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Abstract—In this paper, we examine the use of autoencoders as
an optimization tool for the construction of noncoherent space-
time MIMO codes. In particular, we consider the quasi-static
block fading channel, where the channel state information is not
available at either the transmitter or the receiver, and changes
independently between transmissions. Different from traditional
constructions which aim to maximize an approximation of the
minimum pairwise distance of the constellation, we use the
autoencoder to directly target minimizing the probability of
error. We show that this different optimization goal leads to
constellations with more favorable pairwise distances’ distribu-
tion and better error performance at low to medium signal to
noise ratios where the minimum distance is not the limiting
factor. Finally, we present simulation results showing that the
constructed codes outperform traditional Grassmannian codes
up to a signal-to-noise ratio of 20 dB using the traditional
generalized likelihood ratio test detector.

Index Terms—Autoencoders, Multiple-Input Multiple-Output
(MIMO), noncoherent communications, space-time codes.

I. INTRODUCTION

Over the last decade, machine learning techniques have
made astonishing progress and found wide applications in
areas where modelling and expert knowledge have struggled
to make headway, such as computer vision and natural lan-
guage processing. On the contrast, wireless communications
is a mature domain with rich expert knowledge that has made
impressive progress over the decades paving the way for the
current information revolution. Hence, learning techniques
will have a higher bar to overcome to make meaningful contri-
butions to the field of wireless communications. Nonetheless,
learning techniques have recently started making its way into
the field of wireless communications and caught the attention
of both academic and industrial sectors.

The design of wireless communications systems tradition-
ally relied on various assumptions about the communication
scenario, availability of channel state information at the
transmitter and/or the receiver, and rigorous mathematical
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models describing the physical signal propagation, noise in
the system, and hardware impairments. However, in many
cases, an optimal solution does not exist or requires restrictive
or unrealistic assumptions. Hence, aside from the intellectual
curiosity to better understand the ability to learn communica-
tion systems components, or even communication end-to-end,
there exists scenarios where learned techniques can improve
upon the current state-of-the-art.

Although earlier attempts to incorporate neural network
based learning in wireless communications dates back decades
[1], it was only recently that research efforts in this area
became main stream. Recent applications include signal de-
tection [2]–[6], channel estimation and quantization [7]–
[9], channel coding/decoding [10]–[12], and even end-to-end
learning of a complete communications system [13]–[17].

In [2], the authors proposed a deep network architecture
optimized for detection in spatially multiplexed multiple input
multiple output (MIMO) systems, and inspired by the concept
of unfolding iterative algorithms [18]. They showed that com-
petitive performance with semidefinite relaxation is possible
while achieving much lower complexity for binary transmitted
vectors. In [6], the authors proposed using a neural network to
estimate the initial radius of a MIMO sphere decoder which
can lead to significant computational complexity savings by
reducing the number of considered lattice points. In [3], it
has been shown that a learned orthogonal frequency division
multiplexing (OFDM) receiver that jointly estimates the chan-
nel and performs detection can be more robust to various
impairments, e.g. clipping, compared to traditional methods.
In [5], the authors used supervised classification methods
to aid blind detection in one-bit quantized MIMO systems,
where coarse quantization invalidates traditional methods. In
[4], a special architecture called sliding bidirectional recurrent
neural network (SBRNN) we proposed for blind detection
in harsh channel models associated with molecular and free-
space optical communications.

In [7], the authors presented a convolutional neural network
(CNN) based low complexity channel estimator and showed it
achieves competitive performance with the optimal minimum
mean square error (MMSE) estimator in a variety of 3GPP
channel models. In [8], the authors showed that deep learning
(DL) based techniques for the challenging channel estimation
in hybrid analog-digital beamspace outperformed state-of-the-
art compressed sensing algorithms. DL-based techniques was
also used for channel state information (CSI) quantization in
[9] to facilitate CSI feedback in frequency division duplexing
(FDD) systems.

Different from aforementioned works where learning-based



elements complemented traditional systems, in [13], [19],
the authors proposed replacing all communication systems
block with neural networks and training the system end-
to-end as a particular type of denoising autoencoder. The
single-input-single-output (SISO) scenario was considered in
[13], while MIMO scenarios were considered in [19]. In both
scenarios competitive performance with traditional techniques
was achieved. Motivated by these encouraging results, the
authors in [15] implemented the same concept using software
defined radios and conducted over the air testing showing
performance within 1 dB of traditional techniques.

In this paper, we investigate the use of autoencoders as
an optimization tool to construct noncoherent space time
codes for the MIMO block fading channel. Autoenocders
are a special type of neural networks capable of learning
representations that are robust to specific types of corruption
which make them attractive for learning signaling schemes
when an optimal analytical solution does not exist. Our
contributions in this paper can be summarized as follows:
• We propose using autoencoders as an optimization tool to

learn noncoherent space time codes suitable for MIMO
block fading channel with favorable error performance.
Different from [19], we are not interested at learned
encoder and decoder but just the learned space time code,
since the optimal maximum likelihood (ML) detector is
known for this channel model.

• We evaluate the learned codebook by constructing the
histogram of pairwise distances between the codewords
and compare it to traditional noncoherent Grassmannian
MIMO codes. We show that the learned constellations
have a more favorable distances’ distribution.

• We use Monte Carlo simulations to evaluate the perfor-
mance of the learned constellation and compare it to
traditional Grassmannian codes. Our results show that
learned codes outperforms Grassmannian for up to a
relatively high signal to noise ratio of 20 dB.

The rest of the paper is organized as follows. In Section II,
we present our signal model and give an quick overview of
traditional noncoherent MIMO codes and autoencoders. In
Section III, we introduce our autoencoder based constellation
construction. In Section IV, we evaluate the leanred codebook
distance distribution and error performance using traditional
noncoherent Grassmannian MIMO codes as a baseline. Fi-
nally, we conclude the paper in Section V.

II. SIGNAL MODEL AND PRELIMINARIES

A. Signal Model
We consider the scenario of noncoherent communications

over richly scattered quasi-static flat-fading MIMO channels.
The transmitter possess Nt antennas and the receiver Nr an-
tennas. The wireless channel remains constant for a coherence
interval of T , then changes to another independent realization.
Hence, the received matrix can be written as

Y = XH +

√
Nt

ρT
W, (1)

where X ∈ CT×Nt is the transmitted matrix over the Nt

antennas and T channel uses, H ∈ CNt×Nr and W ∈ CT×Nr

are the fading and noise matrices, respectively, whose entries
are drawn independently from circularly symmetric complex
Gaussian distribution CN (0, 1). Finally, ρ denotes the average
signal-to-noise ratio (SNR) which is independent of Nt.

To facilitate the usage of neural networks frameworks, we
adapt the following equivalent real-valued notation

Y = X H +

√
Nt

ρT
W, (2)

where

Y =

[
<{Y} −={Y}
={Y} <{Y}

]
X =

[
<{X} −={X}
={X} <{X}

]

H =

[
<{H} −={H}
={H} <{H}

]
W =

[
<{W} −={W}
={W} <{W}

]
,

(3)
and <{·} and ={·} denote the real and imaginary part,
respectively.

Signalling under the assumption that the channel matrix,
H, is not known to either the transmitter or receiver was
extensively studied [20]. It was found that unitary signaling
is capacity-achieving at asymptotically high SNRs which led
to multiple efforts to design unitary constellations. However,
these codes are known to perform poorly at low-to-medium
SNRs, which leaves room for improvement. In the next sub-
section, we give a brief overview of traditional noncoherent
unitary MIMO codes.

B. Grassmannian MIMO Codes
The set of Nt dimensional subspaces in CT comprises the

so called complex Grassmann manifold, GNt

(
CT
)
. Hence,

for T > Nt, the set of T × Nt unitary matrices represent
points on the complex Grassmann manifold.

The importance of the Grassmann manifold in the con-
text of noncoherent MIMO communications becomes evident
when we consider the high SNR scenario. From (9), as the ef-
fect of noise diminishes, the received signal is approximately
given by Y ≈ XH. Multiplication by H alone can only rotate
and scale the subspace spanned by X and clearly Y and X
span the same subspace. Hence, by designing the constellation
of X to comprise matrices spanning different subspaces, i.e.,
different points on the Grassmann manifold, we can guarantee
good performance at high SNRs.

Motivated by its utility in noncoherent communications,
many researchers set to find good Grassmannian constella-
tions. There exists three main approaches to design Grassman-
nian codes: 1) algebraic approaches [21], 2) approaches that
map coherent MIMO codes into the Grassmann manifold [22],
and 3) approaches that rely on direct numerical optimization
on the Grassmann manifold of some metric of performance
[23]. Clearly, the latter approach will generally lead to better
preforming codes since it’s free to exploit the full degrees of
the freedom without adhering to any specific structure.

In this paper, we use the codes designed in [23] as a
baseline to judge the performance of our codes. In [23],



Fig. 1. A typical autoencoder.

the chordal Frobenius norm was used as metric of distance
between constellation points, and an optimization problem
was formulated to maximize the minimum distance of the
constellation. Let (·)† and Tr (·) denote the Hermitian trans-
pose and trace operator, respectively. The chordal Frobenius
norm between two T ×Nt matrices, X1 and X2 is given by

d (X1,X2) =
√
2Nt − 2Tr (ΣX1,X2

) (4)

where ΣX1,X2
is the diagonal matrix comprising the singular

values of X†1X2. Hence, the following program needs to
be solved to generate a constellation, X , with maximized
minimum distance:

min
{Xk}|X|

k=1

max
1≤i,j≤|X|

Tr (ΣXi,Xj
)

subject to Xk ∈ GNt

(
CT
)
, k = 1, 2, . . . , |X | ,

(5)

after using the following smooth differentiable approximation:

min
{Xk}|X|

k=1

log

|X |−1∑
i=1

|X |∑
j=i+1

eTr
n (ΣXi,Xj

)

 1
n

subject to Xk ∈ GNt

(
CT
)
, k = 1, 2, . . . , |X | ,

(6)

where n is a parameter controlling the smoothness of the
approximation. This program can be solved with help of
[24] in either a greedy manner, where the constellation is
generated point-by-point, or a direct manner, where the entire
constellation is generated at once.

C. Autoencoders
An autoencoder, depicted in Fig. 1, consists of an encoder

part, f (·), a hidden code layer, h, and a decoder part, g (·). In
essence, it is just a neural network trained to copy its input,
x to its output, x̂. This is carried out by minimizing a given
loss function:

L (x, g (f (x))) . (7)

Since the desired output is just the input, what is interesting
is the code representation at the hidden layer and not the
output. By training the autoencoder, one can extract codes
with desirable properties.

To get useful encodings with interesting properties, the au-
toencoder must be prevented from simply learning the trivial
identity function. This is achieved by restricting the code layer
in some way or adding noise. For example, undercomplete
autoencoders learn a nonlinear generalization of principal
component analysis (PCA) by restricting the dimension of
the hidden layer, while denoising autoencoders learn codes

Fig. 2. Denoising autoencoder structure used for generation of noncoherent
codes.

that are robust to some form of corruption by injecting noise
during the training process.

Of particular interest in the context of communications
systems is denoising autoencoders (DAE). As they share
the common goal of finding encodings that are robust to
corruption with physical layer designs of communications
systems. Although modern denosing autoencoders typically
add the corruption to the input layer, earlier research on
DAEs investigated injecting noise at the hidden code layer
[25], which is more consistent with corruption arising in a
communications system.

Recently, the utility of denoising autoencoders in the design
of communications systems gained a lot of interest in the
research community [13], [15], [19], [26]. Promising results
were obtained in the scenarios where channel is known at the
receiver or both the transmitter and receiver [19]; however,
the noncoherent MIMO scenario where the channel is not
known at either the transmitter or receiver was not investigated
despite the fact that optimal constellation designs at low to
medium SNRs are not known.

III. AUTOENCODER-BASED CONSTELLATION
CONSTRUCTION

In this section we propose using autoencoders as an op-
timization tool to generate space-time MIMO codes that
perform well over the noncoherent MIMO channel. Different
from [19], we are only interested in the learned codes at the
hidden layer and after the learning process is done, we do not
use the learned encoder and decoder functions. Recall that
although an optimal constellation design for the signal model
is not known except at asymptotically high SNRs, the optimal
ML detector is known. Hence, there is no value in using the
learned decoder unless it is offers complexity savings over
the ML detector and we use the learned constellation with
the known optimal detector.

As depicted in Fig. 2, a denoising autoencoder with the
corruption process taking place at the hidden code layer is
used. The corruption process in our scenario will be complex
multiplication by a random matrix whose entries are standard
complex Gaussian random variables, i.e., the channel matrix
H, and addition of complex AWGN, i.e., the noise matrix W.
Since all freely available neural network frameworks can only
deal with real numbers, the equivalent model in (2) is used.



TABLE I
LAYOUT OF USED DENOISING AUTOENCODER.

Layer Output Dimensions

Input |X |
Fully Connected + ReLU 20 |X |
Fully Connected + linear 2 TNt

Complex Multiplication 2 TNt

AWGN 2 TNt

Fully Connected + ReLU 20 |X |
Fully Connected + softmax |X |

The encoder takes a one-hot input vector, m, specifying
which message, i.e. constellation point, is to be transmitted.
The input vector is passed through several fully-connected
layers then a normalization layer. The normalization layer
is needed to ensure the desired SNR is maintained. The
resulting codeword, X is then passed through the corruption
process representing our channel and noise model. Finally,
the corrupted codeword, Y, is passed to the decoder part
which consists of several fully-connected layers then a soft-
max output layer. The elements of the output vector at the
softmax layer, m̂, can be interpreted as the probabilities of
each corresponding codeword being the actual transmitted
codeword.

Different from traditional design techniques that aim to op-
timize some distance metric related to the probability of error.
The proposed design allows us to directly target probability
of error minimization by treating the problem as multi-class
classification task. In particular, the categorical cross entropy
loss function, LCE , is used to penalize the difference between
the input vector, m and the prediction m̂ such that

LCE (m, m̂) = −
|X |∑
i=1

mi log m̂i, (8)

where mi and m̂i are the i-th elements of m and m̂,
respectively.

A variety of optimization algorithms can be used to min-
imize this loss function. We used the Adam optimization
algorithm [27] which is a variant of stochastic gradient
descent with an adaptive momentum and learning rate. The
constructed autoencoder was trained to learn a codebook
X ∈ X that is robust to the corruption process and achieves
good error performance. In the next section, we evaluate the
learned codebook and compare to traditional Grassmannian
codebooks.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the learned constellation by
looking at distribution of pairwise distances between its points
and its error performance using Monte-Carlo simulations.
Traditional noncoherent Grassmannian codes designed using
the techniques discussed in Section II are used as a baseline to
judge the codes constructed using the proposed autoencoder-
based optimization.

We consider two constellation sizes, namely, 256 and
512 points constellations, and assume a channel coherence

(a) Grassmannian constellation using greedy approach (dmin = 0.6987).

(b) Grassmannian constellation using direct approach (dmin = 0.8080).

(c) Proposed constellation using AE-based approach (dmin = 0.6807).

Fig. 3. Distribution of pairwise distances between constellation points for
proposed codes and baselines from [23] for 256 point constellations.



Fig. 4. Average probability of error for proposed codes and baselines from
[23] using the GLRT detector. 256 points constellations. T = 4, Nt = Nr =
2.

interval, T = 4, the number of transmit antennas, Nt = 2,
and the number of receive antennas, Nr = 2. Note that, the
denoising autoencoder (DAE) optimized codes are constrained
to be of equal energy but are not necessarily unitary. The
autoencoder was trained at an SNR of 15 dB to strike a
compromise between performance at low and high SNRs.
Table I shows the layout of the autoencoder used. For a fair
comparison we use the GLRT detector given by

argmax
X

Tr(Y†XX†Y) (9)

for the decoding of both the baseline and proposed codes
Fig. 3 shows the pairwise distance distribution for the 256

point constellations of the proposed codes and that of the
baseline Grassmannian codes from both the greedy and direct
approaches. We observe the proposed codes seem to have a
more favorable distance distribution, i.e., higher concentration
of larger distances. However, the baseline Grassmannian codes
tend to have a higher minimum distance. This is expected as
the optimization problem solved to generate them aims to
maximize the minimum distance. The effect of this choice of
optimization objective is more evident for the constellation
designed using the direct approach, where the highest con-
centration of distances is exactly at the minimum. Although a
higher minimum distance might improve performance at high
SNRs, this high concentration of points close to each others
can have adverse effects at lower SNRs.

Fig. 4 shows the error performance for the 256 point
constellations of the proposed codes and that of the base-
line Grassmannian codes from both the greedy and direct
approaches. We observe the proposed codes outperform the
Grassmannian codes for low-to-medium SNRs up to a mod-
erately high SNR of 20 dB. This is consistent what we ex-
pected, at low-to-medium SNRs the more favorable distances
distribution leads to better performance. However, as the
SNR increases beyond 20 dB, Grassmannian codes become
increasingly optimal and outperform the proposed codes.

Fig. 5 shows the pairwise distance distribution for the 512
point constellations of the proposed codes and that of the

(a) Grassmannian constellation using greedy approach (dmin = 0.6286).

(b) Grassmannian constellation using direct approach (dmin = 0.7348).

(c) Proposed constellation using AE-based approach (dmin = 0.5957).

Fig. 5. Distribution of pairwise distances between constellation points for
proposed codes and baselines from [23] for 512 point constellations.



Fig. 6. Average probability of error for proposed codes and baselines from
[23] using the GLRT detector. 512 points constellations. T = 4, Nt = Nr =
2.

baseline Grassmannian codes from both the greedy and direct
approaches. From the figure, we observe similar trends to the
distributions of the 256 point constellations. Grassmannian
codes tend to have a higher minimum distance but the
proposed DAE-based constellation have a more favorable
distribution.

Fig. 6 shows the error performance of 512 point constella-
tion designed using the proposed DAE-based approach, and
again Grassmannian codes from both the greedy and direct
approaches are used as a baseline. From the figure, we observe
that the proposed codes still outperform the Grassmannian
codes up to an SNR of 20 dB in this case as well.

V. CONCLUSION

We have proposed an autoencoder-based optimization tech-
nique to generate noncoherent space time codes. In particular,
a denoising autoencoder is utilized to find codes that are
inherently robust to the effects of the wireless fading channel.
The proposed technique forgoes the high SNR assumption
usually adopted when designing noncoherent MIMO codes
and directly optimize for lower error rates without relying on
a surrogate distance metric. We have evaluated the resultant
constellation and found it to have a more favorable distances
distribution. Simulations results verified the utility of the gen-
erated constellation and showed that they outperform baseline
Grassmannian constellations for SNRs up to 20 dB.
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