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Abstract—We consider the problem of jointly optimizing the

transmission power and cell individual offsets (CIOs) in the

downlink of cellular networks using reinforcement learning. To

that end, we reformulate the problem as a Markov decision

process (MDP). We abstract the cellular network as a state,

which comprises of carefully selected key performance indica-

tors (KPIs). We present a novel reward function, namely, the

penalized throughput, to reflect the tradeoff between the total

throughput of the network and the number of covered users. We

employ the twin deep delayed deterministic policy gradient (TD3)

technique to learn how to maximize the proposed reward function

through the interaction with the cellular network. We assess the

proposed technique by simulating an actual cellular network,

whose parameters and base station placement are derived from

a 4G network operator, using NS-3 and SUMO simulators. Our

results show the following: 1) Optimizing one of the controls is

significantly inferior to jointly optimizing both controls; 2) our

proposed technique achieves 18.4% throughput gain compared

with the baseline of fixed transmission power and zero CIOs; 3)

there is a tradeoff between the total throughput of the network

and the number of covered users.

I. INTRODUCTION

Mobile data traffic is significantly growing due to the rise
of smartphone subscriptions, the ubiquitous streaming and
video services, and the surge of traffic from social media
platforms. Global mobile data traffic is estimated to be 38
exabytes per month in 2020 and is projected to reach 160
exabytes per month in 2025 [1]. To cope with this high traffic
volume, considerable network-level optimization should be
performed. Cellular network operators strive to enhance the
users’ experience irrespective of the traffic demands. This
entails maximizing the average throughput of the users and
minimizing the number of users that are out of coverage.

The indicated optimization problem is challenging for its
often contradicting requirements and the absence of accurate
statistical models that can describe the tension(s). Specifically,
increasing the transmitted power of some base station (an eNB
in LTE1) may enhance the SINR for its served users. How-
ever, cell edge users in neighboring cells will have increased
interference. Hence, network-wide, the optimization based on
transmit power alone may tend to sacrifice cell edge users in

1It is worth noting that our proposed reinforcement learning technique can
be seamlessly applied to 5G networks as well. Our simulations are based on
LTE and we refer to LTE throughout the paper since our data comes from a
4G operator.

favor of maximizing overall throughput. Another technique of
throughput maximization is mobility load management. This
can be done by freeing the physical resource blocks (PRBs)
of congested cells by forcing edges users to handover to less-
congested cells. A typical approach is controlling the cell
individual offset (CIO) [2]. The CIO is an offset that artificially
alters the handover decision. This may enhance the throughput
by allowing the users to enjoy more PRBs compared to their
share in the congested cells. Nevertheless, this may result in
decreasing the SINR of users handed over, mostly edge users,
as the CIO decision only fakes the received signal quality.
This in turn suggests a modified throughput reward function
to extend the coverage for cell edge users. The complex
interplay between the SINR, available PRBs, CIOs, and the
transmitted power is challenging to model using classical
optimization techniques. This motivates the use of machine
learning techniques to dynamically and jointly optimize the
power and CIOs of the cells.

LTE and future networks are designed to support self-
optimization (SO) functionalities [3]. A significant body of lit-
erature is concerned with load balancing via self-tuning of CIO
values, e.g., [2], [4]–[9]. Balancing the traffic load between
neighboring cells by controlling the coverage area of the cells
appears in [10]–[13]. Reshaping the coverage pattern is usually
performed by adjusting the transmit power [10], the transmit
power and antenna gain [11], or the directional transmit power
[12] of the eNB. To the best of our knowledge, the joint
optimization problem of power and CIO using reinforcement
learning has not been investigated in the literature.

In this work, we propose a joint power levels and CIOs
optimization using reinforcement learning (RL). To that end,
we recast this optimization-from-experience problem as a
Markov decision problem (MDP) to model the interaction
between the cellular network (a.k.a., the environment) and the
decision-maker (a.k.a., the central agent). The MDP formula-
tion requires a definition of a state space, an action space, and
a reward function. The state is a compressed representation
of the cellular network. We define the state as a carefully-
chosen subset of the key performance indicators (KPIs), which
are usually available at the operator side. This enables the
seamless application of our techniques to current cellular
networks. We propose a novel action space, where both power
levels and CIOs are utilized to enhance the user’s quality of



service. We argue that both controls have distinct advantages.
Furthermore, we propose a novel reward function, which we
call the penalized throughput, that takes into consideration the
total network throughput and the number of uncovered users.
The penalty discourages the agent from sacrificing edge-users
to maximize the total system throughput.

Based on the aforementioned MDP, we use actor-critic
methods [14] to learn how to optimize the power and CIO
levels of all cells from experience. More specifically, we
employ the twin deep delayed deterministic policy gradient
(TD3) [15] to maximize the proposed penalized throughput
function. The TD3 technique is a state-of-the-art RL technique
that deals with continuous action spaces. In TD3, the critics
are neural networks (NNs) for estimating state-action values
(a.k.a., the Q-values). Meanwhile, the actor is a separate NN
that estimates the optimal action. The actor function is updated
in such a way that maximizes the expected estimated Q-value.
The critics are updated by fitting a batch of experiences that
are learned from the interactions with the cellular network.

We gauge the efficacy of our proposed technique by con-
structing an accurate simulation suite using the NS-3 and
SUMO simulators. We simulated an actual 4G cellular network
that is currently operational in the Fifth Settlement neigh-
borhood in Cairo, Egypt. The site data including the base
station placement is provided by a major 4G operator in Egypt.
Our numerical results show the validity of our claim that
using one of the controls (transmitted power or CIO) but not
both is strictly sub-optimal with respect to joint optimization
in terms of the throughput. Thus, our proposed technique
outperforms its counterpart in [2] by 11%. Furthermore, our
technique results in significant gains in terms of the channel
quality indicators (CQIs) and the network coverage. Finally,
our proposed penalized throughput effects a tradeoff between
the overall throughput and the average number of covered
users that can be controlled.

II. SYSTEM MODEL

We consider the downlink (DL) of a cellular system with
N eNBs. The nth eNB sends its downlink transmission with
a power level Pn 2 [Pmin, Pmax] dBm. The cellular system
serves K mobile user equipment (UEs). Each UE measures
the reference signal received power (RSRP) on a regular basis
and connects to the cell that results in the best-received signal
quality [16]. Thus, at t = 0, 1, 2, · · · , there are Kn(t) UEs
connected to the nth eNB such that

P
N

n=1 Kn(t)  K. The
kth UE moves with a velocity vk along a mobility pattern
that is unknown to any of the eNBs. The kth UE periodically
reports the CQI, �k to the connected eNB. The CQI is a
discrete measure of the quality of the channel perceived by
the UE that takes a number from the set {0, 1, · · · , 15}. When
�k = 0, the kth UE is out of coverage, while a higher value
of �k corresponds to higher channel quality and hence results
in a better modulation and coding scheme (MCS) assignment.
The kth UE requests a minimum data rate of ⇢k bits/s.

The connected eNB assigns Bk PRBs to the kth UE as:

Bk =

⇠
⇢k

g(�k,Mn,k)�

⇡
(1)

where g(�k,Mn,k) is the spectral efficiency achieved by the
scheduler with a UE having a CQI of �k and an antenna
configuration of Mn,k, and � = 180 KHz, which is the
bandwidth of a resource block in LTE. The total PRBs needed
to serve the UEs associated with the nth eNB at time t is given
by Tn(t) =

PKn(t)
k=1 Bk. Denote the total available PRBs at the

nth eNB by ⌃n.
Furthermore, we assume that there exists a central agent2

that can monitor all the network-level KPIs and aims at en-
hancing the user’s experience. Aside from controlling the ac-

tual power Pn, the agent can control CIOs. The relative CIO of
cell i with respect to cell j is denoted by ✓i!j 2 [✓min, ✓max]
dB, and is defined as the offset power in dB that makes the
RSRP of the ith cell appears stronger than the RSRP of the
jth cell. Controlling the power levels (Pn : n = 1, 2, · · · , N)
and the CIOs (✓i!j : i 6= j, i, j = 1, 2, · · · , N) can trigger
the handover procedure for the edge UEs. More specifically,
a UE which is served by the ith cell may handover to the jth
cell if the following condition holds [18]:

Zj + ✓j!i > H + Zi + ✓i!j , (2)

where Zi, Zj are the RSRP from cells i, j, respectively, and H

is the hysteresis value that minimizes the ping-pong handover
scenarios due to small scale fading effects. By controlling the
handover procedure, the traffic load of the network is balanced
across the cells. The agent chooses a policy such that the total
throughput and the coverage of the network are simultaneously
maximized in the long run according to some performance
metric as we will formally describe next.

III. REINFORCEMENT LEARNING FRAMEWORK

In this section, we recast the aforementioned problem as
an MDP. MDPs [19] describe the interaction between an
agent, which is in our case the power levels and the CIOs
controller, and an environment, which is the whole cellular
system including all eNBs and UEs. At time t = 0, 1, 2, · · · ,
the agent observes a representation of the environment in the
form of a state S(t), which belongs to the state space S .
The agent takes an action A(t), which belongs to the action
space A. This causes the environment to transition from the
state S(t) to the state S(t+ 1). The effect of the action A(t)
is measured through a reward function, R(t + 1) 2 R. To
completely recast the problem as an MDP, we need to define
S , A, and R(·) as we will show next.

A. Selection of the State Space

To construct an observable abstraction of the environment,
we use a subset of the network-level KPIs as in [2], [20].
Since the KPIs are periodically reported by the eNBs, there is

2The 3GPP specifies an architecture for centralized self-optimizing func-
tionality, which is intended for maintenance and optimization of network
coverage and capacity by automating these functions [17].



no added overhead at communicating the state to the agent. In
this work, the state comprises of the following components:
First, the resource block utilization (RBU) vector, U(t) =
[U1(t) U2(t) · · · UN (t)] 2 [0, 1]N , where Un(t) =

Tn(t)
⌃n

is the RBU of the nth eNB at time t. The RBU reflects the load
level of each cell. Second, the DL throughput vector, R(t) =
[R1(t) R2(t) · · · RN (t)] 2 RN

+ , where Rn(t) is the total
DL throughput at the nth cell at time t. Third, the connectivity
vector K(t) = [K1(t) K2(t) · · · KN (t)] 2 NN , where
Kn(t) is the number of active UEs that are connected to
the nth eNB. This KPI shows the effect of the handover
procedure. Furthermore, the average user experience at the
nth cell is dependent on Kn(t) as the average throughput per
user, R̄n(t) is given by R̄n(t) =

Rn(t)
Kn(t)

. Finally, the low-rate
MCS penetration matrix M(t) 2 [0, 1]N⇥⌧ , where ⌧ is the
number of low-rate MCS combinations3. The element (i, j)
of the matrix M(t) corresponds to the ratio of users in the
nth cell that employs the jth MCS. The matrix M(t) gives
the distribution of relative channel qualities at each cell.

Now, we are ready to define our state S(t), which is simply
the concatenation of all four components as:

S(t) = [U(t)T R(t)T K(t)T vec(M(t))T ]T (3)

where vec(·) is the vectorization function. The connectivity
and the throughput vectors are normalized to avoid having
dominant features during the weight-learning process.

B. Selection of the Action Space: CIO and Transmitted Power

In this work, the central agent has two controls, namely, the
power levels and the CIOs. More specifically, the agent selects
the action A(t) which is a vector of N(N+1)

2 dimensionality,

A(t) = [PT ✓T ]T (4)

where P = [P1 P2 · · · PN ] 2 [Pmin, Pmax]N is the
eNB power level vector, and ✓ = [✓i!j(t) : i 6= j, i, j =
1, · · · , N ] 2 [✓min, ✓max]N(N�1)/2 is the relative CIO vector4.
Define ↵L = [Pmin · 1N ✓min · 1N(N�1)/2] and ↵H =
[Pmax · 1N ✓max · 1N(N�1)/2] to be the limits of A.

We argue that both CIOs and power levels are strictly
beneficial as steering actions of the agent. To see that, we note
that the power level control corresponds to an actual effect on
the channel quality at non-edge UEs and the interference faced
by the edge UEs. More specifically, as the power level of the
nth eNB Pn increases, the channel quality of the non-edge
UEs at the nth cell increases while the inter-cell interference
faced by edge UEs of the neighboring cell increases as well.
This is not the case if the CIO control is used as the CIO
artificially triggers the handover procedure without changing
the power level. Furthermore, the power level control is not
sufficient to solve our problem. This is due the fact that

3Ideally, we would consider the total number of MCS combinations, which
is 29 in LTE. However, to reduce the dimensionality of the state S(t) to
ensure stable convergence of the RL, we focus only on a number of low-rate
MCSs (e.g., ⌧ = 10). This is because our controlling actions primarily affect
the edge users, who are naturally assigned a low-rate MCSs.

4Without loss of genrality, we assume that ✓i!j = �✓j!i

the power level Pn controls all the edges of the nth cell
simultaneously, while the CIO ✓n!m can be tailored such that
it controls only the cell edge that is common with the mth
cell only without affecting the remaining edges. Hence, both
techniques have complementary advantages that ultimately
result in the superior performance gain.

C. Selection of the Reward Function: Penalized Throughput

To assess the performance of a proposed policy in an MDP,
one should formulate the goal of the system in terms of a
reward function R(·). The central agent in MDP implements
a stochastic policy5, ⇡, where ⇡(a|s) is the probability that
the agent performs an action A(t) = a given it was in a state
S(t) = s. The central agent aims at maximizing the expected
long-term sum discounted reward function [19], i.e.,

max
⇡

lim
L!1

E⇡

"
LX

t=0

�
tR(t)

#
(5)

where � corresponds to the discount factor, which signifies
how important future expected rewards are to the agent.

The UE desires to be served consistently with the highest
possible data rate. One possible reward function to reflect this
requirement is the total throughput of the cellular system, i.e.,

R(t) =
NX

n=1

KnX

kn=1

Rkn(t) (6)

where Rkn(t) is the actual measured throughput of the knth
user at time t. This also reflects the average user’s throughput
by normalizing by the total number of UEs K.

Now, since the power levels and the relative CIOs are
controllable, the agent may opt to choose power levels that
effectively shrink the cells’ radii or CIOs levels that connect
the edge UEs to a cell with poor channel quality. In this case,
the agent maximizes the total throughput by only keeping the
non-edge UEs that enjoy high MCS and at the same time
minimizing the inter-cell interference. Therefore, using total
throughput as the sole performance metric is not suitable for
representing the user experience as edge users may be out of
coverage even if the total throughput is maximized.

In this work, we propose a novel reward function, namely,
the penalized throughput. This entails maximizing the average
user throughput while minimizing the number of uncovered
UEs. More specifically, our reward function is defined as:

R(t) =
NX

n=1

KnX

kn=1

Rkn(t)� ⌘R̄(t)
KX

k=1

1(�k = 0) (7)

where 1(X) = 1 if the logical condition X is true and 0
otherwise, R̄(t) = 1

K

P
N

n=1

P
Kn

kn=1 Rkn(t) is the average
user throughput at time t, and ⌘ is a hyperparameter that
signifies how important is the coverage metric with respect
the total throughput. Our reward function implies that the total

5Generally, the MDP framework allows for the use of stochastic policies.
Nevertheless, in this work, we focus only on the special case of deterministic
policies, i.e., p(a⇤|s) = 1 for some a⇤ 2 A.



throughput is decreased by the throughput of the UEs that
are out of coverage (assuming that all UEs enjoy the same
throughput R̄(t)). In practice, the user is considered to be
uncovered when the reported CQI by the UE equals zero [18],
and hence dropped at the MAC scheduler.

IV. PROPOSED REINFORCEMENT LEARNING TECHNIQUE

We employ an actor-critic RL technique to solve our op-
timization problem (see Fig. 1). Different from Q-learning
[21], the actor-critic methods [14] construct distinct NNs to
separately estimate the Q-value and the best possible action
based on the observed state. This distinction enables the actor-
critic methods to deal with a continuous action space as they
do not require to tabulate all possible action values as in deep
Q-learning (DQN). Since the number of actions is exponential
in the number of eNBs, tabulating action values in DQN as in
[2] becomes prohibitive for large cellular networks. The actor
function µ(s) outputs the best action for the state s, while the
critic function Q(s, a) evaluates the quality of the (s, a) pair.

In this work, we employ the TD3 technique [15]. Similar to
its predecessor the deep deterministic policy gradient (DDPG)
[22], the TD3 uses the experienced replay technique, in which
a buffer DB of size B is used to collect the experiences of
the RL agent. More specifically, at every interaction with the
environment, the tuple (S(t), A(t), S(t+1),R(t+1)) is stored
in the buffer. To update the weights of the NN, a random batch
of size Bm < B is drawn from the buffer and used to update
the weights. This breaks the potential time correlation between
the experiences and ensures better generalizability.

The TD3 technique improves the performance of DDPG
by employing a pair of independently trained critic functions
instead of one as in the case of DDPG. The TD3 technique
chooses the smallest Q-value of the two critics to construct the
target network. This leads to less-biased Q-value estimation in
addition to decreasing the variance of the estimate due to this
underestimation as underestimation errors do not propagate
through updates. Additionally, the actor function is updated
every Tu time steps, where Tu is a hyper-parameter of the
scheme. Delaying the updates result in a more stable Q-value
estimation. Finally, TD3 uses a target smoothing regularization
technique that adds clipped noise to the target policy before
updating the weights. This leads to a smoother Q-value es-
timation by ensuring that the target fitting is valid within a
small neighborhood from the used action. In the sequel, we
describe the algorithm in detail.

Our implementation of the TD3 is as follows:
1) Initialization: The experience replay buffer DB is ini-

tially empty. The TD3 uses two NNs as critic functions,
Q(s, a;wc1

t
) and Q(s, a;wc2

t
), where wci

t
, i = 1, 2 is

the weight vector of the ith critic function. The TD3 uses
a NN for the actor function µ(s;wa

t
), where wa

t
is the

NN weight vector of the actor function. We randomly
initialize the weights wc1

t
, wc2

t
, wa

t
. Furthermore, we

construct target NNs corresponding to the critics and the
actor with weight vectors w̄c1

t
, w̄c2

t
, w̄a

t
, respectively.
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Fig. 1: The proposed load balancing model

Initially, we set these weights to their respective main
weights as w̄ci

t
 wci

t
for i = 1, 2 and w̄a

t
 wa

t
.

2) Action Space Exploration: The agent explores the action
space A by adding an uncorrelated Gaussian noise
N (0,�2) to the output of the actor function, i.e., as-
suming that the cellular system at time t = 0, 1, · · · is
at state S(t), the agent chooses an action A(t) such that:

A(t) = clip(µ(S(t);wa

t
) + ✏,↵L,↵H) (8)

where ✏ is a noise vector, whose kth component ✏(k) ⇠
N (0,�2

n
); clip(x, a, b) = a if x < a, clip(x, a, b) = b

if x > b, and clip(x, a, b) = x if a  x  b. The clip
function ensures that the exploration is within the action
space limits (↵L,↵H). The agent applies the action A(t)
and observes the new state S(t + 1) and the reward
function R(t + 1). The experience (S(t), A(t), S(t +
1),R(t+ 1)) is stored in the buffer DB .

3) Critics Update: Firstly, we randomly draw a batch of
size Bm from DB . For the ith sample of the batch
(Si, Ai,Ri+1, Si+1), where i = 1, 2, · · · , Bm, we use
the target actor network to compute the target action,

Ai+1 = µ(Si+1; w̄
a

t
) (9)

Then, the smoothed target action Ãi+1 is calculated by
adding the clipped noise, such that

Ãi+1 = clip(Ai+1 + ✏̃,↵L,↵H), i = 1, · · · , Bm (10)

where ✏̃ = clip(N (0, �̃2
n
),�c, c) for some maximum

value c > 0. Secondly, the target function is calculated
using the minimum estimate of the Q-value from the two



target critics for the perturbed input, i.e.,

yi = Ri+1 + � min
j=1,2

Q(Si+1, Ãi+1; w̄
cj

t
) (11)

The weights of the two critics are updated by minimizing
the mean square error across the batch, i.e., for j = 1, 2,

w
cj

t+1 = argmin
w

cj
t

1

Bm

BmX

i=1

(yi �Q(Si, Ai;w
cj

t
))2 (12)

4) Actor Update: TD3 updates the actor function every
Tu time steps. To update the actor function, TD3
maximizes the expected Q-value function, therefore,
the scheme calculates the gradient ascent of the ex-
pected Q-value with respect to wa

t
, i.e., TD3 calculates

rwa
t
E[Q(s, a;wc

t
)|s = Si, a = µ(Si;wa

t
)], which can

be approximated as:

1

Bm

BmX

i=1

raQ(s, a;wc

t
)| s=Si,

a=µ(Si;w
a
t )
rwa

t
µ(s;wa

t
)|s=Si

(13)

This results in new weights wa

t+1.
5) Target Networks Update: TD3 uses soft target updates,

i.e., the target NNs are updated as a linear combination
of new learned weights and old target weights,

w̄c

t+1  �wc

t+1 + (1� �)w̄c

t
(14)

w̄a

t+1  �wa

t+1 + (1� �)w̄a

t
(15)

where � is the soft update coefficient, which is a hyper-
parameter chosen from the interval [0, 1]. This constrains
the target values to vary slowly and stabilizes the RL.

V. NUMERICAL RESULTS

In this section, the performance of the proposed approach is
evaluated through simulations. The simulated cellular network
consists of N = 6 irregular cells distributed in the area of
900m⇥1800m extracted from the Fifth Settlement neighbor-
hood in Egypt. There are K = 40 UEs with realistic mobility
pattern created by the Simulation of Urban Mobility (SUMO)
according to the mobility characteristics in [23]. The UEs
are either vehicles or pedestrians. The walking speed of the
pedestrians ranges between 0 � 3m/s. All UEs are assumed
to have full buffer traffic model, i.e., all UEs are active all
the time. This cellular network, which represents the environ-
ment of the proposed RL framework, is implemented using
LTE-EPC Network Simulator (LENA) [24] module which is
included in NS-3 Simulator. The agent is implemented using
Python, which is based on the Open AI Gym implementation
in [25]. The interface between the NS3-based environment
and the agent is implemented via the NS3gym interface [26].
This interface is responsible of applying the agent’s action
to the environment at each time step. Then, the network is
simulated having selected the action in effect. Afterwards, the
reward is estimated based on the expression in (7). Finally,
the NS3gym interface returns the reward and the environment
state back to the agent. Table I presents our simulators’

Parameter Value

TD3

Batch size (Bm) 128
Policy delay 2 steps

Layers
(Nh, ni, Activation) (2, 64⇥64, ReLu)

Discount factor 0.99
Number of episodes 250

Env.
Number of steps/episode 250

Step time 200 ms

TABLE I: Simulation parameters

configuration parameters. To show the effectiveness of our
RL framework, we compare the performance of the following
four control schemes: 1) CIO control: In this scheme, The
actions that the agent specify are the relative CIOs between
every two neighboring cells; we restrict our CIOs in our
simulation setup to be in the range [�6, 6]. Whereas, the
transmission power remains constant at 32 dBm for all cells
in the network6. 2) Power control: Here, all CIOs are set to
be zeros and the transmission power values are determined
by the agent within the range [32 � 6, 32 + 6] dBm. 3) CIO
and transmitted power controls: This is our proposed action
space. The agent determines the values of the relative CIOs
and the transmission power within the ranges [�6, 6] and
[32 � 6, 32 + 6], respectively. 4) Baseline scheme: In this
scheme, no load management is assumed. The CIOs are set to
zeros and the transmission power values are set to be 32dBm
for all cells.

Fig. 2: Average overall throughput during the learning process

The relative performance of the previously mentioned con-
trol schemes is shown in Fig. 2, Fig. 3, and Fig. 4. The
average overall system throughput, the average CQI, and the
average number of covered users are used as quality indicators
of the different schemes. These indicators are averaged over
250 steps in each episode and observed for 250 episodes
of the learning process. All reported results are obtained by
averaging over 10 independent runs to reduce the impact of
the exploration randomness on the relative performance of
the schemes. In Fig. 2, the proposed power and CIO control

6Note that, the mean power level of 32 dBm is a typical operational
transmitted power value.



scheme outperforms the CIO control scheme by 11%, the
power control scheme by 11.3%, and the baseline scheme
by 18.4%, in term of overall throughput after 250 episodes.
This is because the adopted scheme combines the advantages
of CIO control, of flexible and asymmetric control, and the
transmission power control, which allows for better channel
quality and better interference management between the cells.
These advantages are translated to better average CQI for
the proposed scheme in Fig. 3. The worst CQI is associated
with the CIO control scheme. This happens because the actual
RSRP is counterfeited, by adding the CIO values in equation
(2), to trigger the handover of a UE to an underutilized cell
with lower channel quality.

Fig. 3: Average CQI during the learning process
Fig. 4 plots the number of covered users averaged over

each learning episode. We observe that none of the schemes
attain a number of covered users of 40 UEs, despite the
adopted full traffic model. This implies the presence of out
of coverage users problem. Fig. 4 shows that the baseline
scheme presents near-optimal number of covered users (40
UEs). When the power control is used, decreasing the value
of the transmission power of a specific cell without increasing
the transmission power of the neighboring cells causes gaps in
coverage between these cells. Then, the UEs located in these
gaps are uncovered. With the CIO control, the probability of
connecting the UEs to a cell with lower CQI, and thus the
probability of having more out of coverage users is higher.
As a result, this problem is clearer in case of using CIO
control. By using both controls, the average number of covered
users increases with respect to the CIO control, but still
remains inferior to using the transmitted power control only. In
summary, The adopted control scheme achieves better overall
throughput, better average channel quality indicator, and less
out of coverage users problem compared to the CIO control.

Next we investigate the effect of our reward function on
the proposed RL framework. We show the radio environment
map (i.e., SINR distribution) of the simulated network at end
of a specific time step in Fig. 5. The letters A to F represent
eNBs sites, while the numbers 1 to 40 correspond to UE
locations. The circled UEs are reported as out of coverage
users. In Fig. 5, two agents are trained to control both CIOs
and tranmsitted power levels with different penalty factors
(⌘). In Fig. 5a, the target of the agent is maximizing the

Fig. 4: Average number of covered users during the learning

proposed reward in this paper with ⌘ = 2, i.e. maximizing the
throughput while minimizing the number of out of coverage
users. In Fig. 5a, the agent decided to select an action that
results in 1 uncovered user and 27.9 Mb/s overall throughput
for the presented distribution of the users. On the other
hand, when the penalty for the out of coverage users is not
considered (i.e., ⌘ = 0) in Fig. 5b, the selected action by
the agent for the same user distribution causes 6 users to be
uncovered; however, we can see that a higher throughput of
30.1Mb/s is achieved. More specifically, the agent intentionally
tries to force more out of coverage users as long as this
increases the overall throughput. For instance, the agent chose
an action that attach UE 27 with cell (A) although the UE is
located closer to the coverage of the less utilized cell (F).

Fig. 6 shows the tradeoff between the overall throughput
and the average number of covered users. The two sub-figures
are generated by training two RL agents based on two different
values of the penalty factor (⌘ = 1 and ⌘ = 2). After
convergence (250 episodes), the average overall throughput
and the average number of covered users are reported for
five additional episodes in Figures 6a and 6b, respectively. We
observe from these figures that increasing the penalty factor
from 1 to 2 increases the average number of covered users
by 0.24% and decreases the throughput by 5.2%, on average.
Consequently, it is up to the service operator to adjust the
penalty factor with the aim of striking an appropriate balance
between the overall and individual experiences.

VI. CONCLUSIONS

In this work, we investigated the problem of self-optimizing
the users’ experience in a cellular network using reinforcement
learning. To that end, we have recast the problem into an MDP.
This entailed defining the state of the cellular network as a sub-
set of relevant KPIs. We have introduced a novel action space,
where both transmitted power and the relative CIOs of the
eNBs are jointly controlled. Furthermore, we have introduced
a new reward function, namely, the penalized throughput
as a new measure of users’ experience. The new metric
reflects the tradeoff between the total throughput and the total
number of covered users in the cellular network. Following this
formulation, we propose using the TD3 reinforcement learning
technique with carefully chosen hyper-parameters to learn the



(a) Agent with penalized throughput reward

(b) Agent with throughput reward

Fig. 5: Radio environment map of the simulated environment con-
trolled by two different agents

(a) Overall throughput (b) Average Number of covered
users

Fig. 6: Effect of changing penalty factor ⌘

optimal power levels and CIOs from experience. Our technique
has been tested in a simulated realistic setting using NS-3.
The simulation setting admits 6 irregular eNBs functioning
with the exact operator’s parameters. Our numerical results
showed impressive gains when using joint optimization of
power levels and CIOs with respect to individual optimization
of either of them and drastic gains relative to the baseline
case. Furthermore, we introduced a method that allows a
controllable tradeoff between the total throughput and the
coverage of the cellular network.
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