that the
performance gain between 5 and 10 local iterations is minimal.

D. Energy-Efficiency and Carbon Footprint

As shown in Table II, Fed-Sophia outperforms DONE and
FedAvg in terms of computation energy consumption for a
target test accuracy of 75% using a CNN model for the MNIST
dataset. Furthermore, DONE consumes up to 4000× compu-
tational power than Fed-Sophia. Fed-Sophia requires almost
half of the computational energy needed for FedAvg. On the
other hand, the communication energy for Fed-Sophia is less
than the other two baselines by a large factor. Fed-Sophia only
requires almost 20% of the needed communication energy for
the closest baseline, i.e., FedAvg. Therefore, the total footprint
for Fed-Sophia is minimal, which proves the communication
and computation efficiency of our proposed method compared
to the other two baselines.



0 250 500 750 1000
Total Number of Iterations

0.00

0.25

0.50

0.75

Te
st 

Ac
cu

ra
cy

FED-SOPHIA
FED-AVG
DONE

(a) MLP-MNIST

0 250 500 750 1000
Total Number of Iterations

0.2

0.4

0.6

0.8

Te
st 

Ac
cu

ra
cy

FED-SOPHIA
FED-AVG
DONE

(b) MLP-FMNIST

Fig. 3: Test accuracy for Fed-Sophia against other baselines in terms of the number of total iterations for MNIST and FMNIST datasets using MLP.

TABLE II: Computation/communication energy costs and corresponding carbon footprints for MNIST with CNN for target accuracy of 75%.

Algorithm Computation Energy [MJ] Communication Energy [MJ] Total Footprint [kg-CO2-eq]

DONE 6170E − 4 153.2 1097E + 3
FedAvg 2.2E − 4 139.2 0.123E + 3
Fed-Sophia 1.4E − 4 27.8 0.004E + 3

0 0.4 0.8 0 100 200

VI. CONCLUSION

In this paper, we presented Fed-Sophia, a scalable and
second-order method for FL. Fed-Sophia is a computation and
communication-efficient method that leverages the curvature
information of the loss function by estimating the diagonal of
the Hessian. The update is the moving average of the gradient
scaled by the inverse of the estimated diagonal Hessian.
Furthermore, Fed-Sophia mitigates the effect of inaccurate
entries of the Hessian by augmenting the update into a clipping
operation, guarding against misleading curvature information.
Our experiments showed that the proposed method outper-
forms other baselines on image classification tasks.

ACKNOWLEDGMENTS

This work is partially supported by the European Com-
mission through Grant no. 101095363 (Horizon Europe SNS
JU ADROIT6G project), Grant no. 101139266 (6G-INTENSE
project), and the Academy of Finland, 6G Flagship program
(Grant no. 346208).

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp.
1–210, 2021.

[3] P. Qi, D. Chiaro, A. Guzzo, M. Ianni, G. Fortino, and F. Piccialli, “Model
aggregation techniques in federated learning: A comprehensive survey,”
Future Generation Computer Systems, 2023.

[4] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[5] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[6] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[8] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International conference on machine learning. PMLR, 2020,
pp. 5132–5143.

[9] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Feder-
ated learning with compression: Unified analysis and sharp guarantees,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 2350–2358.

[10] M. Safaryan, R. Islamov, X. Qian, and P. Richtarik, “FedNL: Making
Newton-type methods applicable to federated learning,” in International
Conference on Machine Learning. PMLR, 2022, pp. 18 959–19 010.

[11] A. Elgabli, C. B. Issaid, A. S. Bedi, K. Rajawat, M. Bennis, and V. Ag-
garwal, “FedNew: A communication-efficient and privacy-preserving
Newton-type method for federated learning,” in International Confer-
ence on Machine Learning. PMLR, 2022, pp. 5861–5877.

[12] A. Agafonov, D. Kamzolov, R. Tappenden, A. Gasnikov, and M. Takáč,
“Flecs: A federated learning second-order framework via compression
and sketching,” arXiv preprint arXiv:2206.02009, 2022.

[13] C. T. Dinh, N. H. Tran, T. D. Nguyen, W. Bao, A. R. Balef, B. B.
Zhou, and A. Y. Zomaya, “DONE: Distributed approximate Newton-
type method for federated edge learning,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 11, pp. 2648–2660, 2022.

[14] Z. Yao, A. Gholami, S. Shen, M. Mustafa, K. Keutzer, and M. Mahoney,
“Adahessian: An adaptive second order optimizer for machine learning,”
in proceedings of the AAAI conference on artificial intelligence, vol. 35,
no. 12, 2021, pp. 10 665–10 673.

[15] M. F. Hutchinson, “A stochastic estimator of the trace of the influence
matrix for laplacian smoothing splines,” Communications in Statistics-
Simulation and Computation, vol. 18, no. 3, pp. 1059–1076, 1989.

[16] H. Liu, Z. Li, D. Hall, P. Liang, and T. Ma, “Sophia: A scalable
stochastic second-order optimizer for language model pre-training,”
arXiv preprint arXiv:2305.14342, 2023.

[17] S. Lee, A. K. Sahu, C. He, and S. Avestimehr, “Partial model averaging
in federated learning: Performance guarantees and benefits,” Neurocom-
puting, vol. 556, p. 126647, 2023.

[18] J. Martens, I. Sutskever, and K. Swersky, “Estimating the hessian by
back-propagating curvature,” arXiv preprint arXiv:1206.6464, 2012.

[19] A. Ghalkha, C. Ben Issaid, A. Elgabli, and M. Bennis, “DIN: A
decentralized inexact Newton algorithm for consensus optimization,” in
ICC 2023 - IEEE International Conference on Communications, 2023,
pp. 4391–4396.


