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Abstract—In this paper, we consider the problem of chan-
nel feedback in massive multiple-input-multiple-output (MIMO)
systems. For the downlink scenario, we present a detailed
comparison between the performance of the quantized and
the analog channel feedback schemes for the case of having
multiple antenna users. Both schemes’ performance is evaluated
by deriving an upper bound on the rate gap between the rate
of the system with perfect channel state information (CSI) and
with imperfect CSI for both feedback schemes. We compare the
two schemes, namely, quantized channel feedback and analog
channel feedback, under the same resources allocated for channel
feedback for a fair comparison. Moreover, we consider two
different downlink transmission schemes; the first one does not
consider power allocation across the streams and the second
one does power allocation (water-filling) across the streams.
Our results show that the analog feedback scheme performs
better in the low signal to noise (SNR) region when performing
power allocation across the multiple data streams. However, the
quantized channel feedback scheme performs better at the high
SNR region, where the quantized CSI can provide a better
approximation of the actual CSI. Finally, simulation results are
presented to verify our theoretical analysis and demonstrate our
conclusions.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) wireless
cellular systems introduced substantial developments on both
the spectral and energy efficiency aspects. These gains are
achievable using simple linear precoding techniques at the
Base-Station (BS) to serve multiple users in the system [1],
[2]. The downlink channel state information (CSI) must be
known at the massive MIMO BS to apply data precoding and
beamforming techniques, hence, fully utilizing the array gains
of massive MIMO systems. This, in turn, poses a challenge
for the practicality of massive MIMO systems. The problem
of obtaining the downlink CSI at the BS in frequency division
duplex (FDD) systems is challenging because the channel
reciprocity cannot be exploited to obtain the downlink CSI
from the uplink CSI as in the case of time division duplex
(TDD) systems. In FDD massive MIMO systems, the down-
link channels are estimated at the user and then transmitted
back to the BS. However, estimating the downlink CSI leads
to overwhelming feedback overhead as the overhead increases
linearly with the number of BS antennas, which affects the
system bandwidth. Hence, many papers in the literature have

focused on reducing the feedback overhead in FDD massive
MIMO systems without causing performance degradation due
to this reduction. The quality of the CSI feedback at the BS
plays a critical role in improving the system performance.

In [3], the authors presented a spatially common sparsity-
based adaptive channel estimation and feedback in FDD
massive MIMO systems. They further evaluated their proposed
scheme by deriving the Cramér-Rao bound. In [4], the authors
proposed a novel feedback reduction scheme using principal
component analysis (PCA), which utilizes the spatial correla-
tion among the massive MIMO channels using a compression
matrix. In [5], a robust closed-loop pilot and CSI feedback
resource adaptation framework was introduced. The authors
utilized the joint sparsity of the massive MIMO users’ channels
to enhance the CSI quality. The authors is [6] proposed
a low-dimensional subspace codebook for millimeter-wave
(mmWave) massive MIMO systems relying on lens antenna
array. In [7], a real-time CSI feedback scheme based on deep
learning was proposed for time-varying massive MIMO chan-
nels. The authors in this work studied the trade-off between
the feedback compression ratio and the proposed scheme’s
complexity. In [8], the authors proposed an angle of departure
(AoD) adaptive codebook for channel feedback in massive
MIMO systems. They derived bounds for the rate reduction
to evaluate the performance of their scheme. However, the
authors did not consider the general case of serving multiple
antenna users and made their derivations for the single-antenna
users’ special case.

In this paper, we introduce a detailed study on the impact
of both quantized and analog channel feedback on the perfor-
mance of AoD based massive MIMO systems with multiple
antenna users. To the best of our knowledge, studying this
problem for massive MIMO systems with multiple-antenna
users was not studied before. A detailed analysis of the
performance degradation due to both quantized and analog
channel feedback is introduced. We derive bounds on the
rate gap between ideal CSI and imperfect CSI at the BS for
both quantized and analog feedback schemes. Then, the two
schemes are compared against each other using the same feed-
back resources for a fair comparison. We will show that for the
case of limited feedback resources, the analog feedback-based
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scheme outperforms the quantized one; however, for having
more available feedback resources, the quantized feedback-
based scheme results in better performance compared to
the analog one. Additionally, the analog channel feedback
scheme’s performance is improved using power allocation
across the multiple data streams in the low signal to noise ratio
(SNR) region. Moreover, we show that the analog feedback-
based scheme outperforms the quantized one in the low
SNR region; however, the quantized feedback-based scheme
overtakes in the high SNR region.

II. SYSTEM MODEL

A. Downlink Massive MIMO Channel Model

The system model in this paper contains a mmWave massive
MIMO BS with M antennas that communicates with K
multiple antenna users through the downlink channel. The kth
user, ∀k ∈ {1, 2, · · · ,K}, has Nk receiving antennas. The
number of transmitting antennas at the BS is assumed to be
much higher than the number of users’ antennas (i.e., M >>∑
kNk). The channel matrix of the kth user, Hk ∈ CNk×M ,

is formed using the downlink narrowband ray-based channel
model in [8], [9], and it can be expressed as

Hk = GkAk(φk,1, φk,2, . . . , φk,Pk). (1)

The matrix Ak(φk,1, φk,2, . . . , φk,Pk) ∈ CPk×M is defined as

Ak(φk,1, φk,2, . . . , φk,Pk) =
[
a(φk,1) a(φk,2) . . . a(φk,Pk)

]T
(2)

where Pk is the number of resolvable paths from the BS to
the kth user, and φk,i(1 ≤ i ≤ Pk) is the AoDs of the ith

path of the kth user. The transmit antennas at the BS form a
uniform linear array (ULA), so a(φk,i) ∈ CM×1 is the antenna
response vector of the ith propagation path of user k, and it
can be expressed as

a(φk,i) =
[
1, e−j2π

d
λ sin (φk,i), . . . , e−j2π

d
λ (M−1) sin (φk,i)

]T
,

(3)
where λ is the signal wavelength, d is the distance between
the antennas at the BS. The entry Gk(i, j) is the complex
path gain of the jth path of the ith antenna at user k. The
complex path gains in Gk are independently and identically
distributed (i.i.d.) complex normal random variables with zero
mean and unit variance. It is noted from (1) that the channel
vector of each antenna of user k is a linear combination of its
Pk steering vectors scaled by the complex path gains of that
antenna.

Within the coherence period of φk,i, the channel vector
of every antenna of user k is distributed in a subspace of
dimension Pk of the full M -dimensional space. This subspace
is called the channel subspace. The channel subspace, Ak, is
a function of the AoDs which are assumed to be known at the
massive BS and the kth user. This assumption is valid as the
kth user can estimate the AoDs applying the multiple signal
classification (MUSIC) algorithm [10]. After that, user k feeds
back the AoDs to the massive BS every angle coherence period
so that the BS can generate Ak. As long as the massive BS

knows the channel subspace, user k needs to only feedback
the low dimensional path gain matrix Gk ∈ CNk×Pk , and
hence, the BS can generate the channel matrix of the kth
user Hk. Throughout this work, we assume that the BS has
perfect knowledge of the AoDs as their feedback overhead
is negligible compared to the feedback overhead of the path
gains matrix Gk.

We assume that there are Nk data streams that are sent from
the massive BS to user k which are represented by the data
vector mk ∈ CNk×1. The data symbol vector of user k is first
multiplied by the precoding matrix, Vk ∈ CM×Nk , before
transmission. Then, the BS adds the precoded data vectors
of all users forming the overall vector, x ∈ CM×1, that is
broadcast to all users and it is written as

x =

K∑
j=1

Vjmj , (4)

and the received signal at user k is given as

yk = Hkx + nk = HkVkmk + Hk

K∑
j=1,j 6=k

Vjmj + nk, (5)

where nk ∈ CNk×1 is the noise vector at user k whose
elements are i.i.d. complex normal random variables with zero
mean and unit variance.

The second term in (5) represents the interference from
all other signals, mj , j 6= k, at user k. As long as the
precoding matrix, Vk, is unitary (i.e., VH

kVk = INk), then
the average squared norm of the data vector of user k is set
as E

[
‖mk‖2

]
= γ

K ,∀k ∈ {1, 2, · · · ,K}, where γ is the total
transmit power constraint at the BS.

B. The Per-User Rate

The precoding technique that is used in this paper is the
zero-forcing block diagonalization (BD), which was designed
for massive MIMO systems with multiple antenna users in
[9]. In BD precoding, only the spatial direction of the channel
matrix, H̃k, is needed at the BS. The matrix, H̃k, is unitary
and its row-space is the row-space of Hk. Since the BS knows
Ak, the kth user performs subspace quantization on Gk [9],
then it feeds back the quantized path gains subspace Ĝk. The
BD strategy involves linear precoding that eliminates the inter-
user interference. Hence, the second term in (5) is canceled in
the case of perfect CSI at the BS, i.e., Ĝk ≡ G̃k, where G̃k

is unitary and its row-space is the row-space of Gk. Then, the
per-user Ergodic rate for the ideal CSI case is given by [11],
[12]

RIdeal(γ) = E log2

∣∣∣∣IN +
γ

KNk
HkVkVH

kHH
k

∣∣∣∣. (6)

In the case of subspace quantized channel feedback, the
interference at the kth user due to all other users cannot be
completely eliminated because the row-space of the quantized
channel matrix, Ĥk, is an approximation to the the original
spatial direction, H̃k. As a result, this quantization leads to
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some residual interference power, and the per-user rate is
hence given by [13]

RQUANT = E log2

∣∣∣∣∣∣IN +
γ

KNk

K∑
j=1

HkV̂jV̂
H
j HH

k

∣∣∣∣∣∣−
E log2

∣∣∣∣∣∣IN +
γ

KNk

K∑
j=1,j 6=k

HkV̂jV̂
H
j HH

k

∣∣∣∣∣∣. (7)

where the expectation is evaluated over the distribution of the
channel matrix, Hk, and the corresponding quantized precod-
ing matrices, V̂j . The term HkV̂kV̂

H
kHH

k represents the useful

signal intended for the kth use while
K∑

j=1,j 6=k
HkV̂jV̂

H
j HH

k

represents the inter-user interference at user k.

III. RATE GAP OF QUANTIZED CHANNEL FEEDBACK

In this section, we evaluate the rate gap between the ideal
system with perfect CSI and the rate of a practical system
with quantized channel matrices at the BS. The rate gap is
calculated assuming that all users have the same number of
receive antennas, i.e., Nk = N .

A. Rate gap calculations

The per-user rate of the ideal and quantized CSI at the BS
are given by (6) and (7) respectively. Following Theorem 1 of
[13], that obtains an upper bound for the quantized rate gap in
Multi-User MIMO systems, the per-user rate gap, ∆RQUANT =
RIdeal−RQUANT, in our massive MIMO system can be bounded
as

∆RQUANT ≤ log2

∣∣∣∣IN +
γMP

K
(K − 1)E

[
H̃kV̂jV̂

H
j H̃

H
k

]∣∣∣∣
(8)

The expectation E
[
H̃kV̂jV̂

H
j H̃

H
k

]
is evaluated as follows. First,

the channel subspace, H̃k, is decomposed as lemma 1 in [13]
as

H̃k = RkFkĤk + ZkSk, (9)

where Fk ∈ CN×N is unitary and uniformly distributed
over the Grassmannian manifold GN,N , Zk ∈ CN×N is
lower triangular with positive diagonal elements and satisfies
tr(ZkZH

k ) = d2(Hk, Ĥk), Rk ∈ CN×N is lower triangular with
positive diagonal elements satisfying RkRH

k = IN−ZkZH
k , and

the rows of Sk ∈ CN×M form an orthonormal basis for an
isotropically distributed complex N dimensional subspace in
the M −N dimensional right nullspace of Ĥk. Moreover, the
matrices Rk, Ĥk and Fk are independent of each other, as are
the pair Zk and Sk. By right multiplying both sides of (9) by
V̂j , we get

H̃kV̂j = ZkSkV̂j , (10)

for k 6= j due to the fact that ĤkV̂j = 0 by the BD procedure.
Therefore,

E
[
H̃kV̂jV̂

H
j H̃

H
k

]
= E

[
ZkSkV̂jV̂

H
j SH

kZH
k

]
. (11)

In the extreme case, where the channels of all the K users are
highly correlated, the inter-user interference in (11) can reach
its maximum. In this case, the K users share same channel
characteristics and clusters around the massive BS, i.e., P1 =
P2 = · · · = PK = P and A1 = A2 = · · · = AK = A.
Therefore, the subscript k of Pk and Ak will be omitted in that
proof. From our system model and feedback scheme in Sec. II,
both the row-space of the quantized channel matrix, Ĥk, and
the spatial direction, H̃k, lie in the row-space of A. Since the
row-space of H̃k can be orthogonally decomposed along the
row-spaces of Ĥk and Sk as in (9), Sk must also lie in the row-
space of A. Thus, Sk can be written as Sk = 1√

M
TkA, where

the rows of Tk ∈ CN×P are orthonormal. This is valid since
the row vectors of A are nearly orthogonal as M goes large in
massive MIMO systems. Since the row-space of the quantized
feedback channel matrix Ĥk is distributed in the row-space
of A, and from the BD procedure, the column-space of the
precoder, V̂j , lies in the column-space of AH. Therefore, the
precoding matrix, V̂j , can be expressed as V̂j = 1√

M
AHYj ,

where Yj ∈ CP×m is a unitary matrix whose columns are
orthonormal. Hence, substituting in (11), the interference term
can be given as

E
[
H̃kV̂jV̂

H
j H̃

H
k

]
= E

[
ZkTk

AAH

M
YjYH

j

AAH

M
TH
kZH

k

]
= E

[
ZkTkYjYH

j TH
kZH

k

]
(12)

where the second equality holds as AAH = MIP when M
goes large.

Lemma 1. In the extreme case, Pk = P and Ak = A,∀k,
when all users’ channels are highly correlated, we have
E
[
ZkTkYjYH

j TH
kZH

k

]
= N

P−NE
[
ZkZH

k

]
= N

P−N
D
N .

Proof. The subspace quantization of the channel matrix can be
expressed as Ĥk = 1√

M
ĜkA, where Ĝk ∈ CN×P is a matrix

whose rows are orthonormal and its row-space represents the
subspace quantization of Gk, which is fed back by the users
to the BS. Knowing that the row-space of Sk lies in the right
null space of Ĥk as shown in (9), and considering that Sk =

1√
M

TkA, we have

ĤkSkH =
1

M
ĜkAAHTkH = ĜkTkH = 0. (13)

Therefore, the row-space of Tk is distributed in the right null
space of Ĝk. On the other hand, as previously mentioned, the
BD precoding matrix can be expressed as V̂j = 1√

M
AHYj .

Since the column-space of the BD precoding matrix V̂j is
orthogonal to the row-space of Ĥk, i.e.,

ĤkV̂j =
1

M
ĜkAAHYj = ĜkYj = 0. (14)

Therefore, the column-space of Yj is isotropically distributed
in the right null space of Ĝk. Now we have proved that both
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the row-space of Tk and the column-space of Yj are isotropic
sub-spaces in the null space of Ĝk. Based on [13], we have

E
[
ZkTkYjYH

j TH
kZH

k

]
=

N

P −N
E
[
ZkZH

k

]
=

N

P −N
D

N
IN ,
(15)

where D is the average subspace quantization error which is
defined as

D = E
[
d2(H̃k, Ĥk)

]
, (16)

where d(., .) is the chordal distance which is defined as [14]

d(H̃k, Ĥk) =

[
Nk −

∥∥∥H̃kĤ
H
k

∥∥∥2

F

]1/2

. (17)

Hence, the interference term is given as

E
[
H̃kV̂jV̂

H
j H̃

H
k

]
=

D

P −N
IN , (18)

and the rate gap can be upper bounded using the following
equation

∆RQUANT ≤ N log2

(
1 +

γ(K − 1)MP

K(P −N)
D

)
. (19)

B. Quantization Error
In this subsection, the quantization error, D, of the spatial

direction of the kth user, is calculated when the AoD based
quantized channel feedback is used. The spatial direction of
the kth user, H̃k, can be written as H̃k = 1√

M
G̃kAk, where

G̃k ∈ CN×P is a matrix whose rows are orthonormal and
its row-space is the row-space of Gk. Hence, the quantization
error can be given as

D = E
[
N −

∥∥∥H̃kĤ
H
k

∥∥∥2

F

]
= E

[
N −

∥∥∥∥ 1

M
G̃kAkAH

k Ĝ
H
k

∥∥∥∥2

F

]
(20)

(a)
≈ E

[
N −

∥∥∥G̃kĜ
H
k

∥∥∥2

F

]
. (21)

where Ĝk represents the subspace quantization of the row-
space of G̃k and AkAH

k ≈MIP . Both G̃k and Ĝk are isotrop-
ically distributed subspaces on the P -dimensional space. Then,
we can bound the quantization error as [13]

D ≤ D̄ =
Γ( 1

T )

T
(CPN )−

1
T 2−

B
T , (22)

where T = N(P − N) and CPN = 1
T !

∏N
i=1

(P−i)!
(N−i)! . The

parameter B is the number of feedback bits used to quantize
the row-space of Gk, where 2B is the subspace codebook size.

IV. QUANTIZED VS. ANALOG CHANNEL FEEDBACK

In this section, we firstly discuss an analog channel feedback
technique based on the channel subspace A. Then, this channel
subspace-based analog feedback technique is analyzed by
evaluating the rate gap between the ideal case of the perfect
CSI and the practical case of the analog feedback technique.
Finally, the proposed quantized feedback technique using the
BD-based subspace codebook is compared with the analog
feedback technique.

A. Analog channel feedback technique

In the traditional analog channel feedback technique, each
user k feeds back the elements of its channel matrix Hk ex-
plicitly without quantization through the uplink noisy channel
[15]. In this paper, since Hk = GkAk, only the elements of
the Nk×Pk path gain matrix Gk are fed back through a noisy
uplink channel, as long as we assume that path AoDs, i.e., the
steering matrix, Ak, is known at the BS. The observation of
the path gain matrix Gk at the BS after being transmitted over
the noisy uplink channel is given by

GAna,k =
√
µγUGk + NU,k, (23)

where γU is the uplink SNR and NU,k is the uplink complex
Gaussian noise, where each element has zero mean and unit
variance. The scale factor µ denotes the number of channel
uses to feedback one element of the path gain matrix Gk. The
MMSE estimate of the path gain matrix at the BS is given as

Ğk =

√
µγU

1 + µγU
GAna,k. (24)

It is convenient to express Gk in terms of the estimate Ğk and
estimation noise as follows

Gk = Ğk + EGk , (25)

where Ğk and EGk are mutually independent and their ele-
ments are zero mean Gaussian random variables with variances
µγUσ

2
EGk

and σ2
EGk

= (1 + µγU )−1 respectively. Then, by
utilizing the path AoD information, i.e., steering matrix Ak,
the BS can recover the channel matrix H̆k obtained from the
proposed channel subspace based analog feedback as

H̆k = ĞkAk. (26)

Hence, the channel matrix can be rewritten as

Hk = GkAk = H̆k + EGkAk (27)

B. Rate gap of the analog channel feedback

Like the case of quantized channel feedback, BD is con-
sidered as the zero forcing precoding technique for multi-
user downlink transmission. This can be realized based on the
channel matrices of the users, H̆k, that were fed back to the
massive BS using the analog feedback technique. Hence, the
BS can compute the unitary precoding matrices, V̆k, following
the normal BD procedure. After the downlink transmission, the
received vector at user k can be written as

yk = HkV̆kmk + Hk

K∑
j=1,j 6=k

V̆jmj + nk (28)

Following appendix C in [13], the rate gap resulting from
analog channel feedback, ∆RAnalog = RIdeal − RAnalog, is
bounded as

∆RAnalog ≤ E log2

∣∣∣∣∣∣IN +
γ

KN

K∑
j=1,j 6=k

V̆
H
j HH

kHkV̆j

∣∣∣∣∣∣. (29)

4



By applying Jensens inequality to the above equation and by
substituting with (27) noting that H̆kV̆j = 0 for k 6= j, the
analog rate gap can be bounded as

∆RAnalog ≤ log2

∣∣∣∣IN +
γ(K − 1)

KN
E
[
V̆

H
j AH

kEH
GkEGkAkV̆j

]∣∣∣∣.
(30)

Now, an upper bound on the interference from other users to
the kth user, E

[
V̆

H
j AH

kEH
GkEGkAkV̆j

]
, is calculated. Clearly,

an upper bound of this expectation can be reached in an
extreme case, where all the K users have strongly correlated
channel conditions. In this case, the channel subspace, Ak, of
all users will be the same, i.e., P1 = P2 = · · · = PK = P
and A1 = A2 = · · · = AK = A. Consequently, the subscript
k is omitted of Pk and Ak throughout the rest of this section.
Following the BD procedure, and as discussed in Sec. III-A,
the precoding matrix V̆j can be expressed as V̆j = 1√

M
AHUj ,

where Uj ∈ CP×N is a unitary matrix whose columns are
orthonormal. Hence, inter-user interference can be bounded
as

E
[
V̆

H
j AHEH

GkEGkAV̆j
]
≤ 1

M
E
[
UH
j AAHEH

GkEGkAAHUj
]

= ME
[
UH
j E
[
EH

GkEGk
]

Uj
]
, (31)

knowing that AkAH
k ≈ MIP . By substituting E

[
EH

GkEGk
]

=
Nσ2

EGk
IP , we get an upper bound on the interference as

E
[
V̆

H
j AHEH

GkEGkAV̆j
]
≤MNσ2

EGk
IN . (32)

By substituting (32) in (30), we can express the upper bound
of the rate gap of the analog feedback scheme as

∆RAnalog ≤ log2

∣∣∣∣IN +
γ(K − 1)

K
Mσ2

EGk
IN
∣∣∣∣

= N log2

(
1 +

γ(K − 1)

K
M(1 + µγU )−1

)
. (33)

C. Comparison between quantized and analog channel feed-
back

Recall the rate gap of the quantized channel feedback in
(19). By substituting (22) in (19), the rate gap of the quantized
channel feedback can be further simplified as

∆RQUANT ≤ N log2

(
1 + C2−

B
T

)
, (34)

where C is a constant and T = N(P −N). We assume that
the link used to feedback the quantized channel is error-free at
its capacity [16], i.e., we can feedback log2(1 + γU ) bits with
no errors per one channel use. For fair comparison, we need
to equate the allocated feedback resources for both the analog
and digital feedback schemes. In the analog feedback, the path
gains matrix Gk is transmitted element by element requiring
a number of µPN channel uses, where µ is the number of
channel uses per one element. Consequently, the quantized
channel feedback scheme can transmit B = µPN log2(1+γU )
bits using the same feedback resource as the analog channel
feedback. By substituting B = µPN log2(1 + γU ) into (34),

the rate gap of the quantized feedback scheme can be rewritten
as

∆RQUANT ≤ N log2

(
1 + C(1 + γU )−

µPN
T

)
. (35)

Now, the rate gaps of both the analog and quantized channel
feedback schemes are compared as the scaling parameter µ
grows large for a constant uplink SNR, γU . In the analog
channel feedback scheme (33), the value 2∆RAnalog decays
inversely with the scale factor µ as µ increases. On the other
hand, in the quantized channel feedback scheme (35), the value
2∆RAnalog decays exponentially with the scaling factor µ. Thus,
we can easily see that the quantized channel feedback scheme
outperforms the analog one at large values of the scale factor
µ.

V. WATER-FILLING BASED ANALOG CHANNEL FEEDBACK

In this section, we discuss making use of the additional
information given by the analog channel feedback to achieve
higher performance than the quantized one in the low SNR
region. In analog channel feedback, the entries of the path
gains’ matrix, Gk(i, j), are individually fed back to the
massive BS. Therefore, the BS can calculate the singular
values of the effective downlink channel of user k, and
hence performing power allocation among its streams. This
information is not available in the quantized feedback scheme
as we only feedback a unitary matrix that represents the row-
space of Gk, not the actual matrix. Hence, the performance
of analog channel feedback scheme can be further improved
at low downlink SNR region due to optimal power allocation
(water-filling) across data streams. At low SNR region, the
system noise is more dominant than the quantization noise of
the channels. Hence, at low downlink SNR region, performing
power allocation across data streams may be more beneficial
than using the quantized feedback scheme which provides a
better approximation of the actual CSI.

The performance of BD based precoding degrades in the
low SNR region as the zero-forcing techniques generally suffer
when the noise level is high. Consequently, in this section,
we aim to raise the performance of our system in the low
SNR region by optimally allocating power across the multiple
data streams. This optimal power allocation aims to maximize
the system’s total sum rate. We aim to calculate the power
allocation diagonal matrices, ∆k, of the users whose diagonal
elements represent the power fractions that maximize the
whole system throughput. Thus, the modified precoding matrix
for the kth user at the massive BS becomes Vk∆

1/2
k . Let’s

assume at first the the BS has perfect CSI information, then the
inter-user interference is totally cancelled When BD precoding
is considered at the BS. In this case, the sum rate is given as

Rtot = E

{
K∑
k=1

log2

∣∣INk + HkVk∆kVH
kHH

k

∣∣} , (36)

where the diagonal elements of ∆k scale the power transmit-
ted into each of the columns of Vk. As long as BD precoding
forces the interference of other users to be zero, each user
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in the system is seen as a point-to-point MIMO link by the
massive BS. Hence, the system’s sum rate rate can be given
as [11]

Rtot = E

{
K∑
k=1

log2

∣∣INk + Λ2
k∆k

∣∣} , (37)

where the diagonal elements of the diagonal matrix Λk,
σk,i, represents the singular values of the kth user’s effective
channel, HkVk. Now, the power allocation problem can be
expressed as

max
δk,i

K∑
k=1

Nk∑
i=1

log2

(
1 + σ2

k,iδk,i
)

s.t.
K∑
k=1

Nk∑
i=1

δk,i ≤ γ,

where γ is the total transmitted power at the massive BS.
Clearly, the above optimization problem is convex and it has
a well known closed form solution [17] when solved using the
Lagrange multiplier method. The closed form solution of the
above problem is

δ∗k,i =

(
1

α
− 1

σ2
k,i

)+

, (38)

where x+ = x when x ≥ 0 and equals to zero elsewhere,
and α is calculated such that the total transmitted power at
the massive BS is equal to γ. Therefore, α is the solution of
the following equation

K∑
k=1

Nk∑
i=1

(
1

α
− 1

σ2
k,i

)+

= γ. (39)

Now, when the analog channel feedback is used in practical
systems, the elements of the path gains matrix, Gk, is fed back
to the BS so that the BS can have Ğk. Then, the BS uses Ğk

to generate the estimated channel matrices, H̆k, and use them
in the calculation of the precoding matrices, V̆k, using the BD
procedure. Therefore, power allocation across the multiple data
streams is adopted at the massive BS as discussed earlier in
this section. The BS is this case computes the power allocation
diagonal matrix ∆̆k based on the singular values, Λ̆k, of the
effective channel, H̆kV̆k, of user k. Hence, the per-user rate
considering analog channel feedback and water filling across
the data streams is written as

RWF,k(∆k) = E log2

∣∣∣∣∣∣INk +

K∑
j=1

HkV̆j∆̆jV̆
H
j HH

k

∣∣∣∣∣∣−
E log2

∣∣∣∣∣∣INk +

K∑
j=1,j 6=k

HkV̆j∆̆jV̆
H
j HH

k

∣∣∣∣∣∣. (40)

VI. SIMULATION RESULTS

In this section, a simulation study is carried out to verify
the conclusions of this paper. The system parameters are set
as follows. The number of antennas at the BS is M = 128,
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Figure 1: Rate gap comparison between quantized and analog
channel feedback with downlink SNR= 10dB and γU = 5
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Figure 2: Per-user rate comparison under different schemes vs.
downlink SNR with µ = 0.3 and γU = 5

the number of users in the system is K = 8, the number
of antennas at each user is equal to the number of parallel
data streams transmitted to the user, i.e., Nk = N = 2.
The number of resolvable paths from the BS to the users is
Pk = P = 4. The path AoDs of the users are independent
and uniformly distributed in

[
− 1

2π,
1
2π
]
. The per-user rates

for the cases of ideal CSI, practical channel feedback, and
water-filling based analog channel feedback are computed
according to (6), (7), and (40), respectively. In the case of
quantized channel feedback, the subspace quantization is based
on random subspace codebook framework.

Fig. 1 compares the rate gap of the quantized feedback
scheme against the analog feedback scheme with and with-
out power allocation across the data streams. The number
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of feedback bits in case of quantized feedback is set as
B = µPN log2(1 + γU ). As shown in Fig. 1, and for a
constant uplink SNR of γU = 5, the rate gap of the quantized
feedback scheme decays exponentially, which is faster than
that of the analog feedback scheme, which decays inversely
as µ increases. This result is consistent with our conclusion
in Sec. IV-C. Fig. 1 also shows the impact of using power
allocation across the data streams on the rate gap of the analog
feedback scheme.

Fig. 2 compares the per-user rate of the ideal CSI, quantized
feedback and analog feedback schemes when µ = 0.3 and a
constant uplink SNR γU = 5. The graph shows that, under
these parameters, the subspace quantization feedback scheme
outperforms the analog feedback scheme over the whole SNR
range. However, when performing optimal power allocation
across the data streams, the analog feedback scheme outper-
forms the quantized scheme up to an SNR of = 6dB. Beyond
this point, the quantized feedback scheme achieves better
performance again as it provides a better approximation of
the actual CSI and the system noise becomes less significant.

VII. CONCLUSIONS

In this paper, we have quantified and compared two CSI
feedback schemes’ performance, namely, the quantized and
the analog channel feedback schemes for AoD based massive
MIMO systems with multiple antenna users. We derive rate
gap bounds for the two schemes in comparison to the system
with CSI feedback. The derived rate gap bounds of both
schemes show that the quantized feedback scheme’s rate gap
decays exponentially, while the rate gap of the analog feedback
scheme decays inversely as µ increases. Our results also show
that power allocation through water-filling can significantly
enhance the system performance. We have shown that the
analog feedback scheme with water-filling outperforms the
quantized feedback scheme at low SNRs. However, at higher
SNRs, the quantized feedback scheme can achieve better
performance.
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