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Abstract—In this paper, we present an intelligent reflective
surface (IRS)-assisted physical layer network coding (PNC)
system in a two-way relaying channel (TWRC). Specifically,
IRS is used to align the effective channels of the two received
superimposed signals at the relay, which allows canceling the
carrier phase offset (CPO) between the two received signals.
The IRS phase shifts are optimized to maximize the received
PNC signal amplitude while having a zero CPO constraint.
An efficient manifold optimization-based approach is proposed
to solve this problem, where the optimization is performed
on the complex circle manifold. Moreover, we improve the
performance of channel-coded IRS-assisted PNC by introducing
the weighted non-binary PNC (WN-PNC) scheme, where the
binary data are mapped to, and encoded over, Galois Fields
(GFs). We present two WN-PNC cases where the data is encoded
over GF(4) and GF(8), then modulated using quadrature phase
shift keying (QPSK) and 8-quadrature amplitude modulation
(8-QAM), respectively. We also design proper PNC mapping
functions for both cases, ensuring that no PNC ambiguity can
occur at the relay. Our simulation results show the efficacy of the
proposed manifold optimization-based approach and the error
performance improvement of the WN-PNC over the binary PNC
case.

I. INTRODUCTION

The research on physical layer network coding (PNC) has
attracted much attention in the wireless communication society
during the last two decades. This is because PNC can scale
up the network’s throughput, especially when multiple nodes
share information through intermediate relays [1]. On another
note, the intelligent reflective surfaces (IRS) technology have
been introduced in literature during the past few years, and
it has been shown to improve the performance of wireless
systems by controlling the wireless channel [2], [3]. In this
paper, we study the integration of IRS into a PNC system in
a two-way relaying channel (TWRC).

IRS has risen during the past few years as a prominent
technology for wireless systems [2]–[4]. An IRS panel is a
surface that has a large number of radio frequency (RF) passive
reflecting elements which can engineer the wireless channel.
The IRS reflecting elements can control the amplitudes and
phases of the incident signals before reflection to achieve
various design aims for wireless systems, like interference
suppression and signal strengthening. Therefore, IRS can be
regarded as a promising solution to improve the spectral and
energy efficiency of the wireless systems [5]. Hence, many
works in the literature have investigated the application of
IRS in many wireless communication systems. For example,

the application of IRS has been studied in the context of
multi-user wireless systems [6]–[9], non-orthogonal multiple
access (NOMA) networks [10]–[12], wireless information and
power transfer [13], [14], unmanned aerial vehicles (UAV)
communications [15], and physical layer security [16].

On the other hand, in the PNC literature, many works have
investigated and provided practical solutions to the carrier
phase offset (CPO) problem in the TWRC. The CPO problem
is defined as the phase difference between the two super-
imposed received signals at the relay in the TWRC due to
having different fading channels from the two end nodes to the
relay. The CPO problem becomes even more challenging in the
context of channel-coded PNC, where the two end nodes want
to exchange channel-coded information through the relay. In
this case, the relay has to decode network-coded information
from the received superimposed codewords while dealing with
the CPO. In [17], the CPO problem was studied for a channel
coded PNC in a TWRC, where the authors proposed a solution
to the CPO utilizing the symbols misalignment between the
two signals when decoding the network coded information. In
[18], a linear modulation and coding scheme was proposed
where linear combinations of the information symbols are
computed at the relay. The network coding coefficients were
chosen to approximate the fading coefficients of the channels.
The authors in [19] proposed a solution for the CPO in a
heterogeneous PNC scheme in a TWRC using an adaptive
mapping function at the relay. The mapping function adapts
according to the relative difference between the two fading
channels in the TWRC. The authors extended their design in
[20] to include channel coding in the heterogeneous PNC. In
[21], the authors utilized the difference between the channel
coefficients to adapt the PNC mapping function to decrease the
impact of the interference at the relay. In [22], the performance
of asynchronous PNC was analyzed by deriving the symbol
error rate (SER) of the system, taking into account both phase
and symbol mismatch. In [23], the authors considered the use
of binary frequency shift keying (BFSK) to reduce the effect
of the CPO.

In this paper, a simple design for an IRS-assisted PNC in a
TWRC is presented. More specifically, the IRS phase shifts are
optimized to cancel the CPO between the two superimposed
signals at the relay while maximizing the amplitude of the
received signals. This adjustment allows the IRS to align
the two received signals at the relay, simplifying the PNC
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Figure 1: IRS aided PNC in TWRC

mapping function design at the relay. The PNC mapping
function maps the superimposed signal to a network-coded
signal. To that end, an efficient manifold optimization-based
algorithm is proposed to find a solution for the IRS phase
shifts that solves the proposed PNC optimization problem.
Moreover, we design a repeat accumulate (RA) channel coded
IRS-assisted PNC and further enhance its performance by
introducing the weighted non-binary PNC (WN-PNC) scheme.
The WN-PNC is designed for the cases of quadrature phase
shift keying (QPSK) and 8-quadrature amplitude modulation
(8-QAM) modulation schemes, whereas the data is encoded
over the Galois field (GF) of sizes 4 and 8, respectively. The
WN-PNC mapping function for both cases is designed so that
no mapping ambiguity can occur at the relay. This work differs
from our previous work in [24] where we have considered
channel coded PNC over the Ring to extend to higher mod-
ulation orders. However, in this paper, we propose the WN-
PNC considering QPSK and 8-QAM, and our results show that
the proposed WN-PNC provides enhanced performance when
compared against the binary case with comparable decoding
complexities.

II. SYSTEM MODEL

We present an IRS-assisted PNC system in a TWRC as a
means of exchanging information between the two end nodes
via an intermediate relay node with the help of an IRS panel.
Fig. 1 shows the IRS-assisted PNC system model we adopt in
this work, where an IRS panel is placed to adjust the effective
end nodes’ uplink channels. The IRS has L reflectors, each
has a reflection coefficient of ejθi , where the ith reflector
adds a phase of θi to the incident signal before reflection.
Let us assume that the two end nodes in the system are node
A and node B, and they exchange information through the
relay node, NR.

We assume that the direct node-relay channels, vA for node
A and vB for node B, are Rayleigh fading channels, and
they are independent and identically distributed (i.i.d.). Strong
node-IRS and IRS-relay links are typically available because

the IRS panel is always put in a place where it can have a line
of sight (LoS) to the two end nodes and to the relay. Therefore,
the IRS-relay channel vector, g∈CL×1, can be modeled as
Rician fading as

g =

√
pl(dI,NR

)KINR

KINR
+ 1

gLoS +

√
pl(dI,NR

)

KINR
+ 1

gNLoS , (1)

where dI,NR
is the IRS-relay distance, KINR

denotes the
Rician factor of g, gLoS and gNLoS are the line-of-sight
(LoS) and non-LoS (NLoS) components, respectively. The
LoS component is deterministic, however, the elements of
gNLoS are i.i.d. complex normal, CN (0, 1), random variables.
The channel vectors from the two end nodes to the IRS are
hA and hB∈CL×1, and they can be expressed as

hm=

√
pl(dm,I)KmI

KmI + 1
hLoS
m +

√
pl(dm,I)

KmI + 1
hNLoS
m ,m∈{A,B},

(2)
where dm,I is the node-IRS distance, KmI is the Rician factor
of hm, hLoS

m and hNLoS
m are the LoS and NLoS components,

respectively. All the channels in the system experience a path
loss of pl, which is modeled as

pl(d) = η0

(
d

d0

)−α

, (3)

where α is the link path loss exponent, d is the transmitter-
receiver radio frequency (RF) link distance, and η0 is the path
loss at the unit distance d0 = 1 m.

Node A and node B exchange their messages through two
steps: the first one is the multiple access (MA) step, and the
second one is the broadcast (BC) step. During the MA step,
nodes A and B simultaneously send their source messages to
the relay. Hence, the relay receives a weighted sum of the two
source messages, where the weights are the effective channel
fading coefficients. Then, the relay, NR, uses an appropriate
mapping function to map the received weighted sum signal
to a network-coded symbol. After that, the relay broadcasts
the network-coded symbol to the two source nodes during the
BC step so each of them can extract the other node’s symbol
from it. In the binary case, for example, the relay can map the
received superimposed signal into the XOR of the two source
binary data symbols. Assuming that the two transmitted source
signals are xA and xB , the received superimposed signal at
NR can be written as

yR = (hT
AΘg+vA)

√
PAxA+(hT

BΘg+vB)
√

PBxB+n, (4)

where n is the complex Gaussian noise added at the relay
having zero mean and variance of σ2

n, and PA and PB

denote the transmit powers of node A and B, respectively.
The diagonal matrix, Θ, contains the reflection coefficients
of the IRS elements on its diagonal, i.e. Θ=diag(w), where
w=[ejθ1 , ejθ2 , . . . , ejθL ]T and θi∈[0, 2π[ denotes the phase
shift of the ith reflector of the IRS. In the next section, we
present an efficient algorithm to optimize the phase shifts
of the IRS in a way that maximizes the received signals’
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amplitudes at the relay while adhering to the constraint of
cancelling the CPO between the two superimposed signals.

III. DESIGN OF THE IRS PHASE SHIFTS FOR PNC

In this section, we devise an algorithm to optimize the IRS
reflection coefficients vector, w, which maximizes the received
signals’ amplitude at the relay while satisfying the PNC design
constraint. This constraint ensures canceling the CPO between
the two received signals, i.e., the two signals having equal
amplitudes and phases at the relay. Therefore, the optimization
problem is given as

max
wi

∣∣hT
AΘg + vA

∣∣2 (5a)

s.t. C(w)=
∣∣∣√PA(h

T
AΘg+vA)−

√
PB(h

T
BΘg+vB)

∣∣∣=0

(5b)
|wi|= 1, i = 1, 2, . . . , L, (5c)

where wi=ejθi is the reflection coefficient of the ith reflector
of the IRS.

The unit modulus constraints in (5c) form a smooth Rie-
mannian manifold in CL called the complex circle manifold.
Therefore, these constraints restrict the optimization vector, w,
and the solution of the problem (5) to be on the surface of the
complex circle manifold, which can be expressed as

SL={w=[w1, · · · , wL] ∈ CL : |w1|= . . .=|wL|=1}. (6)

Therefore, in the following, we devise a manifold
optimization-based technique to solve the IRS phase
shifts problem in (5).

To handle the PNC alignment constraint in (5b), we adopt
a standard method called the exact penalty method. Using this
method, a weighted penalty can be added to the cost function
using a penalty factor ρ to account for the constraint in (5b). If
the constraint is violated during the optimization process, the
weighted penalty term penalizes the objective function until
the constraint is satisfied. Using the exact penalty method,
our optimization problem becomes an unconstrained manifold
optimization problem, which can be given as

min
wi∈M

Q(w) = −
∣∣hT

AΘg + vA
∣∣2 + ρ C(w)2, (7)

where ρ > 0 is a penalty weight and M is the Riemannian
manifold.

By solving the optimization problem on the surface of the
manifold M, the unit modulus constraints in (5c) can be
satisfied. The method is called exact penalty because only a
bounded value of ρ is needed to satisfy the constraint in (5b).
By transforming the original problem into an unconstrained
manifold optimization problem, we can use gradient-based
manifold optimization techniques to solve (7).

As in Euclidean spaces, there are two principal steps in the
gradient-descent algorithm on Riemannian manifolds. The first
step calculates a descent direction to move into, and the second
step calculates the step size to be taken along that direction.
After repeating these two steps over multiple iterations, the
algorithm can converge to a locally optimal solution. The

descent direction on the manifold is called the Riemannian
gradient, and it can be calculated by projecting the Euclidean
gradient of the cost function at a given point on the manifold,
w, onto the tangent space at that point. The tangent space,
TwM, to a manifold, M, at a point, w, can be viewed as
the space of possible velocities for a particle moving on the
manifold through w, and it can be expressed as

TwM = {v ∈ CL : R(v ⊙w∗) = 0L}, (8)

where R(.) indicates the real-part of a complex vector, and
⊙ indicates the Hadamard entry-wise product of two vectors.
Using a projection operator, the Riemannian gradient can then
be calculated by projecting the Euclidean gradient onto the
tangent space. The projection operator, PTwM, at point w on
M is given by [25]

PTwM(v) = v −R(v ⊙w∗)⊙w. (9)

Hence, the Riemannian gradient of the cost function, Q, in (7)
at point w on M can be given as

∇MQ(w) = PTwM(∇Q(w))

= ∇Q(w)−R(∇Q(w)⊙w∗)⊙w, (10)

where ∇Q(w) is the Euclidean gradient at the point w.

Algorithm 1: Exact penalty method

1 Input: Initial point w0, initial penalty coefficient ρ0,
γ > 1, τ ≥ 0, minimum step size dmin.

2 for l = 0, 1, 2, . . . do
3 To attain wl+1, use any manifold optimization

solver to solve

min
w∈M

Q(w, ρl)

with a starting point at wl and stopping indicator
of

∥grad Q(w, ρl)∥ ≤ δ.

4 if dist(wl,wl+1) < dmin and C(wl+1) > τ then
5 Return wl+1;
6 end
7 if (k = 0 or C(wl+1) ≥ τ) then
8 ρl+1 = γρl
9 else

10 ρl+1 = ρl;
11 end
12 end

The steps of the exact penalty method which solves the
unconstrained problem Q in (7) using the penalty coefficient,
ρ, are illustrated in Algorithm 1. We use a common iterative
approach, presented in [26], to update the value of ρ in each
iteration till convergence. The value of ρ is set at a relatively
low initial value; then we keep increasing it in each iteration
if the PNC constraint (5b) is violated by being greater than a
tolerance factor τ , as in lines 7 and 8 in Algorithm 1. In this
case, ρ shall be increased to give more attention to satisfying
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the constraint. The parameter ρl is increased by multiplying
it with γ, a constant greater than one. The algorithm stops
when the distance between the solutions of two successive
iterations is below dmin. The trust region solver [25] in the
Manopt MATLAB tool [27] is used to solve the unconstrained
manifold optimization problem (7), in line 3, during each
iteration of the algorithm.

A. Complexity analysis

We then analyze the complexity of the proposed manifold
optimization-based method presented in Algorithm 1. The
complexity of Algorithm 1 is determined by the complexity
of solving the unconstrained manifold optimization problem
in line 3 in each iteration. The complexity of solving the
manifold optimization problem mainly depends on calculating
the Euclidean gradient of the penalized cost function, Q, in
(7) [28], which is given as O(L2). Therefore, the overall
complexity of Algorithm 1 can be written as O(TAlg1L

2),
where TAlg1 is the number of iterations of Algorithm 1.
Therefore, the proposed manifold optimization-based algo-
rithm has a quadratic polynomial complexity with the number
of IRS reflectors, L.

IV. CHANNEL CODED IRS-PNC WITH HIGH MODULATION
ORDERS

In this section, higher modulation orders and channel coding
are integrated into our IRS-assisted PNC system so it can
be applied in real wireless systems. The IRS aligns the two
effective channels of the two end nodes; this allows for
designing simple PNC mapping functions at the relay with
low decoding complexities. The received signal at the relay,
in this case, can be written as

yR = ΓxA + ΓxB + n, (11)

where Γ is the overall effective channel after solving (5).
We discuss an RA-channel coded PNC by designing the
PNC mapping function at the relay when QPSK and 8-QAM
modulation schemes are used at the two end nodes. The
mapping function is appropriately designed to resolve any
ambiguity in the decoded symbol at the relay. We further
improve the performance of the RA-channel coded PNC by
using weighted non-binary RA encoding over the Galois field
at both end nodes.

In the WN-PNC, the binary data at both end nodes is
mapped into the symbols of the GF. Then, the non-binary
symbols are encoded using the weighted non-binary repeat
accumulate (WNRA) codes discussed in [29] using the same
non-binary weights, (w1, w2, w3), shown in Fig. 4. The non-
binary data vectors are denoted by mA and mB , both of length
L, and their corresponding codewords are denoted by cA and
cB , both of length N , where the nth bit of a codeword is
denoted by cA,n or cB,n.

Fig. 4 shows the Tanner graph of the RA codes. In the
encoding operation, the factor graph is traversed from left to
right, given the values of the information nodes. The output
of the GF addition, ⊕, is cm,n=cm,n−1 ⊕ sm,n, where m ∈
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Figure 2: 8-QAM constellation
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Figure 3: PNC mapping function of the 8-QAM modulation scheme

{A,B}. The value sm,n is the nth symbol after the interleaver
of node m, and it equals the value of the kth input symbol
to the interleaver, i.e., sm,n = um,k. The interleaver in Fig. 4
determines how the index k is mapped to the index n. The RA
encoders of the two end nodes must use the same interleaver.

The output non-binary coded symbols are then modulated
by mapping them to complex constellation points xA and xB .
The decoding of the WN-PNC is based on the detection of
the GF-addition of the two codewords, cA ⊕ cB , from the
received superimposed signals at the relay. Therefore, the
constellation mapping must be chosen to avoid ambiguity
at the relay when detecting cA ⊕ cB from xA + xB . For
the QPSK case, the constellation mapping that does not
cause ambiguity can be 0→(−1, 1), 1→(1, 1), 2→(−1,−1)
and 3→(1,−1). Therefore, the resultant unambiguous PNC
mapping of xA + xB to cA,n ⊕ cB,n at the relay is
{(−2, 2), (2, 2), (−2,−2), (2,−2)}→0, {(0, 2), (0,−2)}→1,
{(2, 0), (−2, 0)}→2, (0, 0)→3, where the GF addition is given
in Table I. For the 8-QAM case, the constellation mapping at
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– 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Table I: GF(8) addition table
In

te
rle

av
er

 
Information node

Check node

Code node

Evidence node

Figure 4: Factor graph for decoding network-coded data packets

the nodes that ensures no ambiguity is shown in Fig. 2, while
the resultant unambiguous PNC mapping at the relay is shown
in Fig. 3. Please note that the QPSK and 8-QAM constellations
are scaled with a factor that ensures that the average power of
the symbols of the constellations is unity.

The distributive property of the Galois field multiplication
makes it feasible to decode the GF-addition of the two message
vectors, mA ⊕ mB , even after the multiplication with the
weights. By using the same weights at both end nodes, we
have

uA,k ⊕ uB,k = wimA,l ⊕ wimB,l = wi(mA,l ⊕mB,l). (12)

Hence, mA⊕mB can be decoded from uA⊕uB using belief
propagation (BP) over the factor graph in Fig. 4. By calculating
the probability mass function (PMF) of cA,n⊕cB,n given the
n-th received symbol yR,n, i.e. PcA,n⊕cB,n

(a) = Pr(cA,n ⊕
cB,n = a|yR,n)∀n, the relay can obtain mA ⊕mB using BP
as follows.

The decoding of mA⊕mB from cA,n⊕cB,n is done by
passing the input messages at the evidence nodes through the
factor graph in Fig. 4. The input messages at the evidence
nodes are the detected PMF vectors of cA,n⊕cB,n. Then, these
PMF vectors are iteratively passed between the code nodes and
the information nodes in an iterative process called the BP.
The edges that connect the information nodes with the check
nodes carry the PMFs of mA,l⊕mB,l before multiplication
by the weights. However, the segments that connect the code
nodes with the check nodes or the evidence nodes carry the
PMFs of cA,n⊕cB,n.

Initialization: The PMFs on all the edges are initialized as
a length-4 vector whose elements are 1/4 in the GF(4) case,
and a length-8 vector whose elements are 1/8 in the GF(8)
case.

Input of the Evidence Nodes: The PMF vectors of the
GF sum of the two code words symbols, cA,n⊕cB,n are the

input messages to the BP algorithm. These input messages
are passed from the evidence nodes. Let’s indicate the input
PMF vector at the nth evidence node by pn. Given yR,n, the
probability that cA,n⊕ cB,n = i which is the (i+1)th element
of pn can be calculated as

pn,i =
1

β

∑
x∈Xi

px exp

{
−|yR,n − Γx|2

2σ2

}
, (13)

where px is the prior probability of the point x, Xi is the
set of points that map to the symbol i in the GF, and β is a
normalization factor which ensures that 1

β

∑I
i=0 pn,i = 1, and

I is 3 or 7 for the GF(4) and GF(8) cases, respectively.
Message Updating at the Variable Nodes: The infor-

mation nodes and the code nodes are called variable nodes.
If the considered RA encoder has a repetition factor of 3,
then the variable nodes in Fig. 4 should be attached to three
distinct edges. Given that the two input messages on two
connected edges of a variable node are p and q, the output
updated message on the third edge is given by V AR(p,q).
By employing a similar probabilistic analysis as in [30], the
output message vector of the variable node can be given as

V AR(p,q) =
1

ζ
(p0q0, p1q1, · · · , pIqI), (14)

where ζ is a normalization factor which ensures that
1
ζ

∑I
i=0 piqi = 1.

Message Updating for the Check Nodes: As shown in Fig.
4, the check nodes are connected to three edges. The output
message vector of a check node is given by CHK(p,q),
where p and q are the input message vectors coming from
the remaining two connected edges. The output message of the
check node during the BP algorithm is calculated as follows.
For example, in the following, let us consider the GF(4) case.
Assuming that S=sA,n⊕sB,n, C̄ = cA,n−1⊕cB,n−1, and
C=cA,n⊕cB,n, the probability that the symbol C is equal to 0
given the two input messages p and q, knowing that C=S⊕C̄
and given the addition table in Table I, can be computed as

Pr(C = 0|C̄ ∼ p, S ∼ q)

=
∑3

i=0
Pr(C̄ = i)Pr(C = 0|C̄ = i, S ∼ q)

= Pr(C̄ = 0|p)Pr(S = 0|q)+Pr(C̄ = 1|p)Pr(S = 1|q)
+ Pr(C̄ = 2|p)Pr(S = 2|q)+Pr(C̄ = 3|p)Pr(S = 3|q)
= p0q0 + p1q1 + p2q2 + p3q3, (15)

where S∼q means that the discrete random variable S has a
PMF vector of q. Similarly, the probabilities of C taking other
values can be calculated to produce the check node’s output
PMF vector.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
IRS-assisted PNC system and show the effectiveness of the
proposed manifold optimization-based algorithm to optimize
the IRS reflectors. Moreover, the performance of the WN-PNC
discussed in Sec. IV is also evaluated and compared against the
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Figure 5: BER performance of the IRS-assisted PNC scenario

non-binary PNC without weights as well as the conventional
binary encoding cases. The performance of the WN-PNC is
provided for both QPSK and 8-QAM modulation schemes. In
all figures, we plot the bit error rate (BER) of the detected
network-coded signal at the relay.

The simulation parameters are provided in this paragraph,
following the model in [6]. The path loss at the reference
distance in (3) is η0 = 10−3. The node-relay links’ path loss
exponent, α, is set to 3.5, whereas the path loss exponent of the
node-IRS and IRS-relay links is set to 2.2. The Rician factors
in (1) and (2) are set as KINR

= KmI = 2.2. The noise
power σ2

n is assumed as −114 dBm. The node-IRS distances
are dA,I = 60 and dB,I = 60, whereas the IRS-relay distance
is dI,NR

= 30. We plot all the BER curves against PA, while
we assume that PB = PA.

In Fig. 5, we present the BER performance of the IRS-
assisted PNC scenario when optimizing the IRS phase shifts
using the proposed manifold optimization-based approach in
Algorithm 1. In this figure, we evaluate the performance
using the simple binary phase shift keying (BPSK) modulation
scheme, where the data is drawn from binary symbols over
GF(2). Maximum likelihood (ML) detection is used to detect
the network-coded signal at the relay, which is the XOR be-
tween the two binary source symbols. The performance of the
optimized IRS-phases system is compared against IRS-assisted
PNC system without manifold-based optimization, i.e., when
picking up any random feasible solution that satisfies the
PNC constraint in (5). Any feasible solution that satisfies (5)
will cancel the CPO between the two received superimposed
signals at the relay and align them in the PNC fashion, i.e.,
having equal amplitudes and phases. However, this random
feasible solution does not necessarily maximize the received
signals’ amplitude, Γopt=

√
PA(h

T
AΘoptg+vA), at the relay.

Therefore, Fig. 5 shows that the system’s performance with
optimization outperforms the performance without using the
proposed manifold optimization technique. The graph also
shows, and as expected, that as the number of IRS reflectors,
L, increases, the BER of the IRS assisted PNC system
decreases.

In the next two figures, we use the following simulation
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Figure 6: Performance comparison of WN-PNC over GF(4) against
conventional coding schemes using QPSK
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Figure 7: Performance comparison of WN-PNC over GF(8) against
conventional coding schemes using 8-QAM

parameters; the length of the uncoded binary data vector is
set to 2048, and the repetition factor of the channel encoder is
3. The error performance at every point is calculated by taking
the average over 10000 data packets that every node generates.
The relay can then decodes a network-coded data vector
from the received superimposed codewords. The number of
considered iterations of the BP decoding algorithm is set to
20. The number of IRS reflectors is L = 40. We use the
weights discussed in [29], where (w1, w2, w3), are (1, α, α2)
for both GF(4) and GF(8) cases. The value of α is any value
over the GF except 0 and 1.

Fig. 6 and Fig. 7 show the BER performance of the channel
coded WN-PNC system using QPSK and 8-QAM modulation
schemes, respectively. In Fig. 6, the binary data are mapped
to symbols in GF(4), encoded over GF(4) then modulated
using QPSK. Whereas, in Fig. 7, the binary data are mapped
to symbols in GF(8), encoded over GF(8) then modulated
using 8-QAM constellation provided in Fig. 2. In both figures,
we notice that the GF(4) or GF(8) encoding without weights
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provides worse performance than the binary encoding scheme.
In the binary encoding, the data are encoded over GF(2) then
the output binary bits are modulated normally to QPSK or 8-
QAM. However, the figures show that by using the weights,
the WN-PNC coding scheme outperforms both the binary
and the non-weighted coding schemes. This enhances the
performance of the channel coded PNC system. The three
channel-coded PNC schemes are also compared against the
uncoded PNC case using the same modulation scheme and
transmitted energy per bit to highlight the effect of channel
coding on the system’s performance.

VI. CONCLUSIONS

In this work, we showed how the IRS could enhance the
performance of the IRS-assisted PNC system in a TWRC. The
IRS can completely eliminate the CPO problem between the
two end nodes. Moreover, our simulation results show that
optimizing the IRS phase shifts using the proposed manifold-
based optimization algorithm can significantly enhance the
system’s BER performance. Finally, although the results show
that the encoding schemes over GF(4) and GF(8) result in
worse BER performance compared to the binary encoding over
GF(2), we showed, using simulations, that the proposed WN-
PNC scheme can enhance the system BER performance over
the binary encoding scheme by using some proper weights.
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