
1

Mobility Load Management in Cellular Networks:
A Deep Reinforcement Learning Approach

Ghada Alsuhli†, Karim Banawan‡, Kareem Attiah∗, Ayman Elezabi†, Karim G. Seddik†, Ayman Gaber+,
Mohamed Zaki+, and Yasser Gadallah†

†Electronics and Communications Engineering Department, American University in Cairo, Cairo, Egypt
‡Electronics and Communications Engineering Department, Alexandria University, Alexandria, Egypt

∗Department of Electrical and Computer Engineering, University of Toronto, Ontario, Canada
+Vodafone Egypt

Abstract—Balancing traffic among cellular networks is very challenging due to many factors. Nevertheless, the explosive growth of
mobile data traffic necessitates addressing this problem. Due to the problem complexity, data-driven self-optimized load balancing
techniques are leading contenders. In this work, we propose a comprehensive deep reinforcement learning (RL) framework for steering
the cell individual offset (CIO) as a means for mobility load management. The state of the LTE network is represented via a subset of
key performance indicators (KPIs), all of which are readily available to network operators. We provide a diverse set of reward functions
to satisfy the operators’ needs. For a small number of cells, we propose using a deep Q-learning technique. We then introduce various
enhancements to the vanilla deep Q-learning to reduce bias and generalization errors. Next, we propose the use of actor-critic RL
methods, including Deep Deterministic Policy Gradient (DDPG) and twin delayed deep deterministic policy gradient (TD3) schemes, for
optimizing CIOs for a large number of cells. We provide extensive simulation results to assess the efficacy of our methods. Our results
show substantial improvements in terms of downlink throughput and non-blocked users at the expense of negligible channel quality
degradation.

F

1 INTRODUCTION

Global mobile data traffic is expected to reach around 38
exabytes per month in 2020 and is projected to grow to
reach 160 exabytes per month in 2025. Traffic growth in
cellular networks is driven by both the rising number of
smartphone subscriptions and an increasing average data
volume per subscription, fueled primarily by video content.
This trend is expected to continue, as emerging media for-
mats and applications, such as streaming high-quality video
and augmented/virtual reality, will continue to drive traffic
growth. Video traffic in mobile networks is forecast to grow
by around 30% annually to account for 60% of all mobile
data traffic in 2019 while traffic from social networking is
also expected to rise annually by 20% until 2025 [2].

This traffic growth calls for a substantial network-level
optimization. One venue for optimization is mobility load
management. Total traffic carried by 4G networks is not
uniformly distributed among the cells. As a rule of thumb,
15% of the network cells carry 50% of the generated traffic
[3]. This increases the resource utilization in certain spots
(hot spots) compared to the rest of the network. This raises
the importance of offloading the congested cells via load
balancing techniques. A typical approach is controlling the
cell individual offset (CIO). The CIO is an offset that can
be applied to alter the handover decision. This effectively
forces some of the users to leave congested cells even if these

This work was supported by an internal research grant from the American
University in Cairo, and was presented in part at the IEEE CCNC conference,
Las Vegas, USA, January 2020 [1]

cells may result in the highest user signal to interference
and noise ratio (SINR). The CIO may be optimized based
on various metrics, e.g. network throughput, utilization, or
combinations thereof. Traditionally, network operators have
relied on their subjective experience to devise load balancing
decisions. To cope with the excessive traffic growth, network
operators are shifting their attention to applying machine
learning techniques for effective load balancing optimiza-
tion. This is motivated by the complexity of the problem
and the success of machine learning techniques in a wide
range of telecommunications applications.

In this paper, we present a family of deep RL approaches,
including several variations and enhancements, to solving
the load balancing problem for LTE cellular networks. We
choose the state of the environment to be a subset of KPIs,
all of which are readily available to cellular operators.
For the action, we use the CIO to trigger the handover
(HO) procedure. Additionally, the reward function is chosen
to match the needs of network operators, including total
downlink throughput, the percentage of non-blocked users,
and deviation from average utilization.

We start with the basic deep Q-learning technique [4],
which works with a discrete set of actions. In traditional
Q-learning, the agent constructs a table of the Q-values
for each state-action pair where the Q-value assesses the
quality of the decision at a certain state. These Q-values are
updated through interaction with the environment. Since
the chosen states in our formulation belong to an infinite
space, we approximate the Q-values using a deep neural
network. This leads to a deep Q-network (DQN) [4]. Next,

2

we propose applying various enhancements to the basic
DQN including experience replay [5], double DQN (DDQN)
[6], and state/target normalization [7]. These enhancements
aim at reducing the generalization error1, the bias, and the
non-stationarity effects.

The above techniques are essentially classification-
based2 RL techniques. The action space dimensionality
grows exponentially with the number of evolved nodes B
(eNodeBs). This creates problems when we scale the system
up to a higher number of cells. Moreover, we consider the
general case when the CIO values belong to a continuum.
To tackle both problems, we propose using actor-critic tech-
niques [8]. Particularly, we adopt the deep deterministic
policy gradient (DDPG), and its successor, the twin delayed
deep deterministic policy gradient (TD3) [9]. Note that al-
though actor-critic methods are sufficient to tackle the prob-
lem for discrete and continuous action space settings, the
DQN/DDQN techniques remain extremely useful for small
number of cells. This is due to the fact that DQN and DDQN
requires less number of neural networks to implement and
train (e.g., the DDQN requires two neural networks, while
TD3 requires six). Hence, for a small number of cells, the
DQN/DDQN outperforms the actor-critic methods in terms
of the complexity, and the rate of convergence.

We empirically assess the performance of our techniques.
To that end, we use NS-3 [10] to build a model of an
LTE network. To model realistic users’ mobility, we use
the Simulation of Urban Mobility (SUMO) [11]. We use
real imported maps from Fifth Settlement, Egypt, consistent
with the data at network operators. This constructs the envi-
ronment which the agent interacts with. We choose NS-3 as
it supports the full protocol stack of the LTE system and can
provide simulated, yet accurate, key performance indicators
(KPIs). We present two case studies: First, a proof-of-concept
scenario, where we consider a simple linear geometry of
three cells in our cluster and a synthetically congested cell
is available. We show using DDQN how can we effectively
achieve a balanced load across the network. Next, we focus
on a practical case study of a cluster from Fifth Settlement,
Egypt with real site data. We show using DDPG, and TD3
that a significant boost in throughput can be achieved.

The rest of the paper is organized as following: Section 2
presents the system model, Section 3 presents the general
RL framework. Next, we present the basic DQN in Section 4.
Section 5 provides several improvements to the basic DQN.
Next, we shift our attention to RL techniques for continuous
action spaces in Section 6. We provide a short overview
of the environment simulators and case studies setting in

1. By generalization error, we mean the error in predicting the actual
Q-value and/or optimal CIO value for previously unseen states.

2. Throughout this work, we use the notation classification-based
RL and regression-based RL to shed light on the functionality of the
neural network at the core of the RL agent. We refer to the DQN
(and its related enhancements) as classification-based RL. Although
that notation is usually associated with supervised learning, we use
it in the context of the RL to emphasize the fact that the agent picks
a CIO value from a discrete set of pre-defined CIO values. This is in
the contrast to the actor-critic methods presented afterward, where the
CIO values belong to a continuum. We refer to the actor-critic methods
as regression-based RL. Nevertheless, we note that both techniques are
fundamentally different as DQN is a value-based RL technique, where
the actor-critic methods belong to the policy-gradient techniques [4].

Section 7. Finally, Section 8 provides some numerical results
and discussions, and Section 9 concludes the paper.

1.1 Main Contributions

We summarize our contributions in the following points:

1) Recasting the mobility load-balancing problem as an
MDP.

2) Novel definition of the MDP state based on the
careful selection of KPIs. Our state definition param-
eters are readily available to any network operator.
The state definition reflects the balance between the
congestion level and the relative channel qualities
of the users. This prevents the total DL throughput
from declining as a result of load balancing.

3) Formulating a flexible optimization framework in
terms of reward definitions including the total
download throughput, the ratio of blocked users,
and the deviation from the average load. This sup-
ports load balancing solutions for multiple, and
sometimes conflicting, objectives, such as to max-
imize the network throughput or minimize the
blockage.

4) Proposing several RL agents for discrete and contin-
uous action spaces (CIO values). For the discrete ac-
tion sets, we propose using DQN in addition to sev-
eral enhancements to improve the performance. The
enhancements include experience replay, DDQN,
and state/target normalization. For the continuous
action space, we propose using DDPG and TD3
agents.

5) Building a realistic system-level simulator for the
cellular LTE network, which allows for controlling
the CIO values. We use NS-3 to simulate the full
protocol stack of LTE to exactly mimic real cellular
networks. We also use real on-site data for the
placement of the eNodeBs. Our simulators can be
found in [12].

1.2 Related works

Unlike earlier generations of cellular networks, LTE net-
works are designed to support some self-optimization (SO)
functionalities [13]. As a result, the past decade has wit-
nessed a growing interest in realizing load balancing via
self-tuning of handover (HO) parameters [14]–[18]. In [14],
the authors present an algorithm to iteratively update the
CIO. Reference [15] proposes a reactive load-balancing tech-
nique in which the CIOs of the serving and target cells are
symmetrically updated with opposite signs by a specific
value chosen from a predefined discrete subset by a rein-
forcement learning (RL). The chosen reward function is the
negative of the number of unsatisfied users. However, the
RL states are partially expressed in terms of the cell-edge
user distribution, a piece of information that may not be
readily known to a network operator in practice. In [16],
the authors proposed a two-layer architecture in addition
to a deep reinforcement learning technique to tackle the
problem of load balancing in ultra-dense networks. The pro-
posed off-policy deep RL-based algorithm can be trained via
an asynchronous parallel learning framework and employ

3

multiple behavior policies for joint exploration to improve
learning. There have also been a few attempts to automate
load balancing in heterogeneous networks where femtocells
are deployed to improve capacity and coverage. In [17], a
supervised learning strategy is introduced to estimate the
needed CIO values to adjust the range of the femtocells
through historical data that is generated using a network
simulator. Hence, macrocells are relieved from increased
user traffic. A similar approach is reported in [18], in which
a combination of fuzzy logic control and RL algorithms is
employed to determine the required femtocell range ex-
pansion, measured in both femtocells transmit power and
CIO. The interplay between load balancing and network
slicing using reinforcement learning is explored in [19],
[20]. Furthermore, [21], [22] present two deep reinforcement
learning frameworks to balance the load in the cellular
networks. The state spaces of these works are equivalent
and mainly derived from the RB utilization of the different
cells and the fraction of the edge users. We refer the reader
to [23], for a more comprehensive survey on SO techniques
for load balancing.

It is worth mentioning that actor-critic techniques are be-
coming popular in wireless communications. For instance,
different from the load balancing problem, actor-critic tech-
niques are used in [24] for user scheduling and resource
allocation in heterogeneous networks. In another context
[25], actor-critic methods are employed joint optimization
of content caching strategy, computation offloading policy,
and radio resource allocation in an IoT setting. We refer the
reader for the following detailed surveys about the applica-
tions of reinforcement learning in wireless communication
[26]–[28].

2 SYSTEM MODEL

In this section, we present our system model. We begin by
describing the LTE network we are dealing with. Next, we
discuss our load balancing action (control), namely, CIO.
Finally, we describe the central agent, who is responsible for
choosing the optimal CIOs.

2.1 Network Description

Consider the downlink (DL) of an LTE cellular network
with N base stations (eNodeBs or eNBs) and K active user
equipments (UEs). Initially, Kn UEs are associated with the
nth base station, such that

∑N
n=1Kn = K . The kth UE is

associated with the nth base station if it results in the best-
received signal at the kth UE. Specifically, the UE measures
the reference signal receive power (RSRP) and selects the
strongest cell based on the cell selection receive level value.
The UE shall regularly search for a better cell according
to the cell reselection criteria [29]. We assume that kth UE
moves with a velocity vk following an unknown mobility
pattern to the eNBs. The kth UE periodically reports the
channel quality indicator (CQI) φk to the associated base
station. The CQI is a 4-bit binary code, that is based on the
perceived SINR and Block Error Rate (BLER) measured by
the UE in addition to the number of antennas and the type
of receiver. Furthermore, the kth UE wishes to be served
with a minimum data rate of ρk bits/second.

The associated base station assigns Bk physical resource
blocks (PRBs) to the kth UE as:

Bk =

⌈
ρk

g(φk,Mn,k)∆

⌉
(1)

where ∆ = 180KHz in LTE, and g(φk,Mn,k) is the achiev-
able spectrum efficiency based on the reported CQI φk
and the antenna configuration Mn,k using the default LTE
scheduler. The function g(·) specifies the modulation and
coding scheme (MCS) based on φk and Mn,k. The total
required PRBs needed to serve all associated UEs in the nth
base station is Tn =

∑Kn

k=1Bk. The total offered PRBs by the
nth base station is denoted by T̃n.

2.2 Cell Individual Offset (CIO)

According to the 3GPP LTE specifications [30], a UE, initially
served by some cell i, will commence a handover request to
some neighbor cell j if the following condition holds

Zj + θj→i > Hys + Zi + θi→j , (2)

where Zi and Zj are the measured values of RSRP from cells
i and j, respectively, θi→j is the CIO value of cell i with
respect to cell j, θj→i is the CIO value of cell j with respect
to cell i, and Hys is a hysteresis value that minimizes the
likelihood of ping-pong scenarios that arise due to fading
fluctuations. One may interpret θi→j as the offset value
that makes the measured RSRP of cell i appear stronger (or
weaker) when compared with the measured RSRP of cell j.

2.3 The Central Agent

The central agent3 can monitor all KPIs at the network
level, which are derived from the UEs and eNodeBs reports
as we will specify in Section 3.1. Based on the observed
KPIs, the central agent learns the dynamics of the pre-
sented LTE network and takes decision for each CIO value,
(θi→j : i 6= j ∈ {1, · · · , N}). The agent chooses a sequence
of the decisions, i.e., a policy such that the UEs in the network
enjoy better user experience in the long run according to
some performance metric as we will formally describe next.

3 REINFORCEMENT LEARNING FRAMEWORK

In this section, we present the general RL framework, which
is used throughout. The RL technique is a dynamic learn-
ing framework, where an agent learns to self-optimize its
actions by interacting with an environment. Specifically,
the agent seeks to specify the optimal policy to maximize
the long term average of a certain reward function. RL
is abstracted as a Markov decision process (MDP), where
the agent observes the current state of the environment
and applies an allowable action, which changes the state
of the environment and earns a reward as a result of the
agent’s action [4]. RL techniques are used to find the optimal
decisions for MDPs when the dynamics of the system can

3. We note that the 3GPP specifies an architecture for centralized
self-optimizing functionality, which is intended for maintenance and
optimization of network coverage and capacity by automating these
functions [31]. In this work, we focus on this architecture for our agent.
Decentralized agents are an interesting future extension to this work.
The decentralized agents can be obtained by exploiting decentralized
machine learning techniques such as multi-agent DRL [32] and feder-
ated learning [33], [34].

4

be learned from experience. Hence, in the sequel, we recast
the load balancing problem as an MDP4.

In MDPs [4], there is an agent, which is a decision-maker;
and an environment, which corresponds to everything out-
side the agent. The agent interacts with the environment.
At discrete time instants t = 0, 1, 2, · · · , the agent observes
the state of the environment S(t), which is a pre-specified
representation of the environment that belongs to a state
space S . Based on this perceived state, the agent chooses an
action, A(t), from an action set, A. When the agent applies
A(t), the state of the environment is changed to S(t+1). The
result of applying this action is assessed by a reward function,
R(t+ 1) ∈ R. The central agent aims at finding the optimal
policy, i.e., the optimal action sequence that maximizes the
long-term average reward.

For perfect-knowledge MDP, the dynamics of the sys-
tem can be fully described via the probability distri-
bution, P (S(t+ 1) = s′,R(t+ 1) = r|S(t) = s,A(t) = a),
where s′, s ∈ S , and a ∈ A. For RL, however, the agent
is learning the dynamics of the system from experience in
addition to its usual decision-making capabilities. The MDP
formulation is suitable for goal-oriented tasks, where the
agent knows what the end goal is but has little knowledge
about how to reach that goal and does not have training
data. In our problem, the LTE network corresponds to the
environment, the state corresponds to a subset of the KPIs,
the action corresponds to setting the CIOs, and the reward is
some quantification of the user experience. To fully describe
the load balancing problem in terms of an MDP, we need to
specify S , A, and R(t) as follows.

3.1 State Space (S)

We start with the state S(t). Since KPIs are regularly re-
ported to the core network to monitor the LTE network, it is
practical to adopt a subset of these KPIs as the state of the
environment.

We propose four KPIs5 to define S(t) [36]. The first
is the resource block utilization (RBU), U(t) ∈ [0, 1]N ,
where U(t) = [U1(t) U2(t) · · · UN (t)], where Un(t)
corresponds to the fraction of the utilized RB in the nth
eNB at time t. This reflects the congestion level of each cell.
In practice, Un(t) > 0.7 is an indicator that the nth cell is a
congested cell [37].

Secondly, the total DL throughput vector, R(t) ∈ RN+ ,
where R(t) = [R1(t) R2(t) · · · RN (t)] and Rn(t) represents
the total DL throughput in the nth cell at time t. A cell with

4. We argue that the Markov property is suitable to assume in our
load balancing problem as we control the cellular network by basically
triggering the handover process. The handover condition in (2) depends
only on the current state of the cellular network. Furthermore, we de-
sign our MDP state to be as descriptive as possible, hence, our problem
does not suffer from the hidden state problems in [35]. Relaxing the
Markov assumption is an interesting future direction that is outside the
scope of this work.

5. The reference [36] presents a systematic method of characterizing
the most relevant KPIs that are highly correlated with the average user
throughput. The paper concludes that the presented KPIs in addition
to the BLER and the CQI are enough to estimate the average user
throughput. In this work, however, we do not include BLER and CQI
as they require the eNodeB to report the KPIs of individual users,
which may be challenging. Moreover, the MCS penetration is a proxy
for representing CQI and BLER at the cell aggregation level.

a higher throughput for the same RBU and number of UEs
admits better user experience.

Thirdly, the number of connected users per cell K(t) =
[K1(t) · · · KN (t)] ∈ NN , where Kn(t) enumerates the
number of connected users to the nth eNodeB at time t. This
serves a dual purpose, as it tracks the effect of handover
procedures that result from changing the CIO levels, and
it quantifies the average user’s experience given the total
throughput of the cell.

Finally, the modulation and coding scheme (MCS) pen-
etration M(t) ∈ [0, 1]N×τ , where τ is the total number of
modulation and coding schemes, which are 29 active MCS
in LTE [30]. The element (n, j) in the matrix M(t) is the
ratio of users in the nth cell that employs MCS with index
j. This is a metric to assess the relative channel qualities of
the users over the cell.

Now, we are ready to write the state S(t), which is a
concatenation of all these KPIs, i.e.,

S(t) = [U(t)T R(t)T K(t)T vec(M(t))T]T (3)

where vec(·) is the vectorization function. All four KPIs are
necessary to describe the state. For example, Rn(t) is not
enough to describe the user experience in the nth cell as
it needs to factor in Kn(t) and Un(t). By the same token,
Kn(t) is not enough to characterize the congestion of the
cell, e.g. if the traffic load is small because most users are
using voice services, · · · etc.

Note that due to the different units of the state features,
each feature needs to be normalized by its maximum to
ensure that there is no dominant feature. Additionally, the
size of the state vector is 3N + Nτ . This could be pro-
hibitively large for large number of cells. Even for moderate
cell sizes, the convergence of the agent’s policy may be
challenging due to the large search space. To represent
the state compactly, we replace the M(t) with only the
ratio of users utilizing the MCS indexes from 0 to 9 at
each cell. This is due to the fact that we perform load
balancing by triggering the handover procedure. As the
cell-edge users suffer from high levels of interference and
low signal power, low SINR is expected near the cell edge
[38]. This SINR is used to calculate the CQI value which is
reported to the BS. Then, the MCS parameter is assigned
based on the CQI value. So, there is a mapping between the
SINR and MCS index of the UE. The lower the SINR, the
lower the MCS index. According to table 7.1.7.1-1 in 3GPP
specifications, [30], the users with MCS between [0:9] has
the lowest modulation order which is equivalent to QPSK
in the digital modulation scheme. Thus, when a user has
an MCS between [0:9], he/she has low SINR, low channel
quality, and low modulation order which indicates with
high probability that this user is near the edge. A simulation
run was performed and showed that the performance using
the full and compact MCS sets is virtually the same.

3.2 Action Space (A)
The central agent controls the CIOs of all eNBs. Specifically,
the agent selects the action,

A(t) = (θi→j(t) : i 6= j, i, j = 1, · · · , N) (4)

The values of θi→j(t) can come from:

5

1) Finite countable set: In this case, the possible action
values for θi→j(t) is a discrete subset of [θmin, θmax]
dB of size L, where θmin, θmax are the minimum and
maximum possible CIO values. Hence, the cardinal-
ity of the action space A is given by6:

|A| = LN(N−1)/2 (5)

2) Uncountable set: In this case, θi→j(t) is picked from
the continuum of [θmin, θmax] dB.

3.3 Reward Function (R(t))

To formally investigate the user’s experience and/or the
overall system performance, we need to define a reward
function. The agent aims at maximizing the total (dis-
counted) reward.

Possible reward functions that are of practical impor-
tance include:

1) Instantaneous sum throughput: For this reward func-
tion, the agent is concerned only about the total
throughput of the network, i.e.,

R(t) =
N∑
n=1

Kn∑
kn=1

R̂kn(t) (6)

where R̂kn(t) is the actual measured throughput of
the knth user in the nth cell at time t. This reward
function assesses the overall performance of the LTE
network and the average user experience in that
network.

2) Percentage of non-blocked UEs: Here, the central agent
needs to choose CIOs such that the fraction of users
that cannot be served with a minimum data rate ρ
is minimized, i.e.,

R(t) = 1− 1

K

N∑
n=1

Kn∑
kn=1

Ekn(t) (7)

where Ekn(t) = 1 if the knth is not served with the
minimum required data rate ρ. This reward function
targets the individual user experience.

3) Average deviation of the total number of offered PRBs:
The central agent aims at only balancing the traffic
load over the cells irrespective of the throughput.
The central agent aims at minimizing the deviation
of the offered PRBs from the mean, i.e.

R(t) = −
N∑
n=1

∣∣∣∣∣T̃n(t)− 1

N

N∑
n=1

T̃n(t)

∣∣∣∣∣ . (8)

The central agent is designed to work with one of these
rewards or a weighted average of all of them. Generally, the
agent in RL implements a stochastic policy, π, where π(a|s)
is the probability that the agent performs an action A(t) = a
given it was in a state S(t) = s. The central agent aims at

6. The expression of the cardinality in (5) assumes that all cells are
adjacent to each other. Although this may be impractical, we generally
formulate the problem as such. However, for specific scenarios, we set
the relational CIOs for all non-neighboring cells to be zeros.

maximizing the expected long-term sum discounted reward
function, i.e.,

max
π

lim
L→∞

Eπ

[
L∑
t=0

λtR(t)

]
(9)

where λ corresponds to the discount factor. The discount
factor signifies how important future expected rewards are
to the agent. A discount factor λ = 0 corresponds to a
myopic agent that cares only about the immediate rewards
and does not care about long-term planning and for λ = 1
the agent gives equal weight to the present and all future
rewards.

3.4 Action-Value Function

To assess the quality of each state-action pair, (s, a), the
agent needs to calculate a state-action value function, re-
ferred to as the Q-function, defined by

Qπ(s, a) = Eπ

[∞∑
k=0

λkR(t+ k + 1)|S(t) = s,A(t) = a

]
.

(10)

This function calculates the long-term expected sum re-
wards starting from the state s and applying the action a
while following the policy π.

For a finite state space S and action space A, the agent
in any MDP formulation (and by extension RL) essentially
needs to construct a Q-table, that enumerates all the possi-
ble states versus all possible actions. The agent calculates
Qπ(s, a) for all (s, a) pairs. The optimal policy π∗ satisfies
the Bellman optimality equation [4]:

Qπ∗(s, a) =
∑
s′,r

P(s′, r|s, a)[r + λmax
a′

Qπ∗(s
′, a′)]. (11)

It can be shown that deterministic policies suffice to
attain the same optimal long-term reward function when
the Q-function can be accurately estimated. Hence, in this
work, we apply deterministic policies. The central agent
then applies the optimal action corresponding to each state,
which is the one with the highest state-action value, i.e., the
agent applies the action a∗(s) such that:

a∗(s) = arg max
a′∈A

Qπ∗(s, a
′). (12)

4 CLASSIFICATION-BASED DEEP Q-LEARNING
TECHNIQUE

In this section, we present our basic technique to tackle
the load balancing problem, namely, the classification-based
deep Q-learning technique. We use deep Q-learning tech-
nique [39], [40] to construct an agent, whose task is to max-
imize the long-term average of one of the reward functions
in Section 3.3. We note that direct enumeration of the Q-
table needed to solve the RL problem is infeasible. This is
due to the fact that the state space S is a continuous space
with an uncountable number of states. Thus, we rely on
approximating the Q-table by means of deep neural net-
works (DNN). We utilize deep neural networks to directly
predict the optimal action for each state even if this state was
never observed during the training phase. More specifically,

6

the neural network aims at approximating the optimal Q-
function, Qπ∗(s, a), by

Q(s, a;w) ≈ Qπ∗(s, a) (13)

where Q(s, a;w) is the function corresponding to the neural
network weights w.

4.1 Deep Neural Network

We use the neural network as a multi-class classifier. The
DNN aims at identifying the optimal action given the state
of the environment. The structure of the DNN is as follows.

The input layer of the neural network comprises of Ls
neurons, where Ls = 3N +Nτ if the full state vector in (3)
is used, and Ls = 4N , when compacted versions of the state
(i.e., with 10 lower MCS indexes penetration) is used. In this
scheme, the classifier classes are all the possible CIO vectors.
Hence, the output layer of the neural networks consists of
|A| = LN(N−1)/2 output neurons, with linear activation
function. To learn the (possible) non-linear dependencies of
the actions A(t) on S(t), we further add Nh hidden layers.
Each hidden layer has the size of ni, i = 1, · · · , Nh neurons
and with rectified linear unit (ReLU) activation function.

4.2 Q-Learning

Now, our DNN is ready to learn a Q-function approximation
by RL. The learning is done over Ne episodes. Each episode
corresponds to a complete simulation of the environment
(in our case, the NS-3 simulator) over Tsim time period with
a time step ∆.

To balance the exploration and exploitation, we define
ε(t) to be the probability of picking a random action in time
t (exploration), where,

ε(t) = (εd)
`(t) (14)

where 0 < εd < 1 is the decay factor of the exploration prob-
ability7 and `(t) is the index of the time step corresponding
to t. At time t = 0, 1, 2, · · · , the central agent picks a random
action with probability of ε(t) and exploits the action that
maximizes the approximate Q-functionQ(s, a;wt), with the
probability 1− ε(t), i.e.,

A(t) =

{
arg maxa′∈A Q(S(t), a′;wt) w.p. 1− ε(t)
Ā w.p. ε(t)

(15)

where wt are the weights of the DNN at time t, and Ā
denotes a random action that is drawn uniformly (i.e., with
probability 1

|A|) from the action space.
The central agent sends the CIO values corresponding to

A(t) to all eNodeBs. The reward R(t + 1) is calculated and
the state S(t + 1) is observed. In this case, the estimate of

7. Note that we use random actions to explore the state-action value
space. This is done only with the model learning phase. Once the
model learning completes, i.e., the weights of the NN converges, the
NN outputs a deterministic action value for every state vector.

the Q-value of the (S(t), A(t)), denoted by Q̂(S(t), A(t)), is
updated using the Q-learning update equation8:

Q̂(S(t), A(t)) = R(t+ 1) + λmax
a′

Q(S(t+ 1), a′;wt).

(16)

Note that, maxa′ Q(S(t+ 1), a′;wt) is the predicted opti-
mal Q-value using DNN with weights wt. Intuitively, (16)
means that the estimated Q-value is a sum of the collected
reward due to applying A(t) and the highest discounted
future reward predicted by the DNN with weights wt.

Now, the updated Q-value should update the weights of
the DNN, i.e., we train the DNN with the results of this time
step using back propagation as in supervised learning. To do
so, we construct a target value y(t) (i.e., a label in supervised
learning) in the following manner,

y(t) =[Q(S(t), a1;wt) Q(S(t), a2;wt) · · ·
Q̂(S(t), A(t))︸ ︷︷ ︸

from the update equation

· · · Q(S(t), a|A|;wt)] (17)

Hence, the DNN is trained by the new example
(S(t), y(t)). This is performed by minimizing the training
loss function L(w), via a training optimizer (e.g., stochastic
gradient descent (SGD)).

5 ENHANCED CLASSIFICATION-BASED DEEP Q-
LEARNING TECHNIQUE

In this section, we enhance the learning technique (see
Figure 1) in Section 4 to reach a stable learning and faster
convergence. Although our vanilla Q-learning technique
leads to satisfactory results for simplified scenarios (e.g., the
3-cell system in [1]), the convergence of the scheme is slow
for practical cases. Here, we enumerate some shortcomings
of the previous scheme and propose three extensions that
significantly enhance the performance and/or the conver-
gence rate.

5.1 Experience Replay (Mini-Batches)

The scheme in Section 4 inherently uses a supervised learn-
ing to update the weights of the DNN. This requires that the
data set samples are statistically independent. The samples’
independence ensure a low-variance classifier, i.e., ensuring
that the classifier generalizes well and does not depend on the
training data. More specifically correlated samples that are
mislabeled introduce a systematic bias, whose effect remains
irrespective of the size of the data set [41]. In our application,
the independence assumption does not hold since the LTE
network KPIs are naturally correlated in time in any cellular
network, and they are functions of related quantities. Hence,
we need to break the time correlation of states to have a
generalizable classifier. This is the motivation of experienced
replay (also known as mini-batches) investigated in [42], [5].

8. We note that although the general update equation for Q-learning
is given by Q(St, At) ← Q(St, At) + α[Rt+1 + λmaxaQ(St+1, a) −
Q(St, At)] (see [39]), we set α = 1 in this work. This is because the term
α corresponds to the step-size of the algorithm, e.g., the learning rate in
a stochastic gradient descent. Since we are using a deep neural network,
the step-size is adjusted in the optimizer of the neural network and not
within the RL update.

7

Experience

Replay

Mini-

Batch

Policy

CIO Selection NN

Environment

𝑨(𝒕)

Loss Calculation

&

Target Normalization

Weight

Updating
Weight

Updating

argmax𝑸(.)
𝒂′

Target NN

ℛ(𝒕 + 𝟏)

𝑸(.)

RL Agent

𝑺(𝒕) 𝑺(𝒕 + 𝟏)

𝑺(𝒕 + 𝟏)

Fig. 1: Enhanced classification-based Q-learning model

In the experienced replay, we do not update the weights
of the deep neural networks directly at each time step.
Rather, we collect the experiences of the RL agent in
a buffer of size B. By experiences, we mean the tuple
(S(t), A(t), S(t+ 1),R(t+ 1)) for all t = 0, 1, 2, · · · . Hence,
the buffer stores a data set of size B, in a set DB as follows:

DB ={(S(0), A(0), S(1),R(1)), · · ·,
(S(B − 1), A(B − 1), S(B),R(B))} (18)

The data set is updated continuously by discarding the
oldest experiences, when the buffer is full. At each step, a
random batch of size Bm < B is retrieved from the buffer
to update the neural network weights (training). This ran-
domization breaks the temporal correlation and smoothes
learning over changes in the data distribution.

5.2 Double Deep Q-Learning (DDQN)

One problem that arises with our Q-learning technique in
Section 4 is the overestimation of some of the Q-values.
More specifically, due to the maximization step at each
update of (16), positive bias exists for estimated Q-values.
The overestimation may be non-uniform over the learned
states and hence distorts the relative action preferences [6].
As pointed out by [6], the problem stems from using the
same Q-function values to select the best action and to
evaluate the value of the action. This adds a non-zero bias
[6, Theorem 1]. Thus, to construct unbiased estimated Q-
values, we need to separate the action selection from the
target evaluation process.

To that end, we may construct two separate DNNs to
implement double deep Q-learning (DDQN) [6]. In this
work, we use the original DNN for choosing the best action,
while we use a delayed version, by one episode, of this DNN
for evaluation as in [6]. This delayed DNN is called the target
DNN, whose weights are denoted by w̄t. We refer to the
original DNN as the CIO selection neural DNN. Thus, the
Q-value of the (S(t), A(t)) state action pair is updated using
the following update equation:

Q(S(t),A(t)) = R(t+ 1) + λ×
Q(S(t+ 1), arg max

a′
Q(S(t+ 1), a′;wt)︸ ︷︷ ︸

from CIO selection neural network

; w̃t)

︸ ︷︷ ︸
from target evaluation neural network

. (19)

The remaining steps are the same. Hence, the DDQN de-
creases the bias due to the maximization step. This facilitates
faster training and more stable weight learning.

5.3 Target Normalization

Although our scheme in Section 4 implicitly uses supervised
learning, there is a fundamental difference between our
scheme and conventional supervised learning in terms of
the target function. In RL, the target function (Q-function) is
non-stationary, and in particular the variance increases with
time. This may cause desensitization for weight updates if
the target Q-values are quite high. Moreover, the target func-
tion in RL is not available prior to training as in supervised
learning. This motivates normalizing the target function in
addition to the commonly used normalization of the input
(state) [7].

In this work, we propose a different normalization tech-
nique than [7]. Let m̄tn(j) = 1

Bm

∑Bm

i=1Qj(Si, Ai), and
σtn(j) be the mean and the standard deviation of the jth
mini-batch targets. Hence, the target Qj(Si, Ai) is normal-
ized as:

Q̄j(Si, Ai) =
Qj(Si, Ai)− m̄tn(j)

σtn(j)
, (20)

where Q̄j(Si, Ai) is the normalized target.9,10

6 SCALING UP THE DEEP Q-LEARNING AP-
PROACH: REGRESSION-BASED DEEP Q-LEARNING

Till now, we assumed that the action space is discrete.
Hence, the agent picks an action for every given state
in a similar fashion to multi-class classification problems.
This technique works well for LTE networks with a small
number of cells. If the number of cells is large and/or
the cardinality of the CIO set is large, the classification
technique becomes prohibitive as the dimensionality of the
action space grows exponentially with the number of cells as
in (5). Thus, successful training of such deep RL techniques

9. Note that because the current reward Ri+1 is not normalized, the
update predicted future Q-value term in (19), Qj(Si+1, a

′;wt); w̃t)
needs to be de-normalized within the update equation.

10. It is worth noting that although our normalization technique can
be regarded as a simplification to its counterpart in [7], our numerical
results show that our simplified normalization technique outperforms
[7] for our specific load balancing problem.

8

becomes exceedingly intractable. To tackle this problem, we
propose using the regression-based deep Q-learning tech-
niques. Thus, in this section, we assume that the CIO set is
the entire continuous set [θmin, θmax]. We propose using two
constructions for RL with continuous action space, namely,
the Deep Deterministic Policy Gradient (DDPG) [8], and the
Twin Delayed Deep Deterministic Policy Gradient (TD3) [9].
Next, we present the construction of both machines and how
to adapt them to our problem.

6.1 Deep Deterministic Policy Gradient (DDPG)

DDPG combines the actor-critic [43] approach with deep Q-
learning and its enhancements. The actor-critic algorithm
produces continuous actions by optimizing a cost func-
tion, while it evaluates the current policy by means of Q-
learning. DDPG uses experience replay and two separate
target DNNs as in Section 5 as we will show next.

The DDPG algorithm uses two DNNs. First, the actor
function µ(s;wa

t), which outputs a deterministic action for a
state s based on the weights wa

t . The second neural network
estimates the critic function, which is the normal Q-value
Q(s, a;wc

t) based on the weights wc
t . In addition, we have

two target DNNs (similar to the DDQN technique), one
corresponding to the actor with weights w̄a

t and the other
corresponds to the critic with weights w̄c

t .

Based on [8], our implementation for the DDPG uses
experience replay as in Section 5, i.e., we construct a data set
of the experiences in a buffer DB with size B as in (18). The
exploration is DDPG is based on randomizing the output of
the actor function with a random noise, i.e.,

A(t) = µ(s;wa
t) +N (t) (21)

where N (t) is a random noise that can be either random
samples from an Ornstein–Uhlenbeck (OU) process with
parameters (θn, σn), or uncorrelated zero-mean Gaussian
noise samples with variance σ2

n. The entire experience
(S(t), A(t),R(t+ 1), S(t+ 1)) is then stored in DB .

At each time step, we randomly and uniformly pick a
batch of size Bm samples to calculate the target function
based on the ith experience entry as: (Si, Ai,Ri+1, Si+1):

yi = Ri+1 + λQ(Si+1, µ(Si+1; w̄a
t); w̄c

t), i = 1, · · · , Bm
(22)

To get the new critic weights wc
t+1, we update the

weights of the critic function by minimizing the mean
square loss (MSE) along the mini-batch, L(wc

t),

L(wc
t) =

1

Bm

Bm∑
i=1

(yi −Q(Si, Ai;w
c
t))

2 (23)

To get the new actor weights wa
t+1, we update the

actor function by maximizing the expected reward function.
Therefore, the scheme calculates the gradient ascent of the
expected returned state-action value, which is given by
J(wa

t) = E[Q(s, a;wc
t)|s = Si, a = µ(Si;w

a
t)], with respect

to wa
t . Applying the chain rule, we thus calculate

∇wa
t
J(wa

t) ≈

1

Bm

Bm∑
i=1

∇aQ(s, a;wc
t)|s=Si,a=µ(Si;wa

t)
∇wa

t
µ(s;wa

t)|s=Si

(24)

Finally, DDPG uses soft target updates, i.e., the target
DNNs are updated as a linear combination of new learned
weights and old target weights,

w̄c
t+1 = γwc

t+1 + (1− γ)w̄c
t (25)

w̄a
t+1 = γwa

t+1 + (1− γ)w̄a
t (26)

where γ is the soft update coefficient, which is a hyper-
parameter chosen from the interval [0, 1]. This constrains
the target values to vary slowly; this, in effect, stabilizes the
RL.

6.2 Twin Delayed Deep Deterministic Policy Gradient
(TD3)

TD3 is introduced in [9] to improve the performance of its
predecessor, the DDPG. It is shown in [9] that DDPG suffers
from the overestimation bias. This is due to the similarity
between the policy and target functions as a result of slow
updates of both functions. To remedy this, TD3 employs
a pair of independently trained critic functions instead of
one as in the case of DDPG. TD3 favors underestimating
the Q-values by choosing the minimum of the two critics.
Unlike overestimation errors, underestimation errors do not
propagate through algorithm updates. This decreases the
bias and the variance of the Q-value estimates. This provides
a more stable approximation, thus improving the stability
with respect to DDPG.

Additionally, TD3 uses delayed updates for the target
actor and critic functions, i.e., the target and actor functions
are updated once every Tu time steps, where Tu is a hyper-
parameter of the scheme. This mitigates the problems of
agent divergence due to poor policy estimation. Delaying
the updates result in a more stable Q-value estimation,
which in turn leads to a more stable policy estimation. Fi-
nally, TD3 uses a target smoothing regularization technique
that adds clipped noise to the target policy prior to updating
the weights. This ensures that the target fitting is still valid
in the vicinity of the actual action stored in the replay buffer,
leading to smooth value estimation.

Specifically, TD3 randomly initializes two critic net-
works Q(s, a;wc1

t) and Q(s, a;wc2
t) with weights wc1

t , and
wc2
t , respectively. We randomly initialize the actor network

µ(s;wa
t). We construct target networks with weights w̄c1

t ,
w̄c2
t , and w̄a

t , respectively. Initially the target weights are
set to their actor and critics values. Similar to DDPG, TD3
uses experience replay and randomizing of the actor output,
hence the action A(t) is obtained exactly as (21) and the
entire experience (S(t), A(t),R(t+ 1), S(t+ 1)) is stored in

9

the buffer as in DDPG11.
One difference between DDPG and TD3 is in the mecha-

nism of updating the DNNs. By randomly sampling a batch
of size Bm from DB , we first use the the target actor DNN
to compute the target action Ai+1 = µ(Si+1; w̄a

t) that cor-
responds to an experience entry (Si, Ai,Ri+1, Si+1). Then,
the smoothed target action Ãi+1 is calculated by adding the
clipped noise,

Ãi+1 = clip(Ai+1 + ε̃, [θmin, θmax]), i = 1, · · · , Bm (27)

where ε̃ = clip(N (0, σ̃2), [−c, c]) for some maximum value
c > 0, where clip(x, [a, b]) = b if x > b, is equal to a if x < a,
and is equal to x if a ≤ x ≤ b.

Secondly, the target function is calculated using the
minimum estimate of the Q-value from the two target critics
for the perturbed input, i.e.,

yi = Ri+1 + λ min
j=1,2

Q(Si+1, Ãi+1; w̄
cj
t), i = 1, · · · , Bm

(28)

The weights of the two critics are updated as (23), hence,
i.e.,

w
cj
t+1 = arg min

w
cj
t

1

Bm

Bm∑
i=1

(yi −Q(Si, Ai;w
cj
t))2 (29)

Finally, we update the actor function as in (24) every Tu
time steps and not at every step as in DDPG and update
the target functions as DDPG target update in (25). Figure 2
summarizes the structure of the TD3 algorithm.

7 ENVIRONMENT SIMULATOR AND CASE STUDIES

7.1 Environment: NS-3 LTE Simulator

The RL framework introduced in this paper assumes that
online interaction between the central agent and the LTE
network is possible. Unlike supervised learning, where the
true label for each learning example exists prior to the
training, the RL agent needs to learn a complete policy from
experience with no prior knowledge of the true optimal
policy. Hence, we cannot rely on historic records of cellular
operators12. To that end, we use the NS-3 LTE simulator as
our environment.

NS-3 simulator is a free discrete-event network simulator
for Internet systems [44]. The NS-3 LTE module is a highly-
accurate, open-source simulator that mimics the complete
LTE system. The simulator provides the complete radio
protocol stack for eNodeBs and the UEs, in addition to core
network interfaces and protocols. The NS-3 LTE module
allows testing new self-optimized network (SON) protocols

11. It is worth noting that the DDPG can be seen as a special case of
the TD3 with Tu = 1, σ̃2 = 0, and we fix the weights of one of the
critic functions to be arbitrarily large positive values. Although DDPG
can be seen as a special case of the TD3, we discuss DDPG in details
for the following reasons: 1) DDPG is the building block of the TD3,
hence, it is natural to build TD3 based on the shortcomings of the
DDPG, 2) DDPG has less computational complexity with respect to
TD3 (4 neural networks compared to 6 in TD3), thus, there is a tradeoff
between computational complexity and performance.

12. By using historic data in supervised learning fashion, the agent
would merely learn the most frequent action that the LTE network
operator previously applied. This does not ensure converging on the
optimal policy.

Experience

Replay

Mini-

Batch

Noise

Environment

𝑨(𝒕)
ℛ(𝒕 + 𝟏)

RL Agent

𝑺(𝒕) 𝑺(𝒕 + 𝟏)

𝑺(𝒕 + 𝟏)

Actor

Optimizer

Soft Update

Update

𝒘𝒕
𝒂

Actor 𝝁(s;𝒘𝒕
𝒂)

Actor Target 𝝁(s; ഥ𝒘𝒕
𝒂)

𝐆𝐫𝐚𝐝𝐢𝐞𝐧𝐭
𝛁𝒘𝒕

𝒂

Critic

Optimizer

Soft Update

Critic2 𝑸(s,a;𝒘𝒕
𝒄𝟐)

Critic2 Target 𝑸(s,a;ഥ𝒘𝒕
𝒄𝟐)

Critic1 𝑸(s,a;𝒘𝒕
𝒄𝟏)

Critic1 Target 𝑸(s,a;ഥ𝒘𝒕
𝒄𝟏)

Soft Update

min

𝒘𝒕
𝒄𝟏 , 𝒘𝒕

𝒄𝟐 Update

𝝁(𝑺𝒊+𝟏; ഥ𝒘𝒕
𝒂)

𝐆
𝐫𝐚
𝐝
𝐢𝐞
𝐧
𝐭
𝛁
𝒘
𝒕𝒄
𝟏

Target

Smoothing

𝑸
(𝑺

𝒊+
𝟏
,෩ 𝑨

𝒊+
𝟏
;
ഥ 𝒘
𝒕𝒄𝟏

)

𝑸
(𝑺

𝒊+
𝟏
,෩ 𝑨

𝒊+
𝟏
;
ഥ 𝒘
𝒕𝒄𝟐

)𝑸
(𝑺

𝒊,
𝑨
𝒊;

 𝒘
𝒕𝒄𝟏

)

𝑸
(𝑺

𝒊,
𝑨
𝒊;

 𝒘
𝒕𝒄
𝟐
)

෩𝑨𝒊+𝟏

Fig. 2: TD3-based load balancing model

[10]. Hence, NS-3 is well-suited for our purposes in this
work.

Thus, we implement the eNodeBs and the UEs using
the NS-3 LTE module. The module implements an FDD
channel access. We modified the built-in protocols of NS-
3 to allow different CIOs for every pair of cells. To interface
the environment to the agent, we use the NS3gym interface
[45], which is an interface between OpenAI Gym and NS-
3 that allows for seamless integration of those frameworks.
The interface takes care of delivering state and action infor-
mation between the OpenAI Gym agent and the simulation
environment. Next, we describe the two environment sce-
narios, which are simulated via NS-3.

7.2 Synthetic LTE Network Scenario

This synthetic scenario aims to show the gain that can be
obtained by applying the proposed approach. In addition,
this scenario is designed such that the optimal policy is
predictable in order to assess the correct behavior of the
agent. Three cells aligned on a line with 500m intersite
distance are considered in this scenario, as shown in Figure
3. The UEs are randomly deployed such that most of the
users are placed closer to the center of the middle cell.
The remaining UEs are cell-edge users in the middle cell.
Thus, all UEs are initially attached to the middle eNodeB.
This deployment results in an overloaded cell that has
some cell-edge users on the common boundaries of the

10

Parameter Value
System Bandwidth 5 MHz
eNB antenna height 30 m
eNB antenna Pattern Omni
eNB Tx Power 20 dBm
UE Traffic Model CBR (1 Mb/s)
Blockage Threshold (ρ) 0.5 Mb/s
UE Mobility Model Random walk (speed = 3 m/s)
UE Antenna Height 1.5∼2 m
Number of UEs 41

Handover
Event A3
Hysteresis = 3dB
Time to trigger = 40ms

Pathloss Model COST Hata
Step Time (∆) 200 ms

TABLE 1: Synthetic scenario simulation parameters

two underutilized cells. Such an extreme case is fitting to
test the behavior of the load balancing technique. The UEs
in this scenario have a constant bit rate (CBR) of 1 Mbps
traffic model and walk randomly at a speed of 3 m/s. Other
configuration parameters of this scenario are listed in Table
1.

In the synthetic scenario, the agent can use either DDQN
or actor-critic algorithms that allow using continuous action
space to learn the optimal values of relative CIO. When the
DDQN is used the CIO values are selected from the discrete
set {-6, -3, 0, 3, 6} dB. The configuration parameters of the
DDQN RL agent13 are given in Table 2. On the other hand,
the configuration of the actor-critic algorithms used for this
scenario are similar to those used for the next scenario.

Hyper-parameter Value
Number of episodes (Ne) 200
Number of steps/episode (Tsim) 50
Discount (λ) 0.95
Number of hidden layers (Nh) 1
Activation function ReLU
Activation of the output layer linear
Loss function Huber loss
Optimizer Adam(0.001)
Batch size 32

TABLE 2: Simulation parameters of the DDQN agent

Fig. 3: The considered synthetic network

7.3 Realistic LTE Network Scenario
Although synthetic scenarios are usually used to test the
efficiency of load balancing techniques in the literature,
as in [1], [16], more realistic simulation scenarios should
be considered before adopting any approach for real net-
work implementation. For this purpose, an area of size
900m×1800m from the urban Fifth Settlement neighbor-
hood in Egypt is selected to perform the simulation using
a realistic placement of eNodeBs. The resulting network,

13. Although Huber loss was originally proposed for regression
problems, we choose to fix our loss function throughout this paper
to always be Huber loss. The DDQN network computes estimates of
Q-values which is similar to regression-based RL from the loss point of
view. Furthermore, performance results using either of MSE or Huber
loss are the same for the synthetic scenario.

illustrated in Figure 4a, represents a cluster of six eNBs
whose locations are provided by a 4G network operator.

For more realistic users’ mobility in our environment,
we use Simulation of Urban Mobility (SUMO) [11], due
to its simplicity and efficiency to produce realistic traffic
behaviors. In addition, SUMO has the ability to import a
realistic environment from real maps such as Open Street
Map (OSM). This imported environment considers the real
road structure, number of lanes, traffic light rules, buildings,
etc. After extracting the map from OSM, the SUMO simu-
lator is used to introduce realistic mobility models of the
UEs. Figure 4b shows the exported region within the SUMO
simulator. The mobile UEs in this scenario are either vehicles
or pedestrians. The pedestrians walk with a speed ranging
between 0-3 m/s. The vehicles mobility characteristics, i.e.
acceleration, deceleration, speed factor, and speed deviation,
are 1.85 m/s2, 0.9 m/s2, 1.13, and 0.11, respectively. These
values are taken from [46] to emulate a realistic behavior
of the vehicles. The UEs are randomly distributed on the
available streets and pedestrian lanes at the beginning of
the simulation. Afterward, each UE has a random trip from a
source to a destination street during the simulation time. All
of those UEs are assumed to have a full buffer traffic model,
i.e., the users are always active. The unlimited demand of
the users allows reaching a congestion state with a small
number of UEs. The simulation has 40 UEs and eNBs with
32 dBm Tx power. The other simulation parameters of the
realistic are common with the synthetic one, and are listed
in Table 1.

Even though the number of cells in our realistic LTE
network scenario is still not that large, using DDQN agent
requires a DNN with a huge and prohibitive number of
neurons in the output layer. Therefore, a continuous action
space-based RL algorithm is used in the agent side to
implement the load balancing approach suggested in this
work. The agent determines the value of the relative CIOs
within the continuous range [−6, 6]. As we will see later,
the adopted scheme TD3 in this framework is compared
to DDPG and Soft-Actor Critic (SAC)14 algorithms. For the
three algorithms, we used the stable implementation of the
Open AI Baselines [52]. The simulation parameters of these
algorithms are listed in Table 3.

8 NUMERICAL RESULTS

In this section, we show the results of applying the proposed
agents/approaches to the aforementioned LTE network sce-

14. For completeness, we compare our adopted techniques (DDPG
and TD3) with the SAC [47]. SAC is the successor of Soft Q-Learning
(SQL) [48]. At the same time, SAC shares the clipped double-Q feature
with TD3. The key feature of SAC is learning the policy based on
maximizing the both the expected return and the randomness in the
policy, usually called entropy regularization [49]. This strikes a balance
between learning acceleration and prematurely converging to a poor
local optimum. We are not investigating its construction in detail as we
will show that TD3 algorithm slightly outperforms SAC for our load
balancing problem in terms of the average throughput. The SAC is a
natural contender for the TD3 historically. Note that SAC optimizes
a stochastic policy (in contrast to deterministic policies in the cases
of DDPG and TD3). Moreover, the TD3 and the SAC are comparable
in terms of the computational complexity and performance in the RL
literature. For more information on the SAC algorithm, we refer the
interested reader to the seminal work of [47], and some recent works
such as [50] and [51].

11

LK2313LK6606

L6541
L6183

LK2526

LK2526

(a) Google map view

LK2313LK6606

L6541
L6183

LK2526

LK2526

(b) SUMO view

Fig. 4: Realistic network topology

Parameter DDPG TD3 SAC
Batch size (Bm) 128 128 64

Soft update coefficient(γ) 0.001 0.005 0.005
Policy delay (Tu) - 2 -
Exploration noise OU(θn = 0.15, σn = 0.1) Normal(σn = 0.5) -

Entropy regularization coefficient - - 0.1
Hidden layers

(Nh, ni, Activation) (2, (64,64), ReLU)

Discount (λ) 0.99
Number of episodes (Ne) 200

Number of steps/episode (Tsim) 250

TABLE 3: Simulation parameters of different RL agents

narios. Note that in all simulations, the actions, generated by
this agent, are applied to the environment at the beginning
of each time step. However, the reward is estimated by
averaging the instantaneous rewards of the sub-frames (1
ms) during the last quarter of the step time. The reason
behind that is to ensure that the network has finalized the
procedure of the triggered handovers and stabilized. We
call this reward the step reward, versus the episode reward
which is the average step reward of this episode. Due to
the random exploration noise, the obtained episode reward
during the learning process differs from one run to another.
Thus, the results in this paper are averaged over 10 indepen-
dent runs, with 95% confidence intervals represented by the
shaded area around each curve15. The performance of the
adopted agent is compared to the baseline system in which
all cells have fixed relative CIOs of 0 dB.

15. The simulation runs are performed on a workstation with four-
teen Intel Xeon CPU cores at 2.6 GHz and NVIDA GeForce RTX 2080
GPU. Despite these capabilities, the training of one agent model with
200 episodes takes about 21 hours, which is totally dominated by the
NS-3 simulation time.

8.1 Synthetic Scenario Results
In the following, we discuss the results obtained for the
synthetic scenario. First, the relative performance of the
enhanced DDQN and an actor-critic RL algorithm, TD3,
to solve the load management problem are compared for
the synthetic environment. Then, we show the gain that
can be obtained when several DDQN agents with different
rewards to be optimized are used. Afterward, the channel
quality variation because of applying the load management
is debated.

8.1.1 Comparing DDQN and TD3 algorithms
We compare the enhanced DDQN, that uses discrete action
space, to the adopted TD3 algorithm, with continuous action
space, when the synthetic scenario is considered as an
environment. Figure 5 shows the episode reward, namely
the average throughput, that is achieved by TD3 and DDQN
compared to the baseline and the optimal policy16. Each
episode starts from a different seed and thus each episode
has a different (random) distribution and mobility of the
UEs. This forces the agent to experience more states and
generalizes the obtained results. In Figure 5, we observe
that the DDQN agent begins to converge and exploit its
experience after about 75 episodes. Whereas, the TD3 agent
converged earlier after 25 episodes. However, the DDQN
agent, in all 10 runs, succeeded to reach almost the most
reachable reward value which is 16.63 Mb/s, on average.
On the other hand, due to the continuous action space
that must be explored by TD3, the faster convergence of

16. The optimal policy for the synthetic scenario is to select the CIO
values [6,-6] that offload all middle cell edge-users to the unutilized
neighboring cells.

12

TD3 is not always to the best action. This causes TD3 to
have wider confidence interval and worse average episode
reward after convergence compared to DDQN, with this
synthetic scenario. Nevertheless, this observation cannot be
generalized. This is because the CIO values included in the
discrete CIO list are sufficient for this synthetic scenario.
More specifically, the optimal policy here includes using the
two extreme CIO values [6, -6] of the discrete action set.
Indeed, it is not the case with the optimal policy of a more
realistic scenarios.

0 25 50 75 100 125 150 175 200
Episode

10

12

14

16

18

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

DDQN Agent
TD3 Agent

Baseline
Optimal

Fig. 5: Performance comparison of DDQN and TD3 agents

8.1.2 Using Different Reward Functions
The three suggested reward functions in Section 3.3 are in-
vestigated in this section. We aim to assess the gain achieved
when each of the proposed rewards is considered by the
DDQN agent.

Figure 6a shows the results when the average overall
DL throughput is considered by the DDQN agent to bal-
ance the load of the synthetic network. After convergence,
we observe a significant enhancement in the overall DL
throughput up to 57% compared to the baseline scheme.
This is because the agent becomes capable of selecting the
CIO values that match the optimal policy.

The performance of the load balancing framework when
the objective of the agent is to maximize the percentage of
non-blocked users is shown in Figure 6b. On its way to en-
hance the users’ experience, the agent has to find the optimal
policy that offloads enough users to the underutilized cells
such that the number of users with a throughput higher
than the blockage threshold is maximized. Although about
84.5% of the users were blocked in the baseline system, the
percentage of satisfied users increased to be about 69% of
the users after convergence in 6b. This is because moving
cell-edge users to the underutilized cells allows the users of
the congested cell to enjoy more PRBs, i.e. more throughput.
At the same time, the throughput of the offloaded users is
getting better as they have the chance to use more PRBs in
the underutilized cells they moved to.

The RB utilization deviation reward is investigated in
Figure 6c. The first observation here is that the baseline

0 25 50 75 100 125 150 175 200
Episode

10

11

12

13

14

15

16

17

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

DDQN Agent
Baseline
Optimal

(a) Overall DL throughput reward

0 25 50 75 100 125 150 175 200
Episode

20

30

40

50

60

70

No
n-

bl
oc

ke
d

Us
er

s (
%

)

DDQN Agent
Baseline
Optimal

(b) Percentage of non-blocked users reward

0 25 50 75 100 125 150 175 200
Episode

0.4

0.3

0.2

0.1

0.0

Av
er

ag
e

PR
Bs

 D
ev

ia
tio

n

DDQN Agent
Baseline
Optimal

(c) Utilization deviation reward

Fig. 6: Performance using different reward functions

13

system has constant deviation since all UEs are attached
to the middle eNB when the CIOs are zeros. The optimal
policy should be able to achieve near 0 deviation which
indicates that all base stations are equivalently loaded.
After it converged, the agent succeeds in balancing the
load and obtaining the optimal utilization deviation. It is
worth mentioning that for such a simple synthetic scenario,
choosing any of the three rewards would optimize the other
two. This is because, for the synthetic scenario, the optimal
policy, that optimizes any of the reward functions, is to
offload the middle cell edge users to the cells on the sides.
In other words, the impact of balancing the load on the
network is equivalent to maximize the overall throughput or
enhancing the individual experience. However, for the more
complicated and realistic scenarios, there can be a conflict,
or independence, between optimizing the previously men-
tioned reward functions, as we will see later.

8.1.3 Effect of Managing the Load on the Channel Quality
Finally, we investigate the impact of managing the load on
the channel quality of the UEs in this synthetic scenario.
Figure 7 illustrates the average CQI reported when a DDQN
agent is trying to maximize the overall throughput of syn-
thetic scenario. In this figure, the average channel quality of
the users decreased and converged on less average CQI by
15.4% compared the baseline CQI. This is expected since
changing the CIO in equation (2) counterfeits the actual
RSRP to trigger the handover of a UE to an underutilized
cell with lower channel quality. Nevertheless, despite this
slight degradation in the radio channel quality of the of-
floaded users, the throughput significantly enhanced, as
we noticed before in Figures 6a. The enhanced quality of
experience despite the worsen quality of the channel is
due to the fact that the decrease in the MCSs, due to the
degraded channel quality, of the offloaded cell-edge users is
compensated by providing more PRBs in the underutilized
cells.

0 25 50 75 100 125 150 175 200
Episode

8.0

8.5

9.0

9.5

10.0

10.5

Av
er

ag
e

CQ
I

DDQN Agent Baseline

Fig. 7: Average channel quality indicator

8.2 Realistic Scenario Results
A more general view of the impact of managing the load
on a realistic network is included in this section. Different

actor-critic RL algorithms17, that are hired to solve our
load management problem, are compared. In addition, the
importance of carefully designing the reward function, to be
optimized in the realistic scenarios, is discussed.

8.2.1 Comparing Different RL Algorithms
In this section, the relative performance of Different previ-
ously discussed RL schemes is investigated for realistic sce-
nario. Without loss of generality, the reward function used
for different comparisons is the throughput reward function.
The performance of the three RL algorithms during the
learning process is depicted in Figure 8. In this figure, the
episode rewards over 200 episodes (50k steps) are shown
for the compared schemes. We observe from Figure 8 that
TD3 and SAC are always better than DDPG in terms of the
episode reward. Besides, TD3 and SAC have comparable
performance. TD3 has wider confidence intervals due to
the exploration technique used by TD3, which depends on
adding random noise to the selected action at the start of
the learning. In general, the exploration scheme and how
much the algorithm should explore before the exploitation
are considered open research issues that still need more
improvement, especially in the case of continuous action
spaces [53]. On the other hand, TD3 has a slightly better
average reward, less fluctuation in the learning curves ,
i.e. smoother learning, against the number of episodes, and
a faster rise in the learning curve, which results in better
learning speeds, compared to SAC. Generally speaking,
when the agent is intended to interact with and control an
actual network, the learning speed, especially in the early
stage, is of utmost importance to the operator to ensure short
network instability periods.

0 25 50 75 100 125 150 175 200
Episode

23

24

25

26

27

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

SAC DDPG TD3 Baseline

Fig. 8: Comparing the learning process of multiple RL agents

Back to the comparisons of the algorithms, as the learn-
ing process involves adding random noise to the policy, an

17. We note that using DDQN for this realistic scenario means that
the cardinality of the action set will be |A| = 515 = 30517578125
actions. This large number of classes are computationally prohibitive
to implement via state-of-the-art NN classifiers. Consequently, for the
realistic scenario, we only show results for the policy-gradient methods
and do not include any results using the DDQN algorithm.

14

additional evaluation phase after disabling the exploration
and the learning should be performed. After performing the
training phase over the 200 episodes, the resultant agent
models of different runs are considered in the evaluation
phase. This time we will focus our attention not only on
the episode reward but also on the reward obtained at each
time step. This allows us to better assess the quality of
actions selected by the agents at every single step, i.e., for
every single state. Over 250 time steps, the rewards for SAC,
DDPG and TD3 are reported in Figures 10a, 10b, and 10c,
respectively, averaged over the 10 models. By comparing
the performance of these agents to the baseline system, the
average improvement in the overall throughput is about
13.3% for the TD3 agent, 10.6% for the SAC agent and
7.1% for the DDPG agent. As expected, the TD3 scheme
outperforms the DDPG due to delayed updates, avoidance
of overestimation errors, and target smoothing. In Figure
10b, the selected actions by the DDPG agent result in worse
performance than the baseline for some states. On the other
hand, TD3 and SAC agents succeed in finding better policies
compared to the the baseline system and they result in better
overall throughput for almost 100% of the simulated states.

To show the effectiveness of the state space proposed
in this paper, which contains a set of KPIs that are readily
available to the network operator, we compare our proposed
state-space with the one presented in the context of deep
reinforcement learning mobility load balancing (DRL-MLB)
technique [16]. The proposed states in [16], denoted as the
DRL-based state space, include the RB utilization of the
different cells derived from the averaged RB utilization and
the fraction of the edge users, which can be considered
as a subset of our state definition. For the sake of fair
comparison, we use our proposed framework to simulate
the performance of the two state spaces with the same
parameters using TD3 and the overall throughput reward.
Figure 9 illustrates the learning curves when the two state
spaces are used compared to the baseline system. The results
in this figure prove that our state space is more representa-
tive of the environment state, which leads to up to 11.5%
of the average overall throughput improvement in the final
episode, compared to 6.7% improvement when the DRL-
based state space is used.

8.2.2 Effect of Changing the Reward Function
Next, an example to illustrate the relation between the dif-
ferent reward functions in presence of the realistic scenario.
In the following example, one function is optimized by the
agent and the other two functions are reported. Figure 11
reports the performance of the realistic LTE network during
the training phase of the TD3 agent when the percentage
of non-blocked users is adopted as the reward for the
agents’ action. From Figure 11a, and after 200 episodes,
about 7.5% of the users become non-blocked compared to
the baseline system. Figures 11b and 11c show how the
average overall throughput and PRBs utilization deviation
change during this training phase, i.e., while the agent is
trying to maximize the number of non-blocked users. It is
observed from Figure 11b that the decrease in the number
of blocked users coincided with an improvement in the
overall experience; indicated by the 6.6% increase in the
average overall throughput. This improvement is less than

0 25 50 75 100 125 150 175 200
Episode

23

24

25

26

27

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

DRL-based Proposed Baseline

Fig. 9: Comparing the proposed state space to the state space
presented in [16]

the 11.5% improvement obtained, see Figure 8, when the
overall throughput reward function is used. Then, it is up
to the service provider to choose either the number of non-
blocked users or the overall throughput reward that best
suits his objective, i.e, whether to optimize the individual or
overall experience. The reason for this behavior is that for
the sum throughput, the agent does not really care about
fairness or blocked users. Maximizing the sum throughput,
in many cases, cannot assign any resources to edge users or
can even move the cell boundaries and provide no coverage
for these users (i.e., it blocks these users). On the other hand,
if we adopt the percentage of blocked users as our reward,
this can clearly result in a reduction in the sum throughput
as, in this case, we are committed to providing service even
to the edge users with very bad channel conditions; this will
clearly degrade the system’s overall sum throughput.

In Figure 11c, there is no clear trend in the utilization
deviation that is correlated with the clear trend of increased
users’ throughput during the training phase. As a result,
the enhancement in the user and overall experiences is not
attributed to the agent attempt to balancing the load between
the cells, but to intelligently manage the handover so that
this experience is optimized. Even though the balancing is
not an aim itself, most of the presented RL frameworks to
solve the congestion problem use a reward that guarantees
equal load distribution, for example see [16]. Here we em-
phasis on the importance of considering more meaningful
rewards when trying to implement an RL agent to solve the
congestion problem in the cellular networks, as a substitute
of balancing the load between the cells.

9 CONCLUSIONS AND DISCUSSIONS

In this paper, we presented a family of reinforcement learn-
ing strategies for achieving load management in LTE cellular
networks. We provided a comprehensive framework for
RL with several algorithms and their applicable scenarios
as well as enhancements. RL algorithms with discrete and
continuous action spaces, i.e. DDQN, TD3, DDPG, and SAC,
are compared to solve the load management problem. The

15

0 50 100 150 200 250
Step

20

22

24

26

28

30

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

SAC
SAC Average

Baseline
Baseline Average

(a) SAC agent

0 50 100 150 200 250
Step

20

22

24

26

28

30

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

DDPG
DDPG Average

Baseline
Baseline Average

(b) DDPG agent

0 50 100 150 200 250
Step

20

22

24

26

28

30

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

TD3
TD3 Average

Baseline
Baseline Average

(c) TD3 agent

Fig. 10: Evaluating the learned models of multiple RL agents

0 50 100 150 200
Episode

30
32
34
36
38
40
42
44
46
48

No
n-

bl
oc

ke
d

Us
er

s (
%

)

TD3 Baseline

(a) Percentage of non-blocked users

0 50 100 150 200
Episode

19

20

21

22

23

24

25

26

Ov
er

al
l T

hr
ou

gh
pu

t (
M

b/
s)

TD3 Baseline

(b) Average overall throughput

0 50 100 150 200
Episode

0.34

0.32

0.30

0.28

0.26

0.24

0.22

0.20

Av
er

ag
e

PR
Bs

 D
ev

ia
tio

n

TD3 Baseline

(c) Utilization deviation

Fig. 11: Performance using percentage of non-blocked users
reward function

16

states of the RL agent were described in terms of a subset
of key performance indicators (KPIs), which are readily
available to network operators, whereas different RL reward
functions were explored including the network DL through-
put, the ratio of non-blocked users, and the load deviation
from the average. Two cellular network environments are
used to assess the performance of the proposed framework,
a small linear cell geometry and realistic LTE networks. In
order to simulate the two environments, we used NS-3, a
high-level simulator that allows the extraction of practical
KPIs in addition to SUMO for simulating realistic mobility
patterns and actual radio sites in Egypt. Our simulation re-
sults showed that, for simple and limited scenarios, DDQN
is more reliable to end up with better policies than the
actor-critic based algorithms. However, this technique is not
scalable to solve the load management problem in realistic
cellular networks. In addition, TD3 outperforms the other
actor-critic based algorithms in terms of early-stage learn-
ing speed, the learning stability, and the average obtained
reward after convergence. The performance improvement
due to TD3 is demonstrated by a 13.3% gain in the average
overall throughput over the baseline under the realistic
scenario. The percentage of non-blocked users increased by
about 8%, while the average PRB deviation showed only
an insignificant improvement. For the synthetic scenario,
much larger performance gains were achieved. Moreover,
regarding selecting the reward function, we pointed out
the importance of carefully designing the reward function
that represents the actual objective of the operator since
balancing the load does not always mean better quality
of user experience, especially in realistic and complicated
scenarios. Future extensions of this work include the design
of a distributed, rather than a centralized, load management
system for cellular networks. This can be achieved by mod-
eling the load management problem as a multi-agent DRL
with federated learning, such that a separate agent is hired
to control the load at a base station level. The well-designed
agents and the selected cooperation scheme between the
agents are key factors of successfully managing the load
of the overall cellular system. Despite the challenges facing
such a design, it is expected to offer a cautious solution to
the scalability problem, that obstructs applying the central-
ized approach to the real world cellular networks. Finally,
it is worth noting that our proposed reinforcement learning
techniques can be seamlessly applied to 5G networks.

REFERENCES

[1] K. M. Attiah, K. Banawan, A. Gaber, A. Elezabi, K. G. Seddik,

Y. Gadallah, and K. Abdullah, “Load balancing in cellular net-

works: A reinforcement learning approach,” in IEEE CCNC, 2020.

[2] Ericsson. Ericsson mobility report November 2019.

[Online]. Available: https://www.ericsson.com/4acd7e/assets/

local/mobility-report/documents/2019/emr-november-2019.pdf

[3] H. Holma and A. Toskala, LTE advanced: 3GPP solution for IMT-

Advanced. John Wiley & Sons, 2012.

[4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.

MIT press, 2018.

[5] R. Liu and J. Zou, “The effects of memory replay in reinforcement

learning,” in 2018 56th Annual Allerton Conference on Communica-

tion, Control, and Computing (Allerton). IEEE, 2018, pp. 478–485.

[6] H. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double Q-learning,” in Thirtieth AAAI conference on artificial

intelligence, 2016.

[7] H. van Hasselt, A. Guez, M. Hessel, V. Mnih, and D. Silver,

“Learning values across many orders of magnitude,” in Advances

in Neural Information Processing Systems, 2016, pp. 4287–4295.

[8] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement

learning,” arXiv preprint arXiv:1509.02971, 2015.

[9] S. Fujimoto, H. V. Hoof, and D. Meger, “Addressing func-

tion approximation error in actor-critic methods,” arXiv preprint

arXiv:1802.09477, 2018.

[10] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero,

“An open source product-oriented lte network simulator based

on ns-3,” in Proceedings of the 14th ACM international conference

on Modeling, analysis and simulation of wireless and mobile systems.

ACM, 2011, pp. 293–298.

[11] D. Krajzewicz and C. Rossel, “Simulation of urban mobility

(sumo),” Centre for Applied Informatics (ZAIK) and the Institute of

Transport Research at the German Aerospace Centre, 2007.

[12] G. Alsuhli, K. Banawan, K. Attiah, A. Elezabi, K. Seddik, A. Gaber,

M. Zaki, and Y. Gadallah, “Paper source code,” https://github.

com/Ghada-sy/Load-Management, 2020.

[13] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.

Soong, and J. C. Zhang, “What will 5g be?” IEEE Journal on Selected

Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[14] A. Lobinger, S. Stefanski, T. Jansen, and I. Balan, “Load balancing

in downlink lte self-optimizing networks,” in 2010 IEEE 71st

Vehicular Technology Conference, May 2010, pp. 1–5.

[15] S. S. Mwanje and A. Mitschele-Thiel, “A q-learning strategy for lte

mobility load balancing,” in 2013 IEEE 24th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), Sep. 2013, pp. 2154–2158.

[16] Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, “Load balancing

for ultradense networks: A deep reinforcement learning-based

approach,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9399–

9412, 2019.

[17] C. A. S. Franco and J. R. B. de Marca, “Load balancing in self-

organized heterogeneous lte networks: A statistical learning ap-

proach,” in 2015 7th IEEE Latin-American Conference on Communi-

cations (LATINCOM), Nov 2015, pp. 1–5.

[18] P. Muñoz, R. Barco, J. M. Ruiz-Avilés, I. de la Bandera, and

A. Aguilar, “Fuzzy rule-based reinforcement learning for load bal-

ancing techniques in enterprise lte femtocells,” IEEE Transactions

on Vehicular Technology, vol. 62, no. 5, pp. 1962–1973, Jun 2013.

[19] C. Qi, Y. Hua, R. Li, Z. Zhao, and H. Zhang, “Deep reinforce-

ment learning with discrete normalized advantage functions for

resource management in network slicing,” IEEE Communications

Letters, vol. 23, no. 8, pp. 1337–1341, 2019.

[20] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “Gan-powered

deep distributional reinforcement learning for resource manage-

17

ment in network slicing,” IEEE Journal on Selected Areas in Commu-

nications, vol. 38, no. 2, pp. 334–349, 2020.

[21] S. S. Mwanje, L. C. Schmelz, and A. Mitschele-Thiel, “Cognitive

cellular networks: A q-learning framework for self-organizing

networks,” IEEE Transactions on Network and Service Management,

vol. 13, no. 1, pp. 85–98, 2016.

[22] Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, “Deep reinforcement

learning based mobility load balancing under multiple behavior

policies,” in ICC 2019-2019 IEEE International Conference on Com-

munications (ICC). IEEE, 2019, pp. 1–6.

[23] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey

of machine learning techniques applied to self-organizing cellular

networks,” IEEE Communications Surveys Tutorials, vol. 19, no. 4,

pp. 2392–2431, Fourthquarter 2017.

[24] Y. Wei, F. R. Yu, M. Song, and Z. Han, “User scheduling and re-

source allocation in hetnets with hybrid energy supply: An actor-

critic reinforcement learning approach,” IEEE Trans. on Wireless

Communications, vol. 17, no. 1, pp. 680–692, 2018.

[25] ——, “Joint optimization of caching, computing, and radio re-

sources for fog-enabled iot using natural actor–critic deep rein-

forcement learning,” IEEE Internet of Things Journal, vol. 6, no. 2,

pp. 2061–2073, 2019.

[26] J. Jagannath, N. Polosky, A. Jagannath, F. Restuccia, and T. Melo-

dia, “Machine learning for wireless communications in the inter-

net of things: A comprehensive survey,” Ad Hoc Networks, vol. 93,

p. 101913, 2019.

[27] Y. Qian, J. Wu, R. Wang, F. Zhu, and W. Zhang, “Survey on

reinforcement learning applications in communication networks,”

Journal of Communications and Information Networks, vol. 4, no. 2,

pp. 30–39, 2019.

[28] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.Liang,

and D. I. Kim, “Applications of deep reinforcement learning in

communications and networking: A survey,” IEEE Communications

Surveys Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[29] 3GPP ETSI TS 36.304 V15.5.0 , LTE; Evolved Universal Terrestrial

Radio Access (E-UTRA), User Equipment (UE) procedures in idle mode,

2019.

[30] 3GPP ETSI TS 136.213 V14.2.0, LTE; Evolved Universal Terrestrial

Radio Access (E-UTRA), Physical layer procedures, 2017.

[31] 3GPP TR 32.836 V0.2.0, 3rd Generation Partnership Project; Technical

Specification Group Services and System Aspects; Telecommunication

management; Study on NM Centralized Coverage and Capacity Opti-

mization (CCO) SON Function (Release 12), 2012.

[32] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforce-

ment learning for multiagent systems: A review of challenges, so-

lutions, and applications,” IEEE transactions on cybernetics, vol. 50,

no. 9, pp. 3826–3839, 2020.

[33] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:

Challenges, methods, and future directions,” IEEE Signal Process-

ing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[34] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated

learning,” Synthesis Lectures on Artificial Intelligence and Machine

Learning, vol. 13, no. 3, pp. 1–207, 2019.

[35] S. Whitehead and L.-J. Lin, “Reinforcement learning of non-

markov decision processes,” Artificial Intelligence, vol. 73, no. 1-2,

pp. 271–306, 1995.

[36] K. Abdullah, N. Korany, A. Khalafallah, A. Saeed, and A. Gaber,

“Characterizing the effects of rapid lte deployment: A data-driven

analysis,” in 2019 Network Traffic Measurement and Analysis Confer-

ence (TMA). IEEE, 2019, pp. 97–104.

[37] H.-H. Sung, M. G. Jacinto, K. K. Jat, and G. Dousson, “Determining

network congestion based on target user throughput,” Jan. 9 2018,

uS Patent 9,867,080.

[38] M. S. Haroon, Z. H. Abbas, F. Muhammad, and G. Abbas, “Cover-

age analysis of cell-edge users in heterogeneous wireless networks

using stienen’s model and rfa scheme,” International Journal of

Communication Systems, vol. 33, no. 10, p. e4147, 2020.

[39] V. François-Lavet, P. Henderson, R. Islam, M. Bellemare, J. Pineau

et al., “An introduction to deep reinforcement learning,” Founda-

tions and Trends in Machine Learning, vol. 11, no. 3-4, pp. 219–354,

2018.

[40] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint

arXiv:1701.07274, 2017.

[41] M. Dundar, B. Krishnapuram, J. Bi, and R. Rao, “Learning classi-

fiers when the training data is not IID.” in IJCAI, 2007, pp. 756–761.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Belle-

mare, A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski et al.,

“Human-level control through deep reinforcement learning,” Na-

ture, vol. 518, no. 7540, pp. 529–533, 2015.

[43] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A

survey of actor-critic reinforcement learning: Standard and natural

policy gradients,” IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307,

November 2012.

[44] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,

“Network simulations with the ns-3 simulator,” SIGCOMM demon-

stration, vol. 14, no. 14, p. 527, 2008.

[45] P. Gawlowicz and A. Zubow, “ns3-gym: Extending OpenAI

Gym for Networking Research,” CoRR, 2018. [Online]. Available:

https://arxiv.org/abs/1810.03943

[46] A. Marella, A. Bonfanti, G. Bortolasor, and D. Herman, “Imple-

menting innovative traffic simulation models with aerial traffic

survey,” Transport Infrastructure and Systems, pp. 571–577, 2017.

[47] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a

stochastic actor,” arXiv preprint arXiv:1801.01290, 2018.

[48] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforce-

ment learning with deep energy-based policies,” arXiv preprint

arXiv:1702.08165, 2017.

[49] S. Han and Y. Sung, “Diversity actor-critic: Sample-aware entropy

regularization for sample-efficient exploration,” arXiv preprint

arXiv:2006.01419, 2020.

[50] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,

V. Kumar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic al-

gorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[51] Z. Hou, K. Zhang, Y. Wan, D. Li, C. Fu, and H. Yu, “Off-policy

maximum entropy reinforcement learning: soft actor-critic with

advantage weighted mixture policy (sac-awmp),” arXiv preprint

arXiv:2002.02829, 2020.

[52] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,

18

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-

ford, J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https:

//github.com/hill-a/stable-baselines, 2018.

[53] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.

Bharath, “A brief survey of deep reinforcement learning,” arXiv

preprint arXiv:1708.05866, 2017.

