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Abstract—In this paper, we consider binary hypothesis testing
for distributed detection in Wireless Sensor Networks. Sensor
nodes individually take a decision upon which hypothesis is
currently present. Communication between sensor nodes and the
Fusion Center is done through a Type-Based Multiple Access
(TBMA) scheme, and the Fusion Center gives a global decision
about the hypothesis under consideration. We consider the case
where each sensor has the ability to “censor” transmission,
meaning that a sensor node can locally withhold transmission
if local observation is unreliable. The major contribution in this
paper is to show that for the TBMA scheme with sensors sending
binary decisions to the Fusion Center, censoring can achieve
lower probability of decision error even if sufficient energy and/or
rate of transmission is available.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have gained a lot of
interest recently. The magnificent advances in wireless com-
munications and electronics enabled developing low-cost, low-
power, multifunctional sensor nodes, which levitates the wide
use of sensor networks consisting of large number of sensor
nodes. The flexibility, fault tolerance, high sensing fidelity,
low-cost, and rapid deployment characteristics of sensor net-
works are nowadays utilized in a variety of application areas
such as health, military, and home [1].

In this paper, we consider the use of WSN in Binary
Hypothesis Testing, which was studied in [2] under the name
of Decentralized Detection Problem. Each sensor receives a
sequence of observation samples about a state of nature, which
takes one of two possible values. Local decisions at each
sensor are made, and a global decision about which hypothesis
is made at the Fusion Center (FC). Communication between
sensor nodes and FC is done via a Type-Based Multiple Access
(TBMA) scheme. Each sensor sends one of two orthonormal
waveforms corresponding to each hypothesis that is locally
decided. The motivation behind using TBMA is made clear
in the special case (observations are conditionally i.i.d, equal
channel gains) that detection of the current hypothesis is done
at FC just by observing a noisy version of the histogram of
sensors observations [3].

Multiple Access as a communication scheme was studied
and overall system performance is proven to have improved
when enabling censoring [4]. A sensor is allowed to censor
transmission if its local LLR falls between two thresholds, in

contrast to the conventional binary hypothesis testing where
a local LLR is compared to a single threshold. The authors
show that this approach embodies the quality of the local
observations in the transmission, which will enhance the
overall performance of the detection system in the Bayesian
sense.

One major bottleneck in the utility of WSNs is the fact
that the sensors are battery-powered, which can render the
sensor nonfunctional in a reasonably small time if this factor
is not taken into consideration during the design stage of the
network. Various techniques and design approaches have been
innovated in order to increase the lifetime of the sensors, e.g
in [5]. One approach, which was first introduced by [6], is
to reduce the number of active sensors based on the relative
reliability of their observations. i.e., each sensor computes
the local log-likelihood ratio (LLR), and a sensor node has
the ability to “censor” transmission. The idea of censoring
sensors has been extensively researched, for example in [7],
[8]. However, we revisit the concept of censoring from a
different but rather interesting point of view.

The major contribution of this paper is to show that enabling
sensor nodes to censor transmission in a certain censoring
interval can also enhance the overall system performance
in terms of probability of error, in addition to increasing
overall system efficiency in terms of energy conservation,
which was stated in [7]. A system employing Time Division
Multiple Access as a communication scheme was studied and
the overall system performance is proven to have improved
when enabling censoring [4]. A sensor is allowed to censor
transmission if its local LLR falls between two thresholds, in
contrast to the conventional binary hypothesis testing where
a local LLR is compared to a single threshold. This paper
extends the work in [4] and shows that for a TBMA scheme,
this approach embodies the quality of the local observations in
the transmission, which will enhance the overall performance
of the detection system (in the Bayesian sense).

The rest of the paper is organized as follows. In Section
II, the system and data models are introduced. In Section III,
we study the nontrivial case where a network of only two
sensors is available. We find the optimum probability of error
in both conventional and censoring schemes. We repeat for
large sensor networks in IV. In Section V, simulations and
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asymptotic results are shown. Section VI concludes the paper.

II. SYSTEM AND DATA MODELS

Consider the system model shown in Figure 1. We assume
the presence of N sensors in a WSN deployed in a parallel
topology with a FC [9]. Each sensor takes a decision upon
which a certain phenomenon has occurred or not. We assume a
binary hypothesis testing problem. i.e., the FC decides between
two hypotheses, H0 and H1.

The n-th sensor measurement is xn, n = 0, 1, 2, ..., N − 1.
These measurements are assumed to be mutually independent
under each hypothesis. The data model under each hypothesis
is assumed to be given by1

H0 : xn∼N
(
0, σ2

0

)
H1 : xn∼N

(
0, σ2

1

)
.

(1)

Sensors send their local decision un = Sjn , n =
0, 1, 2, ..., N − 1, jn = 0 or 1 to the FC based on a
TBMA scheme. Each sensor sends one of two orthonormal
waveforms, namely S0 and S1, based on which hypothesis
was decided, H0 or H1 respectively. The FC receives the
transmissions of all sensors. Due to the additive nature of the
wireless medium, the FC receives

y =

N−1∑
n=0

hjnSjn + w, (2)

where the channel coefficient hjn between sensor n sending
waveform Sjn and the FC is assumed to be real, and follows
the shifted-Gaussian distribution N ∼ (a, σ2

h) where a > 0
[3], and w is AWGN with zero mean and variance σ2

N . Using

1Note that this work can be readily extended to any data model. We need
only to find Type-I error (False Alarm) and Type-II error (Misdetection)
probabilities. We only assume the aforementioned data model as a common
example.

the inner product operation with S0 and S1, the FC obtains

y = [ < y, S0 >,< y, S1 >]T where

< y, S0 >=
∑
m∈S0

h0m + w0

< y, S1 >=
∑
k∈S1

h1k + w1,

(3)

where m is a counter that counts over the sensors which have
decided hypothesis H0, k is a counter that counts over the
sensors which have decided hypothesis H1, S0 is the set of all
sensors sending S0, and S1 is the set of all sensors sending
S1. The receiver takes a decision for which hypothesis by
computing the difference between the two elements of the
vector y; consider the following

D = y[2]− y[1]

=
∑
k∈S1

h1k −
∑
m∈S0

h0m + ẁ, (4)

where ẁ is a Gaussian distributed noise with zero mean and
variance 2σ2

N . The FC decides hypothesis H1 if D > 0 and
decides hypothesis H0 if D < 0. In the following two sections,
we consider the common one-threshold case, and the two-
threshold case where censoring is enabled.

III. TWO-SENSOR NETWORK

A. Conventional (One-threshold) Case

We consider a simple WSN which consists of two sensors
only. Each sensor makes a decision based on local LLR. The
LLR at the nth sensor is given by

LLRn = log

(
P (xn|H1)

P (xn|H0)

)
= log

(
σ0

σ1

)
+
x2
n

2

(
1

σ2
0

− 1

σ2
1

)
.

(6)

The LLR is compared to a local threshold η, and a sensor takes
a decision for which hypothesis is present. The local threshold
is determined based upon certain required confidence levels.
Based on the noisy nature of the observations, the probability
that the nth sensor decides to send S1 given hypothesis H0 is

Pr(un = S1|H0)

= Pr

(
log

(
σ0

σ1

)
+
x2
n

2

(
1

σ2
0

− 1

σ2
1

)
> η|H0

)
= Pr

(
x2
n > γ|H0

)
= 2Q

(√
γ

σ0

) (7)

where γ = 2
( 1

σ20
− 1

σ21
)

(
η − log

(
σ0

σ1

))
.

The probability that the sensor node decides to send S0

under the same hypothesis is

Pr(un = S0|H0) = 1− 2Q

(√
γ

σ0

)
. (8)



PE/H1
= Pr( U0 = 0 |H1) = Pr( D < 0 |H1) = Pr (h10

+ h11
+ ẁ < 0 | H1, u0 = S1, u1 = S1) × Pr (u1 = S1, u2 = S1|H1)

+ Pr (h10
− h01

+ ẁ < 0 | H1, u0 = S1, u1 = S0) × Pr (u1 = S1, u2 = S0|H1)

+ Pr (−h00
+ h11

+ ẁ < 0 |H1, u0 = S0, u1 = S1) × Pr (u1 = S0, u2 = S1|H1)

+ Pr (h00
+ h01

+ ẁ > 0 | H1, u0 = S0, u1 = S0) × Pr (u1 = S0, u2 = S0|H1) .
(5)

Similarly, we can obtain the probabilities of sending both
waveforms given the hypothesis H1 by

Pr(un = S1|H1) = 2Q

(√
γ

σ1

)
, (9)

Pr(un = S0|H1) = 1− 2Q

(√
γ

σ1

)
. (10)

The FC computes the vector y and based on the difference
between the two elements of the vector, a global decision is
made. By examining the possible outcomes of the vector y, the
probability of global miss detection can be easily formulated
as in (5) shown on top of the this page.

Taking into account that channel coefficients are Gaussian
distributed, and the noise component at the FC is circularly-
symmetric Gaussian distributed, the probability of global miss
detection can be found to be

PE/H1
= Pr( U0 = 0 |H1)

= (1−Ma) (1−Qγ,σ1
)
2

+ Qγ,σ1 (1−Qγ,σ1) + Ma . Q
2
γ,σ1

= (1−Ma) + Qγ,σ1
[1 − 2 (1−Ma)]

(11)

where Ma = Q
(

2a
σα

)
, Qγ,σ1

= Q
(√

γ

σ1

)
and σ2

α = 2σ2
h +

2σ2
N . Similarly, the expression for the probability of false

alarm is

PE/H0
= Pr( U0 = 1 |H0)

= (1−Ma)Q2
γ,σ0

+ Qγ,σ0
(1−Qγ,σ0

)

+ Ma

(
1 − Q2

γ,σ0

)
= Ma + Qγ,σ0 (1 − 2Ma)

(12)

where Qγ,σ0 = Q
(√

γ

σ0

)
. Finally, the probability of error can

be expressed as

Pe = π0PE/H0
+ π1PE/H1

. (13)

In order to find the optimum threshold at the sensors,
we differentiate Pe w.r.t the sensor threshold and we equate
to zero. The optimum threshold can be found in a very
straightforward manner.

B. Censoring (Two-Threshold) Case

We now begin to introduce censoring to the network. Each
sensor compares its locally computed LLR to an upper and
a lower thresholds, symbolized by η1 and η0 respectively. A
sensor takes a local decision that hypothesis H1 is present and
informs the FC if local LLR value is above η1, takes a local

decision that hypothesis H0 is present and informs the FC if
local LLR value is below η0, or censor local decision making
if local LLR value falls between η1 and η0. A clairvoyant
view of the problem would suggest that such a scheme does
not necessarily improve the overall performance of the system,
which we will show that it does in the examined setup.

Under each hypothesis H0 and H1, the probability of each
local outcome is

Pr(un = S1|H0)

= Pr

(
log

(
σ0

σ1

)
+
x2

2

(
1

σ2
0

− 1

σ2
1

)
> η1|H0

)
= Pr

(
x2 > γ1|H0

)
= 2Q

(√
γ1

σ0

)
Pr(un = 0|H0) = 2Q

(√
γ0

σ0

)
− 2Q

(√
γ1

σ0

)
Pr(un = S0|H0) = 1− 2Q

(√
γ0

σ0

)
Pr(un = S0|H1) = 2Q

(√
γ0

σ1

)
Pr(un = 0|H1) = 2Q

(√
γ0

σ1

)
− 2Q

(√
γ1

σ1

)
Pr(un = S0|H1) = 1− 2Q

(√
γ0

σ1

)
(14)

where

γ1 =
2

( 1
σ2
0
− 1

σ2
1
)

(
η1 − log

(
σ0

σ1

))
γ0 =

2

( 1
σ2
0
− 1

σ2
1
)

(
η0 − log

(
σ0

σ1

))
.

Using the same reasoning from section (III-A), we enu-
merate the different cases for the received vector y. The
probability of global false alarm can be formulated in the
same manner as the conventional case, but we will omit the
detailed, yet straightforward derivation due to space limitation.
The probability of global false alarm can be expressed as in
(15) where La = Q

(
a
σβ

)
and σ2

β = σ2
h + 2σ2

N . Similarly,
the probability of global miss detection can be expressed as
in (16), and the probability of error is expressed in (13). By
differentiating w.r.t γ1 and γ0 and equating both to zero, we
can obtain the optimum thresholds.

IV. LARGE SENSOR NETWORK

In this section, we focus our attention on sensor net-
works which consist of a very large number of sensor nodes



PE/H0
= Pr( U0 = 1 |H0) = (1−Ma)Q2

γ1,σ0
+ 2 (1− La)Qγ1,σ0 (Qγ0,σ0 −Qγ1,σ0)

+ Qγ1,σ0 (1−Qγ0,σ0) +
1

2
(Qγ0,σ0

−Qγ1,σ0
)
2

+ 2La (Qγ0,σ0
−Qγ1,σ0

) (1−Qγ0,σ0
) + Ma (1−Qγ0,σ0

)
2 (15)

PE/H1
= Pr( U0 = 0 |H1) = MaQ

2
γ1,σ1

+ 2LaQγ1,σ1 (Qγ0,σ1 −Qγ1,σ1)

+ Qγ1,σ1 (1−Qγ0,σ1) +
1

2
(Qγ0,σ1 −Qγ1,σ1)

2
+ 2 (1− La) (Qγ0,σ1 −Qγ1,σ1) (1−Qγ0,σ1) + (1−Ma) (1−Qγ0,σ1)

2

(16)
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(N → ∞). Hence, we are interested in understanding the
asymptotics of the probability of error. We will employ Large
Deviation Theory [10]. We compute the error exponent for
the conventional and censoring networks, and we compare
exponents in both cases.

A. Conventional (One-Threshold) Case

Now we focus on the probabilities of miss-detection and
false alarm at the FC. We can assume the variable D in (4)
to be

D =

N−1∑
n=0

Zn, (17)

and assuming that H0 is present, we can write

Zn =

 Z+
n = h1n + ŵn w.p. P0 = 2Q

(√
γ

σ0

)
Z−n = −h0n + ŵn w.p. 1− P0 = 1− 2Q

(√
γ

σ0

)
(18)

where Z+
n ∼ N

(
a, σ2

z

)
, Z−n ∼ N

(
−a, σ2

z

)
and σ2

z = σ2
h +

2σ2
N

N . Note that ŵn ∼ N
(

0,
2σ2
N

N

)
is the noise component in

equation (4) split into N terms so as to match the distributions
of all Zn variables.
Using Chernoff’s formula, error probability is defined as2

PE/H0
= P (D > 0|H0)

.
= e−N.maxθ[−λ(θ)], (19)

2The symbol .
= is used to denote equality in the exponential decay rate,

that is f(N)
.
= g(N) means that limN→∞

1
N

log
f(N)
g(N)

= 0.
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where

λ(θ) = lnE
[
eθZn

]
(20)

is the Cumulant Generating Function (CGF). Knowing the
probability distribution function of the variable Zn, we can
calculate

E
[
eθZn

]
= P0E

[
eθZ

+
n

]
+ (1− P0)E

[
eθZ

−
n

]
(21)

E
[
eθZ

+
n

]
=

1√
2πσ2

z

∫ ∞
−∞

eθZ .e
− (Z − a)2

2 σ 2
z dZ = eaθ +

σ2zθ
2

2

(22)

and likewise

E
[
eθZ

−
n

]
=

1√
2πσ2

z

∫ ∞
−∞

eθZ .e
− (Z + a)2

2 σ 2
z dZ

= e−aθ +
σ2zθ

2

2 .

(23)

So we finally get

E
[
eθZn

]
= e

σ2z θ
2

2

[
(1 − P0) e−a θ + P0e

a θ
]
. (24)

The error exponent, under the presence of hypothesis H0,
∆0(γ), is defined as

∆0(γ) = − lim
N→∞

1

N
logPE/H0

.
= − log inf

θ>0

(
e
σ2h θ

2

2

(
P0

(
ea θ − e−a θ

)
+ e−a θ

))
.

(25)
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The error exponent, under the presence of hypothesis H1,
∆1(γ), can be found similarly to be

∆1(γ) = − lim
N→∞

1

N
logPE/H1

.
= − log inf

θ>0

(
e
σ2h θ

2

2

(
P1

(
e−a θ − ea θ

)
+ ea θ

))
(26)

where P1 = 2Q
(√

γ

σ1

)
. The error exponent is limited by

the minimum of the two error exponents ∆0(γ) and ∆1(γ).
Assuming that the priors of H0 and H1 are π0 and π1

respectively, the probability of error at the FC is

Pe = π0PE/H0
+π1PE/H1

.
= e−N.∆0(γ) + e−N.∆1(γ). (27)

B. Censoring (Two-Threshold) Case

We consider the case if each sensor has the ability to censor
transmission. Under hypothesis H0, the variable Zn in (18) in
this case becomes

Zn =

 Z+
n = h1n + ŵn w.p. P10

ZCn = ŵn w.p. PC0

Z−n = −h0n + ŵn w.p. P00

(28)

where

P10 = 2Q

(√
γ1

σ0

)
PC0 = 2Q

(√
γ0

σ0

)
− 2Q

(√
γ1

σ0

)
P00 = 1− 2Q

(√
γ0

σ0

)
.

Similar to Section IV-A, we compute the CGF in this case

E
[
eθZ

+
n

]
= −eaθ +

σ2zθ
2

2 (29)

E
[
eθZ

C
n

]
= −eσ

2
zθ

2

(30)

E
[
eθZ

−
n

]
= −e−aθ +

σ2zθ
2

2 (31)

E
[
eθZn

]
= P10E

[
eθZ

+
n

]
+ PC0E

[
eθZ

C
n

]
+ P00E

[
eθZ

−
n

]
.

(32)
The error exponent under hypothesis H0 is given by

∆0(γ) = − log inf
θ>0

(
P10

(
eaθ +

σ2h θ
2

2

)

+ P00

(
e−aθ +

σ2h θ
2

2

)
+ PC0

)
. (33)

Using the same procedure, it can be easily shown that the error
exponent in case of hypothesis H1 is given by

∆1(γ) = − log inf
θ>0

(
P11

(
e−aθ +

σ2h θ
2

2

)

+ P01

(
eaθ +

σ2h θ
2

2

)
+ PC1

)
(34)

where

P11 = 2Q

(√
γ1

σ1

)
PC1 = 2Q

(√
γ0

σ1

)
− 2Q

(√
γ1

σ1

)
P01 = 1− 2Q

(√
γ0

σ1

)
.

V. SIMULATIONS AND RESULTS

Two-Sensor Case: In this section, computer simulations
are performed which illustrate the advantage of censoring
introduction in the system in terms of enhancing probability
of error. In Figures 2 and 3, a small network with two
sensors is considered, with σ2

0 = 1, σ2
1 = 0.25 and a = 1.

Figure 2 shows the optimum upper and lower thresholds
for each sensor against Signal to Noise Ratio SNR where
SNR = 1

σ2
N

. Multiple curves are presented for different values
of σ2

h. Figure 3 shows the probability of error against SNR
for different values of σ2

h. We note from Figure 2 that the
optimum thresholds for minimum probability of error are less
apart for better channel statistics (lower σ2

h), which means
that sensors tend to censor transmission more likely for more
reliable channels. It is clear that the noise component at
the FC has little to no effect on the system after certain
SNR value. The idea here is that a combination of the noise
variance and the channel coefficients variance are the key
factor that affects the performance of the system and the
values of optimum thresholds. This is obvious when observing
the terms in equations (11) and (15). In Figure 3, it is clear
that censoring leads to better probability of error. We also
note that censoring can achieve lower probability of error for
better channel statistics, unlike the conventional case, where
the overall performance of the system nearly does not depend
on channel statistics. Observing the curve for σ2

h = 7, we note
that little enhancement in system performance is achieved over
the conventional case. But since this achievement comes as an
extra gain in performance in addition to the savings in battery
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lifetime due to withholding transmission, adopting censoring
would seem to be always a sane option.

Large-Sensor Case: Now we move to the large network
case. We first consider the conventional case studied in Section
IV-A. Note that equations (25) and (26) do not depend on
the variance of the AWGN added to the transmitted signal
through the multipath channel. This is due to the infinitesimal
increase in the number of available sensors (N →∞), which
overcomes the error introduced in each of the received signals
due to noise added at the receiver. This is also elaborated in
the Two-Threshold case in Section IV and is clear in equations
(33) and (34). In Figure 4, the optimum thresholds are plotted
against different values of the inverse of variance of channel
coefficients for both Conventional and Two Threshold cases. It
shows that it is optimum in terms of probability of detection
that sensors do censor transmission for any SNR. In Figure
5 and Figure 6, the error exponents are plotted against the
inverse of variance of channel coefficients, for different values
of shifts for the mean of the channel coefficients a. We notice
that due to the noncentral nature of the channel coefficients,
the variable a plays an important role in the performance of the
system. As a increases, the channel coefficients are more likely
to be positive, and received signals from different sensors are
more likely to add up, thus increasing reliability of the global
decision taken at the FC. It is clear from (25), (26), (33) and
(34) that the case of a = 0 leads to the complete failure of the
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Fig. 7. Error exponents for both conventional (one threshold) and two
threshold cases in a large WSN vs the inverse of channel coefficients variance.
σ2
0 = 1, σ2

1 = 0.25 and a = 7

detection system. In Figure 7, we compare the error exponents
for both the Conventional Case and the Two Threshold Case,
with constant a = 7 as an example. It is clear that censoring
leads to higher error exponent and lower probability of error.

VI. CONCLUSION

We have studied the introduction of a censoring scheme to a
WSN using a TBMA communication method. In this scheme,
each sensor decides whether its local observation and decision
are reliable enough for transmission, by comparing its locally
computed LLR to a certain censoring interval. We showed that
censoring in this type of WSNs results in lower probability of
error at the FC and thus better performance even if enough
energy is available for all sensors to transmit.
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