
Deep Reinforcement Learning-based CIO and
Energy Control for LTE Mobility Load Balancing

Ghada Alsuhli, Hassan A. Ismail, Kareem Alansary, Mahmoud Rumman, Mostafa Mohamed, Karim G. Seddik

Electronics and Communications Engineering Department, American University in Cairo, Cairo, Egypt 11835
Email: {ghadaalsuhli, hassan ismail, auckareemalansary, mrumman, mustafamohammed auc, kseddik}@aucegypt.edu

Abstract—cellular networks’ congestion has been one of the
most common problems in cellular networks due to the huge
increase in network load resulted from enhancing communication
quality as well as increasing the number of users. Since mobile
users are not uniformly distributed in the network, the need for
load balancing as a cellular networks’ self-optimization technique
has increased recently. Then, the congestion problem can be han-
dled by evenly distributing the network load among the network
resources. Lots of research has been dedicated to developing load
balancing models for cellular networks. Most of these models
rely on adjusting the Cell Individual Offset (CIO) parameters
which are designed for self-optimization techniques in cellular
networks. In this paper, a new deep reinforcement learning-based
load balancing approach is proposed as a solution for the LTE
Downlink congestion problem. This approach does not rely only
on adapting the CIO parameters, but it rather has two degrees
of control; the first one is adjusting the CIO parameters, and
the second is adjusting the eNodeBs’ transmission power. The
proposed model uses Double Deep Q-Network (DDQN) to learn
how to adjust these parameters so that a better load distribution
in the overall network is achieved. Simulation results prove the
effectiveness of the proposed approach by improving the network
overall throughput by up to 21.4% and 6.5% compared to
the base-line scheme and the scheme that only adapts CIOs,
respectively.

Keywords— Load Balancing (LB), Reinforcement Learning (RL),
Double Deep Q-network (DDQN), Cell Individual Offset (CIO)

I. INTRODUCTION

Throughout the last decade, there has been a considerable increase
in the number of smart cell phone users. At the same time, there has
been a huge technological breakthrough in the field of mobile com-
munications and cellular networks to enhance the quality of the means
of both voice and data communications. This increase in the quality
accompanied by the increasing demand for cellular communications
has created noticeable congestion in cellular networks. This increase
in mobile traffic is expected to grow aggressively in the coming
years with the introduction of future generations [1]. Increasing the
networks’ capacity is always costly and it is not always feasible,
which makes it not an efficient solution for the congestion problem.
Another more feasible solution, that has been recognized recently, to
deal with this problem is load balancing.

Mobile users are not expected to be uniformly distributed in
cellular networks [2]. This leads to inefficient use of the peak perfor-
mance of cellular networks due to the bad utilization of the network
resources. In other words, at any point in time, there are always
free resources in cellular networks that are not utilized. Therefore,
exploiting these existing free resources is a more reasonable solution
for the congestion problem rather than introducing new resources into
the networks.

Load balancing is a way to exploit the free resources that exist
in cellular networks to overcome the congestion problem. It is based

on the process of moving some of the loads from the over-loaded
eNodeBs to the less loaded eNodeBs. By doing this, the loads
can be better distributed in the network. Starting from LTE and
continuing through future generations of cellular networks, networks
are designed in a way that allows for self-optimization [3]. This has
enabled several techniques to realize load balancing through self-
adjustment of the network’s self optimizable parameters.

Two load balancing algorithms were proposed in [4]. The first
algorithm was a reactive one. The algorithm achieves load balancing
by first checking the eNodeB utilization. If the utilization of some
eNodeB exceeds a certain threshold, it decrements the CIOs of this
eNodeB relative to its neighboring eNodeBs with some constant,
determined prior to network operation, and increments the CIOs of
the neighboring eNodeBs relative to this eNodeB by a constant step.
This process keeps repeating until the over-utilized eNodeB is no
longer congested, namely, its utilization is less than the threshold.
The second algorithm is a Q-learning-based load balancing algorithm.
It is basically the same as the reactive algorithm except for the
constant step used to increment or decrement the CIOs being no
longer a constant but rather a parameter that gets learned by a Q-
learning algorithm during the operation of the network. The benefit
of this algorithm is that after the learning process of this parameter,
the process of handing over the extra loads from the congested
eNodeB to the neighboring eNodeBs will be much faster. This
reduces the probability of having some calls dropped by the congested
eNodeB before moving to the less congested eNodeBs. Despite the
effectiveness of these two algorithms, there is a drawback of both.
They ignore checking the utilization of the neighboring eNodeBs
before moving the load to them. This can lead to a ping-pong effect
which is handing over the load back and forth between the over-
utilized eNodeB and the neighbor eNodeB if the neighbor eNodeB
is over-utilized as well. The author of [4] tried to solve this problem
by setting a counter to avoid returning the load instantaneously to the
source eNodeB after handing it over to the target eNodeB. However,
this is not the ultimate solution to the problem.

In [5], another load balancing algorithm was presented. It has
completely solved the ping-pong problem that appeared in [4]. This
algorithm is also based on the reactive load balancing algorithm
proposed in [4]. However, it considers the utilization of the neigh-
boring eNodeBs as well in making the decision of adjusting the
CIOs. Because of this consideration, the overall performance of the
whole network is greatly improved. The authors of [6] proposed
a more sophisticated approach for load balancing by considering
two more factors besides the utilization of the eNodeBs. The first
additional factor is the throughput of the eNodeBs, and the other
one is the Modulation and Coding Scheme (MCS) of the eNodeBs.
The authors, then, define a small set of eNodeB CIO values and
use a reinforcement learning agent to learn the optimum values of
the eNodeBs’ CIOs at every state of the network. The reinforcement
learning algorithm used in this proposed model is Q-learning. This
model has an advantage over the previous ones in that it takes more

network features into account. However, this model suffers from the
problem of dealing with absolute CIOs rather than relative CIOs,
which adds a restriction for the model to optimize the performance
of the network.

The authors in [7] used the Q-learning technique integrated with
a macro-femto eNodeBs’ arrangement. Algorithms balance the load
between the overlay macro eNodeB and the underlay femto eNodeBs
according to several metrics. Two algorithms work together to update
the Q-table containing the optimal transmission power of the femto
eNodeBs to sustain signal to interference plus noise ratio (SINR)
and throughput. The load balancing based on reinforcement learning
of end-user SINR (LBRL-SINR) observe the SINR of the user
equipment, the drop rate and block error rate of the macro eNodeB,
and adjust the transmission power of the femto eNodeBs to achieve
load balancing. The load balancing based on reinforcement learning
of the macro eNodeB throughput (LBRL-T) algorithms observes the
results of the actions of LBRL-SINR on the throughput, drop rate,
and block error rate of the macro eNodeB and update the Q-table to
achieve constant throughput. The authors used power adjustment of
the femto eNodeBs to offload the congested macro eNodeB, which
has a constant transmission power.

In [8], the authors proposed a deep reinforcement learning (DRL)
based mobility load balancing (MLB) algorithm along with a two-
layer architecture. It presents a two-layer architecture to alleviate
the large-scale load balancing issue, by grouping small eNodeBs
(eNodeBs), by historical loads, into clusters. To optimize the load
balancing an intracluster MBL algorithm based on DRL is pro-
posed. Furthermore, an offline safeguard mechanism is introduced
to mitigate the risks of using non-optimal MLB policy which could
potentially cause random handover events to trigger. The simulations
proved that the proposed algorithm considerably outperforms existing
algorithms. It was also proved that the clustered architecture outper-
forms the centralized one.

In this paper, a new load balancing model is proposed. This model
attempts to overcome the problems accompanied with the previously
discussed models. In our model, an RL agent is used to learn the
optimum actions as a function of the state of the network. Double
Deep Q-Networks (DDQNs) are used in the agent to achieve this
goal. In addition, the proposed model considers three features of the
network: the Resource Block (RB) utilization of the eNodeBs, the
throughput of the eNodeBs, and the MCS of the eNodeBs’ users, to
be the state of the environment. Regarding the actions, our model
considers applying two adjustments to the network so as to properly
distribute the load and achieve higher network performance. The first
adjustment is modifying the relative CIOs of the eNodeBs in the
network. The second adjustment is tuning transmission power of the
eNodeBs in the network. To the best of our knowledge, this paper
is the only work that suggests merging the control of the power and
CIOs to balance the load in LTE networks. Since maximizing the
throughput of the network is an aim of the network provider, the
total downlink throughput of the network is adopted as the reward.
NS-3 network simulator is used to simulate the LTE network, which
represents the environment that the RL agent interacts with to perform
the learning process.

The rest of this paper is organized as follows. Section II discusses
the system model for LTE and the load balancing mechanism. Section
III proposes a new load balancing model and explains the network
environment and the reinforcement learning algorithm used in the
model. Section IV presents the numerical analysis and results of the
proposed model. Section V provides the conclusion for the paper.

II. SYSTEM MODEL AND BACKGROUND

A. System Dynamics
A downlink LTE system is considered in this paper. The system

is composed of C eNodeBs and U users. Every user u measures the
Signal-to-Interference-plus-Noise-Ratio (SINR) of nearby eNodeBs,
and it connects to the eNodeB c that results in the highest SINR
considering that:

SINRu,c =
PcLu,c

N +
∑C
i=1, i 6=c(PiLu,i)

(1)

c = arg max
i∈[1,C]

SINRu,i, (2)

where Pc is the transmitted power of eNodeB c, N is the noise power
at user u, and Lu,c is the path loss that affects the signal transmitted
by eNodeB c and received by user u. Additionally, every user u is
served by its serving eNodeB c with a data rate of Bu,c and Ku,c

physical resource blocks (PRBs) such that:

Ku,c =
Bu,c

δ(SINRu,c)BPRB
, (3)

where δ denotes to the achievable spectrum efficiency which is a
function of the measured SINR, and BPRB denotes the bandwidth
of one PRB which is equal to 180 KHz in LTE.

B. eNodeB utilization and Overload
According to the discussed system model dynamics, every eNodeB

serves a number of users Uc ∈ [1, U] with a total number of physical
resource blocks

∑Uc
i=1Ki,c. The Utilization of the eNodeBs can then

be calculated as:

ρc =

∑Uc
i=1Ki,c

Bc/BPRB
, (4)

where ρc is the utilization of eNodeB c, and Bc is the bandwidth
of eNodeB c. The numerator of this equation represents the number
of required PRBs from the eNodeB, and the denominator represents
the maximum number of PRBs that can be offered by the eNodeB.
So, as long as the total PRBs required to serve the users at their
Guaranteed Bit Rates (GBRs) are less than the total PRBs that the
eNodeB can provide, the eNodeB is considered under-utilized ρc < 1.
And in this case, users are guaranteed to be served with data rates that
are equal or higher than their GBRs. However, when the total PRBs
required to serve the users at their GBRs are more than the total PRBs
that the eNodeB can provide, the eNodeB is considered over-utilized
ρc > 1. And in this case, some users are served with data rates that
are less than their GBRs leading to their dissatisfaction. Hence, the
maldistribution of loads can negatively affect the throughput of the
LTE system leading to a large number of dissatisfied users despite
the availability of unused PRB resources in the system.

C. Load Balancing
The main goal of this paper is to introduce a solution to the

problem of the load maldistribution among base stations, or eNodeBs,
in the network by controlling the handover. The handover of a user
from an eNodeB to another in 4G LTE happens when the following
condition holds:

Mj + θj−i > Hys+Mi + θi−j , (5)

where eNodeB i is the eNodeB currently serving the user, and
eNodeB j is the neighbor eNodeB. Mi and Mj refer to the mea-
sured values of the Reference Signal Received Power (RSRP) from
eNodeBs i and j respectively. The CIO value of the eNodeB i with
respect to the eNodeB j is θi−j , and the CIO of the eNodeB j

with respect to the eNodeB i is θj−i. A hysteresis value Hys is
used to minimize the probability of occurrence of the ping-pong
scenario, where a user keeps requesting handover due to small-scale
fluctuations in the signal quality. The CIO values impact how the
user perceives the RSRP of the serving eNodeB, or any neighboring
eNodeB. Unlike the other load balancing techniques, we introduce
more control over the handover parameters in equation 5. The actions
taken by the agent affect θi−j and θj−i, as well as, Mi and Mj .
Moreover, we introduced relative CIO values. The relative CIO
value of the eNodeB i with respect to eNodeB j is the difference
θij = θi−j − θj−i. Whereas, the relative CIO value of the eNodeB
j with respect to eNodeB i is θji = −θij . As a result, each serving
eNodeB has a single CIO value for each neighbor eNodeB, which is
different from [6], where only one CIO was used for all neighboring
eNodeBs. Another advantage is that the action space of the agent
is expected to be relatively smaller than the case when non-relative
CIOs are used.

As we will see in the next section, we assume the network has a
central RL agent that takes actions according to a predefined KPIs
and controls the relative CIO values and the transmission power of
each eNodeB. The interaction between the agent and the environment,
i.e., the network, happens at discrete time instances with a constant
duration between two consecutive interactions, or time steps. We
define the state of the network, S(t), as a subset of the network
KPIs at time t. In addition, the actions of the central agent, A(t), are
defined to be the CIO and transmission power values at time t. The
state of the network changes after the actions of the central agent to
be S(t+ 1) and the central agent receives a reward R(t+ 1).

III. PROPOSED MODEL

Two reward functions have been considered in this paper. Each one
of them has been used by the RL agent to optimize for in order to
know which one of these two reward functions is the best fit for our
proposed load balancing model. The two considered reward functions
are:

1) Instantaneous Sum Throughput,

R(t) =

C∑
c=1

Kc∑
kc=1

R̂kc(t), (6)

where R̂kc(t) is the measured value of the actual throughput,
at time t, of the kcth user in the nth eNodeB.

2) Average Deviation of RBs Utilization,

R(t) = −
C∑
c=1

| ρc(t)−
1

C

C∑
c=1

ρc(t) |, (7)

where ρc is the RB utilization of the eNodeB c, and C is the
total number of eNodeBs.

It should be noted here that maximizing the sum throughput
is a more reasonable reward function than just balancing the RB
utilization across the cells in the network. The sum throughput reward
function not only guarantees some load balancing but also allows
for increasing the data rates of the users, which enhances the users’
quality of experience (QoE). Using RB utilization as the reward
function can cause users to be connected to less favorable cells
although their best cells are not congested.

Every environment step, the central agent takes an action A(t) =
a after receiving state S(t) = s, according to a stochastic policy
πt(a|s). The central agent’s main goal is to maximize the long-term
average reward function

max
π

lim
T→∞

E

[
1

T

T∑
t=0

R(t)

]
, (8)

where π is the agent policy.

A. Reinforcement learning
In this section, we discuss the RL method used to tackle the

problem of load balancing. This technique is Q-learning using a
Double Deep Q-Network (DDQN) with an experience replay. The
central agent is going to learn an approximate version of the Q-
table using two neural networks. The purpose of the existence of the
two neural networks is to avoid the action values overestimation that
usually happens when the traditional DQN is used. This overestima-
tion, results from using the same network to select the action and
to estimate its value, which might lead to a low-quality policy in
addition to unstable learning [9]. As a result, one network, the base
network, is used to determine the action of the next state. While
the other network, usually called the target network, is responsible
for estimating the Q-value of the selected action. On the other
hand, adding experience replay to the conventional Deep Q-Learning
method allows to achieve better convergence properties [10].

We will start by defining the state S(t) as the concatenation of the
three key performance indicators (KPIs). The first KPI is the Resource
Block Utilization (RBU), an C-length vector U(t) ∈ [0, 1]C . Each
element in U(t) represents the fraction of the utilized RB in the cth
eNodeB at time t. The fraction of utilization is a measure of the
congestion level in the eNodeB. The total downlink (DL) throughput
in the cth eNodeB at time t is the second KPI, represented by an
element in the vector R(t) ∈ RC+, where R+ denotes the set of
positive real numbers. The DL throughput is a measure of the overall
performance of the eNodeB. The MCS utilization is the third KPI in
the state function S(t), for which there are 29 currently defined MCSs
in LTE [3]. MCS utilization can be represented by a matrix M(t) ∈
[0, 1]C×µ, where µ is the 29 modulation and coding schemes. Each
element in M(t) represents the ratio of users with a particular MCS,
providing a metric for the relative channel qualities of the users.
After vectorizing M(t) using the vectorization function vec(.), we
can define the state function as the concatenation of all three KPI
vectors as

S(t) = [U(t)T R(t)T vec(M(t))T]T . (9)

Therefore, the input layers of the two neural networks will be of size
2C + C × µ.

The central agent takes an action A(t) controlling the values of
the relative CIOs and the transmission energy of each eNodeB. The
actions are chosen from a predefined set of offsets that are then added
to a default value. The relative CIO, θcn(t), which is equivalent to
−θnc(t), can take discrete values from the set [-θmax, θmax] dB of
size L, where c ∈ C (the number of eNodeBs in the network), and
n ∈ N (the number of neighbor eNodeBs to the cth eNodeB). θmax
is the maximum value a relative CIO can take. Likewise, the central
agent chooses the transmission energy Ec of the cth eNodeB from
a set [−Emax, Emax] dB of size L. The size of the action space is
H , the total number of the relative CIOs according to the topology,
plus the total number of the eNodeBs C, i.e.,

A(t) = [θ12, · · · , θ23, θ24, · · · , θCN , E1, E2, · · · , EC]T . (10)

The total number of possible actions in the action space equals
LC+H . Both neural networks are used as a multi-class classifier;
hence, the output layer of each of the neural networks consists of
LC+H output neurons with a linear activation function. Additionally,
we add a hidden layer of size 2C+C×µ neurons. Both the input and
hidden layers in each network have a rectified linear (relu) activation
function.

The simulation runs for a number of Ne episodes. Each episode
corresponds to a complete simulation of the NS-3 environment. The

episode duration is divided into time steps ∆. The action selection
is performed using an epsilon greedy policy, where a random action
A is selected with probability 0 < ε < 1.

A(t) =

{
arg maxA Qt(S(t), A) w.p. 1− ε(t)
A w.p. ε(t).

(11)

This probability, ε(t), is important to balance exploration-
exploitation. At the beginning, ε(t) = 1 and thus the agent begins to
explore new random actions. The probability ε(t) is decaying with
time, which indicates more exploitation and less exploration until it
reaches a minimum value when the exploration is no longer needed.

As we mentioned before, experience replay is used in our model.
The experience replay saves all the actions, states, and rewards in a
replay memory of a limited length. When this memory is full, the
old experience is overwritten. At each step, the central agent picks
a number of random samples, a mini-batch, from this memory to
train and update the weights of the base network. On the other hand,
updating the weights of the target network is delayed for a specific
period (an episode in our case). Because of the great correlation
between the samples of consecutive time steps, using mini-batches is
essential for our problem. Thus, within each batch, the samples can
be considered to be Independent and Identically Distributed (IID) and
the double estimator is unbiased [9].

The action values of the target network are used to compute the
action values in the base network as

Qt+1(S(t), A(t)) = R(t+ 1)

+ γQtarget(S(t+ 1), arg max
A

Qt(S(t+ 1), A;wt);w
′
t) (12)

where γ is the future rewards’ discount factor, and wt and w′t are
the two sets of weights of the action selection (base) network and
the evaluation (target) network, respectively, [10].

IV. NUMERICAL ANALYSIS

In this section, we present our simulation network setup, the RL
model, and our simulation results and analysis.

A. Network setup
The LTE network scenario, shown in Fig. 1, consists of 3 eNodeBs

with inter-site distance of 500 meters. Each eNodeB site covers a
hexagonal area using a single omni-directional antenna. Respectively,
the eNodeBs are labeled eNodeB 1, eNodeB 2 and eNodeB 3 from
the left to the right. Within each eNodeB coverage, a number of UEs
are assumed to be stationary and are deployed randomly with low
density. Thus, all of those users are satisfied and the network does
not suffer from any kind of congestion. To add a hotspot congestion
to the network, a bus that contains a number of users are moving
with constant speed starting at the left, eNodeB 1, and moving
towards eNodeB 3 as the simulation progresses. The simulation is
carried out using the NS-3 simulator [11]. Table I summarizes the
parameters used in the simulations and their corresponding values.
The environment step time is the time for which the network
experiences updates until the RL agent generates new actions (i.e.,
the length of one RL time step in seconds). As the mobile UEs move
from the vicinity of eNodeB 1 to eNodeB 2 and eNodeB 3, A3 event
(handover event) triggers as the UEs satisfy the handover condition
illustrated in equation 5.

B. RL model
After setting up the network on the NS-3 network simulator,

we developed our RL agent that is supposed to use this network
as its environment. The RL agent, which uses the DDQN and

Fig. 1: Simulated LTE network topology

experience replay to learn the best control of this environment, is
implemented using Python and Tensorflow [12]. After setting up both
the network environment and the agent, we have used NS3-gym as
an interface that enables the simulated network on NS-3 to be used
as an environment for the RL agent. The complete model is shown
in Fig. 2. The simulation runs for 200 episodes each consisting of
100 time-steps. To select the hyper-parameters that result in the best
performance of the agent, the simulation is repeated several times.
The final values of the hyper-parameters used in the RL agent are
listed in Table II.

C. Results and discussion
In this sub-section, we present and analyze the numerical results

of testing our proposed model on the small network discussed earlier
in this section. The results of this model which employs both CIO
and energy adjustments are, then, compared with the results of the
model proposed in [6] which employs only CIO adjustments and the
results of the base-line model which does not apply any adjustments.
It should be mentioned that the presented curves are smoothed to
reduce the effect of fluctuations and illustrate the trends.

Figure 3 shows the learning process of each of the three models.
Each model aims at maximizing the sum throughput of the network
in different ways. Our model maximizes the total throughput via
controlling both the relative CIO values and the transmitted power
of the different eNodeBs in the network. Any relative CIO can take
a value of -3, 0, or 3, and any eNodeB’s transmitting power can take
a value of 40dbm, 43dbm, or 46dbm (which are typical transmission
power values). The second model maximizes the total throughput by

Parameter Value
Inter-site Distance 500m
Center Frequency 2GHz
of eNodeBs 3
eNodeB Bandwidth 50MHz
of Antennas per eNodeB Tx: 1, Rx: 1
Antenna Pattern Omni
eNodeB antenna height 30m
eNodeB Tx Power 43dBm
Shadowing No
Traffic Direction Downlink
Traffic Model Full buffer
Scheduler RrFfMacScheduler

UE Mobility Model

Mixed
20 stationary UEs
10 moving UEs

(constant speed of 20 m/s)
UE Antenna Height 2m

Handover
A3-event based

Time to trigger = 40ms
Hysteresis = 3dB.

Environment step time 0.2s

TABLE I: Summary of network parameters

Fig. 2: The proposed model

Hyper-parameter Value
CIO set {−3, 0, 3}dB
Tx power set {40, 43, 46}dBm
Reward function Total DL throughput
Number of episodes 200
Number of iterations/episode 100
ε decay 0.999
gamma (discount factor) 0
Number of hidden layers (Nh) 1
Activation function(input/hidden layers) relu
Activation function (output layer) linear
Loss function Huber loss
Optimizer Adam(0.001)

TABLE II: Simulation parameters of the RL agent

controlling only the CIO values (-3, 0, or 3) of the eNodeBs in the
network. And the base-line model uses fixed CIO values, set at zero,
and fixed transmission power of 43dbm for all the eNodeBs in the
network. The x-axis of the graph in Fig. 3 represents the number
of episodes that the learning process has elapsed. Every episode is
a complete network simulation of 20 seconds. The y-axis represents
the total throughput of the three eNodeBs in the network averaged
over all steps of the corresponding episode. As shown in Fig. 6, the
average episode throughput of the base-line model is constant during
the learning process, which is expected. The CIO model’s throughput
reaches 12.44 Mb/s. On the other hand, our proposed model takes
longer to converge due to the extended action space after considering
controlling the energy in addition to the CIOs. However, the proposed
model records a much better throughput of 13.24 Mb/s. As a result,
the CIO model achieves an increase of 14% in the instantaneous
sum throughput of the network, while our proposed model achieves

Fig. 3: Learning process of the different models

Fig. 4: Average RB utilization deviation under the different models

an increase of 21.4% in the instantaneous sum throughput compared
to the base-line.

It should be noted that our model can be extended to account
for other reward functions. Another reward has been tried by the RL
model which is the average deviation of the network’s RB utilization.
Figure 4 shows the learning process of the RL agent to achieve the
minimum deviation in order to guarantee a fair distribution of the
users among all the eNodeBs of the network. As illustrated in the
figure, both the RL agents of the proposed model and the CIO model
perform very similarly using this reward. Both of them converge to
a very similar value which is better than the value of the base-line
model. This can be attributed to the fact that the RB utilization is
mostly affected by the handovers of the users, which can be merely
controlled by adjusting the CIOs. However, if the aim is to maximize
the sum throughput, then the eNodeBs energies will play an important
role; this is the reason why controlling both the CIOs and the energies
resulted in an improved throughput performance as compared to the
other two systems, where one only adjusts the CIOs and the other
does not apply any adjustments (i.e., the base-line system)

After completing the learning process, five episodes (starting
from different randomization seeds) have been used to evaluate the
performance of the three models. Figure 5 shows the average total
throughput achieved by each model during each episode. In this

Fig. 5: Episode-Level comparison after convergence between the different
models

Fig. 6: Step-Level comparison after convergence between the different models

figure, it can be seen that the performance of our proposed load
balancing model significantly outperforms both the base-line and the
CIO based models. In addition, Figure 6 shows the performance of
our proposed model throughout one complete testing episode. The
graph in Fig. 6 shows that not only the average episode throughput
of the proposed model exceeds the base-line average throughput, but
also our model throughput exceeds the base-line throughput on the
level of each step, i.e. for every possible state of the network. That
being said, controlling the Tx power of every eNodeB in the network
along with the CIOs adds a decent performance gain to the load
balancing model. This is because it not only guarantees the balancing
of the load, which is not an aim itself, but also allows increasing
the data rates of the users. This is done through controlling the
transmitted power of the eNodeBs and, thus, the interference among
the different eNodeBs.

V. CONCLUSION

Mobile communication networks have ubiquitous existence in our
daily modern lives. Congestion of users in mobile networks is a
problem that is addressed in several research papers. This paper
have introduced controlling both the CIO value and the transmission
power of the eNodeBs to control the handover of users. DDQN

with experience replay is used to find the values of the CIO and
transmission power of different eNodeBs in the network to maximize
some network reward function (e.g., sum throughput). Relative CIO
values are used instead of absolute CIO to eliminate any restriction
to achieve optimal performance. The results of the simulation shows
that controlling relative CIO and transmission power of the eNodeBs
to perform load-balancing significantly enhances the throughput of
the network, compared to the base-line or when only the CIOs are
adjusted.

REFERENCES

[1] Ericsson. Ericsson mobility report june 20019.
[2] Harri Holma and Antti Toskala. LTE advanced: 3GPP solution for IMT-

Advanced. John Wiley & Sons, 2012.
[3] TS ETSI. Lte: Evolved universal terrestrial radio access (e-utra),

physical layer procedures-corresponding to 3gpp ts36 213. 3GPP TS,
136(213):V10.

[4] S. S. Mwanje and A. Mitschele-Thiel. A q-learning strategy for lte
mobility load balancing. In 2013 IEEE 24th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pages 2154–2158, 2013.

[5] Andreas Lobinger, Szymon Stefanski, Thomas Jansen, and Irina Balan.
Load balancing in downlink lte self-optimizing networks. In 2010 IEEE
71st Vehicular Technology Conference, pages 1–5. IEEE, 2010.

[6] Kareem Attiah, Karim Banawan, Ayman Gaber, Ayman Elezabi, Karim
Seddik, Yasser Gadallah, and Kareem Abdullah. Load balancing in
cellular networks: A reinforcement learning approach. In 2020 IEEE
17th Annual Consumer Communications & Networking Conference
(CCNC), pages 1–6. IEEE, 2020.

[7] Sameh Musleh, Mahamod Ismail, and Rosdiadee Nordin. Load balanc-
ing models based on reinforcement learning for self-optimized macro-
femto lte-advanced heterogeneous network. Journal of Telecommunica-
tion, Electronic and Computer Engineering (JTEC), 9(1):47–54, 2017.

[8] Yue Xu, Wenjun Xu, Zhi Wang, Jiaru Lin, and Shuguang Cui. Load
balancing for ultradense networks: A deep reinforcement learning-based
approach. IEEE Internet of Things Journal, 6(6):9399–9412, 2019.

[9] Hado V Hasselt. Double q-learning. In Advances in neural information
processing systems, pages 2613–2621, 2010.

[10] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI conference on
artificial intelligence, 2016.

[11] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell,
and Joseph Kopena. Network simulations with the ns-3 simulator.
SIGCOMM demonstration, 14(14):527, 2008.

[12] Martı́n Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

