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Abstract—This article presents a novel approach for power-
constrained internet of things (IoT) networks that employ non-
orthogonal multiple access (NOMA) and is assisted by an
intelligent reflecting surface (IRS) for uplink transmissions. The
main objective of this work is to maximize the sum rate of power-
constrained IoT networks by jointly designing the IRS phase
shifts and users’ transmit power allocation. The proposed solu-
tion optimizes the power allocation and phase shifts alternatively.
We devise a novel approach to optimize the IRS phase shifts
that is based on manifold optimization techniques. Specifically,
the IRS phase shifts optimization problem is formulated and
solved over the complex circle manifold. Our results show that
the proposed method outperforms the widely used semi-definite
relaxation (SDR) method as higher sum rates with less power
consumption can be achieved.

I. INTRODUCTION

Energy efficiency is a key feature for the current and future
generations of wireless networks, i.e., 5G and beyond, that
enables the deployment of large-scale energy autonomous
networks (EANs) [1], [2]. Moreover, the increasing demands
on wireless sensor networks (WSNs), as an integral part of
the emerging internet-of-things (IoT) technology, have raised
the necessity of designing low energy consumption networks
since wireless sensors generally have limited power resources
[3], [4]. There is a wide range of applications for energy-
autonomous wireless sensor networks (EAWSNs), including
cellular networks in rural areas, e-farming, environmental
monitoring, etc. [5], [6].

Furthermore, with the tremendous growth in the number of
wireless devices connected to the cloud, such as smartphones,
laptops, ipads, IoT devices, etc., with stringent quality-of-
service (QoS) requirements, new telecommunication technolo-
gies and schemes have been developed to keep abreast of up-
to-date requirements. The intelligent reflective surfaces (IRS)
technology and non-orthogonal multiple access (NOMA)
scheme are two of the most popular and widely accepted
solutions in the literature for future wireless connectivity [7],
[8]. IRSs have been introduced in the literature to control the
wireless medium between transceivers by using a large number
of reflectors that can apply phase shifts to the incident waves
[9], [10]. In typical IRS-based wireless communications, the
applied phase shifts are designed such that reflected signals
add coherently at the receiver to improve the received signal-
to-noise ratio (SNR) [11]–[13] . On the other hand, the
spectral efficiency of wireless networks can be enhanced by
employing NOMA, where several user equipments (UEs) are

allowed to share the transmission medium simultaneously at
the expense of some additional receiver circuitry for successive
interference cancellation (SIC) implementation [14].

The integration between IRS technology and NOMA
scheme has been considered in [15]–[17] to enhance the
coverage and energy efficiency of the network downlink
transmissions. The authors in [15] aim at maximizing the
system energy efficiency by jointly optimizing the transmit
beamforming at the base-station (BS) and the beamforming
matrix at the IRS panel, where the optimization problem has
been solved using alternating optimization (AO) technique
with semi-definite relaxation (SDR). In [16], the beamforming
vectors at the BS and the IRS phase shift matrix have been
optimized to minimize the total transmission power where
SDR and quadratic transform are exploited. The performance
of multi-antenna IRS-NOMA networks is analyzed in [17]
for both continuous and discrete IRS phase shifts scenarios.
Moreover, the IRS-NOMA integration for uplink wireless
communications is considered in [18]–[20]. The sum rate max-
imization for uplink IRS-NOMA is introduced in [18], where
a joint users’ power control mechanism and IRS beamforming
problem is formulated and sub-optimally solved with the use
of AO and SDR. In [19], IRS-NOMA for wireless power
communications network (WPCN) is considered. Analysis for
the outage probability of uplink IRS-NOMA is performed in
[20].

As can be concluded from the discussions above, the syn-
ergy between IRS and NOMA solutions has merit for design-
ing energy-efficient IoT networks. To the best of the authors’
knowledge, the problem of maximizing the sum rate of IRS-
NOMA for uplink transmissions using manifold optimization
techniques has not been considered in the literature. Therefore,
this paper provides such an approach and shows that manifold-
based optimization provides superior performance compared
to the widely adopted SDR [21]–[23]. Moreover, a compari-
son between IRS-NOMA and IRS-orthogonal multiple access
(OMA) in terms of the achievable sum rate for a given power
budget is provided. The optimal phase shifts at the IRS in the
case of IRS-OMA are applied, whereas a suboptimal solution
for IRS-NOMA is employed using AO supported by manifold
optimization since the optimal solution is not tractable. The
simulation results demonstrate that the proposed manifold
optimization-based algorithm provides superior performance
in the achievable sum rate compared to the conventional SDR
technique. Additionally, the results reveal that IRS-NOMA can
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Figure 1: IRS-assisted NOMA uplink system model

achieve higher sum rates than that of the IRS-OMA scheme
when the proposed manifold optimization-based algorithm is
used.

II. SYSTEM MODEL

An IRS-assisted uplink NOMA system is considered in
Fig. 1 where K single antenna users send data to the base
station (BS) with the assistance of an IRS panel. The IRS
panel has L reflecting elements where the ith element can
adjust the incident signal by adding a phase shift of θi upon
reflection. The direct channels between the users and the BS,
vk, are considered as independent and identically distributed
(i.i.d.) Rayleigh fading channels without line-of-sight (LoS) as
blockages may exist between the BS and the users.

The channel vectors for IRS-BS and the kth UE-IRS paths
are, respectively, denoted by g ∈ CL×1 and hk. The IRS panel
is typically placed in the area such that a strong LoS to the
users and BS is obtained. Hence, a Rician channel model is
considered in this paper to capture the fading coefficients of g
and hk. Thus, the channel vector g or hk can be represented
as

q =

√
PL(dq)Kq

Kq + 1
qLoS +

√
PL(dq)

Kq + 1
qNLoS , (1)

where q ∈ {g,hk}, Kq is the Rician factor of the corre-
sponding channel vector, dg is the distance from IRS to BS,
dhk

is the distance between the kth user and the IRS, qLoS

and qNLoS are, respectively, the LoS and non-LoS (NLoS)
channel components. Since a Rician channel is considered,
the LoS component is deterministic whereas the elements of
qNLoS are i.i.d. complex normal random variables CN (0, 1).
The path loss factor, PL, is given by

PL(d) = η0

(
d

d0

)−α

, (2)

where η0 is the path loss at a reference distance of d0 = 1 m,
d represents the distance between transceivers, and α is the
path loss exponent.

Since NOMA transmission protocol is employed, K simul-
taneous signals are transmitted by the K users; hence, the

superimposed received signal at BS in the uplink scenario can
be expressed as

y =

K∑
k=1

(gTΘhk + vk)
√
pksk + n, (3)

where sk is the data symbol transmitted by the kth user and
picked from a normalized constellation, i.e., E[|sk|2] = 1, pk
is the transmitted power, and n is the complex additive white
Gaussian noise (AWGN) at the BS, CN (0, σ2

n) . Θ is an L×L
diagonal matrix, i.e., Θ=diag{w}, whose diagonal elements
are the reflection coefficients of the IRS panel elements
with w=[ejθ1 , . . . , ejθL ]T . The angle θi∈[0, 2π) represents the
phase shift applied by the ith reflecting element.

In uplink NOMA systems, BS performs SIC to decode the
K users’ signals in a sequential manner. For efficient SIC,
ordering the users according to their effective channel gains
is required at the BS. Accordingly, the users with stronger
channel gains are decoded first, treating the other interfering
signals with weaker channel gains as noise. In the case of
IRS based NOMA, the equivalent channel of the kth user is
gTΘhk+vk, which indicates that the channel strength depends
on Θ. Therefore, in this paper, the users are ordered according
to the maximum achievable effective channel [24]. For exam-
ple, the maximum achievable effective channel gain for the
kth user can be evaluated assuming that the IRS phases are
optimized such that the channel gain of this user is maximized.
In this scenario, the IRS phases should be designed to align
the individual channels with the phase of the direct link vk,
i.e., θi=θvk−θgi−θhki

. Therefore, the maximum achievable
channel gain for user k is

∑L
i=1|gi||hki|+|vk|, which is the

value we use to order the users in the network. Without loss of
generality, the users are assumed to be ordered in descending
order as

L∑
i=1

|gi||h1i|+|v1|≥ . . . ≥
L∑

i=1

|gi||hKi|+|vK |. (4)

Assuming perfect SIC is applied at the BS, the decoding
signal-to-interference-plus-noise-ratio (SINR) of the kth user
can be expressed as

γk =
pk
∣∣gTΘhk+vk

∣∣2∑K
j=k+1 pj |gTΘhj+vj |2 + σ2

n

, (5)

where
∑K

j=k+1 pj
∣∣gTΘhj+vj

∣∣2 = 0 when k = K, i.e., the
Kth user does not suffer any sort of interference assuming that
the previous K − 1 signals have been successfully decoded.
Consequently, the corresponding achievable rate of the kth
user can be expressed as

Rk = log2 (1 + γk) , ∀k. (6)

III. PROBLEM FORMULATION AND THE PROPOSED
SOLUTION

In this section, we aim to maximize the sum throughput
of the IRS-assisted uplink NOMA system. For applications
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with limited power radiation or in systems where the nodes
are portable and have limited batteries, each user node has a
maximum transmit power constraint that cannot be exceeded.
On the other hand, the system’s throughput is considered
a key metric in such applications, and there are quality-
of-service (QoS) constraints that must be met. Therefore,
in this work, we study the throughput maximization of the
proposed system model while having power constraints for
battery-limited users. This is done by optimizing the passive
beamforming coefficients at the IRS and the transmit powers
of the users to maximize the system’s sum rate while having
minimum rate constraints for the users to achieve fairness
among them.

The sum rate of the uplink NOMA system can be re-
formulated as

Rtot=

K∑
k=1

log2 (1+γk)= log2

(
1+

∑K
k=1 pk

∣∣gTΘhk+vk
∣∣2

σ2
n

)
,

(7)
where the last identity holds because the terms inside the log2
function form a telescoping product. Since the log function
is monotonically increasing, maximizing it is equivalent to
maximizing the term inside. Hence, the considered sum-rate
maximization problem can be formulated as

max
p,Θ

K∑
k=1

pk
∣∣gTΘhk+vk

∣∣2 (8a)

s.t. pk ≤ pmax
k (8b)

log2

(
1 +

pk
∣∣gTΘhk+vk

∣∣2∑K
j=k+1 pj |gTΘhj+vj |2 + σ2

n

)
≥Rmin

k ,

(8c)
k = 1, 2, . . . ,K,

|wi|= 1, i = 1, 2, . . . , L, (8d)

where wi=ejθi is the (i, i) entry of Θ, pmax
k is the maximum

transmit power allowed at user k, and Rmin
k is the minimum

required rate. Problem (8) is non-convex since its optimization
variables, pk and wi, are multiplied by each others. Since pk’s
and wi’s are coupled together in (8), the power allocation and
the IRS coefficients can be optimized alternatively using an
alternating optimization technique as follows.

A. Power allocation at the users

In each iteration, for a given value of Θ, the power
allocation problem in p reduces to

max
p

K∑
k=1

pk
∣∣gTΘhk+vk

∣∣2 (9a)

s.t. pk ≤ pmax
k (9b)

pk
∣∣gTΘhk+vk

∣∣2 − (2R
min
k − 1)

×

 K∑
j=k+1

pj
∣∣gTΘhj+vj

∣∣2 +σ2
n

 ≥ 0, ∀k.

(9c)

Clearly, the objective function in (9a) is linear in p, and the
constraints in (9b) and (9c) are affine inequalities. Therefore,
the optimization problem in (9) is a linear program in p, which
can be easily solved using standard optimization tools.

B. Optimizing the IRS phases, Θ, using manifold optimization

In this subsection, an efficient manifold optimization-based
algorithm is proposed to optimize the IRS passive beamform-
ing vector, w, given p. The optimization problem in w can
be given as

max
w

K∑
k=1

pk
∣∣dT

kw+vk
∣∣2 (10a)

s.t. Ck(w) = pk
∣∣dT

kw+vk
∣∣2 − (2R

min
k − 1)

×

 K∑
j=k+1

pj
∣∣dT

kw+vj
∣∣2 + σ2

n

 ≥ 0, (10b)

k = 1, 2, . . . ,K,

|wi|= 1, i = 1, 2, . . . , L, (10c)

where w is a vector that contains the diagonal elements of Θ,
and the vector dk=hk ⊙ g is the Hadamard product of the
two vectors hk and g. The unit-modulus constraints on the
elements of the optimization vector, w, restrict the feasible set
of the problem to lie on the surface of a smooth Riemannian
manifold contained in CL. Specifically, each element, wi, of
the optimization vector always lies on a continuous surface
called the complex circle manifold, which is a smooth Rie-
mannian sub-manifold of C, and it is defined as

S = {wi ∈ C : |wi|= 1}. (11)

Since the optimization vector, w, in (10) contains L optimiza-
tion variables, then the feasible set of (10) lies on the Cartesian
product of L complex circles. This Cartesian product is also a
smooth Riemannian sub-manifold of CL called L-dimensional
complex circle manifold, and it is defined as

SL ≜ S1× . . .×SL = {w = [w1, · · · , wL]
T ∈ CL : |wi|= 1}.

(12)
In the following, we propose how to tackle the minimum-

rate constraints in (10b). By incorporating these constraints
into the objective function in (10a) as penalty terms, the
resulting unconstrained problem can be solved using efficient
manifold optimization techniques. This approach is called the
exact penalty method [25]. For each constraint, a weighted
penalty term is added to the objective function in (10a). These
penalty terms largely penalize the objective function if the
corresponding constraints are violated. Therefore, the resultant
unconstrained version of problem (10) over the L-dimensional
complex circle manifold is given as

max
w∈M

K∑
k=1

pk
∣∣dT

kw+vk
∣∣2 − ρ

(
K∑

k=1

max{0,−Ck(w)}

)
,

(13)
where ρ > 0 is a penalty weight, and M is the L-dimensional
complex circle manifold. By solving (13) over the manifold
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M, the unit modulus constraints in (10c) are automatically
satisfied.

The max functions in the unconstrained problem in (13)
cause the cost function not to be smooth nor differentiable.
Hence, a smooth and differentiable approximation of the max
function needs to be used. The linear-quadratic loss function in
[26] can be utilized to approximate the max function using a
smoothing parameter u > 0, as max{0, x} ≈ P(x, u), where
P(x, u) is given by

P(x, u) =


0 x ≤ 0
x2

2u 0 ≤ x ≤ u

x− u
2 x ≥ u,

(14)

Therefore, a smooth and differentiable version of (13) can be
expressed as

maxw∈M Q(w)=
K∑

k=1

pk
∣∣dT

kw+vk
∣∣2 +ρ

(
K∑

k=1

P(−Ck(w), u)

)
.

(15)
Now, gradient-based manifold optimization algorithms can be
utilized to solve (15) over the manifold M.

Similar to Euclidean spaces, gradient-descent optimization
on Riemannian manifolds has two main steps. The first step
is to find the steepest descent direction on the manifold, and
the second step is to compute a step size along this direction.
Repeating these two steps in each iteration allows the algo-
rithm to converge to a local minimum point. At this point,
the steepest descent direction at any point on the manifold
is the Riemannian gradient. The Riemannian gradient at a
point, w, is the projection of the Euclidean gradient onto the
tangent space, TwM, at that point. The tangent space at a
point, w, on a differentiable manifold, M, is defined as the
vector space that contains all the possible directions in which
one can tangentially pass through w. The tangent space at w
is given as

TwM = {v ∈ CL : R(v ⊙w∗) = 0L}, (16)

where R(.) denotes the element-wise real-part of the complex
vector, and ⊙ is the Hadamard product of two vectors. The
orthogonal projection operator of a vector v onto the tangent
space, TwM, at point w on the manifold is given by [25]

PTwM(v) = v −R(v ⊙w∗)⊙w. (17)

Therefore, the Riemannian gradient of the smooth differen-
tiable function Q in (15) can be expressed as

∇MQ(w) = PTwM(∇Q(w))

= ∇Q(w)−R(∇Q(w)⊙w∗)⊙w, (18)

where ∇Q(w) is the Euclidean gradient at the point w. In
the following, we derive the Euclidean gradient of Q; the
Euclidean gradient is given by

∇Q(w) =

[
∂Q

∂w1

∂Q

∂w2
· · · ∂Q

∂wL

]T
, (19)

where ∂Q/∂wi=∂Q/∂R(wi) + j∂Q/∂I(wi), and I(.) de-
notes the imaginary part of a complex number. The partial
derivative w.r.t. wi can be calculated as

∂Q

∂wi
=

∂f

∂wi
+ ρ

K∑
k=1

∂

∂wi
P(−Ck(w), u), (20)

where f is the first term of the objective function Q in (15).
The partial derivative of f w.r.t. wi can be derived as

∂f

∂wi
=

∂f

∂R(wi)
+ j

∂f

∂I(wi)

=

K∑
k=1

pk

(
2R(dT

kΘ)(aki−jbki) + 2I(dT
kΘ)(bki+jaki)

)
,

(21)

where aki=R(hkigi), bki=I(hkigi). The partial derivative,
∂P(−Ck(Θ),u)

∂wi
, is calculated as

∂P(−Ck(Θ), u)

∂wi
=


0 −Ck(Θ, u) ≤ 0
Ck(Θ)

u C ′
ki(Θ) 0 ≤ −Ck(Θ, u) ≤ u

−C ′
ki(Θ) −Ck(Θ, u) ≥ u,

(22)
where C ′

ki(Θ) is derived as

C ′
ki(Θ) =

∂Ck(Θ)

∂R(wi)
+ j

∂Ck(Θ)

∂I(wi)

= pk

(
2R(dT

kΘ)(aki−jbki) + 2I(dT
kΘ)(bki+jaki)

)
− (2R

min
k − 1)

{ K∑
l=k+1

pl

(
2R(dT

kΘ)(ali−jbli)

+ 2I(dT
kΘ)(bli+jali)

)}
. (23)

Then, by substituting (21) and (22) in (20), we obtain the
Euclidean gradient, which is required to calculate the Rieman-
nian gradient in (18) for our algorithm. Algorithm 1 shows
the procedures of solving the penalized manifold optimization
problem in (15) and how the penalty coefficient ρ and the
smoothing parameter u are properly chosen iteratively.

The behavior of Algorithm 1 is explained here by em-
phasizing how the parameters ρ and u are updated in each
iteration. The optimum points of the penalized problem in (15)
coincide with the optimum points of the original problem in
(10) when ρ is above a certain threshold [25]. An iterative
approach in [27] is utilized in Algorithm 1 to find ρ since
the threshold is usually unknown. Algorithm 1 starts with a
small initial value of ρ0. Afterwards, ρ is increased in each
iteration by multiplying it by βρ>1 if the constraints in (10b)
are violated as shown in lines 8 and 9 in Algorithm 1. The
parameter τ is a tolerance factor which is a small positive
number.

Moreover, Algorithm 1 starts with an initial smoothing
parameter u0, then its value is decreased in each iteration by
the multiplication by the fraction βu till it reaches a minimum
value umin. This is done to improve the accuracy of the
approximation function in (22) while avoiding any numerical
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Algorithm 1: Exact penalty method via smoothing

1 Input: Starting point w0, starting penalty coefficient
ρ0, starting smoothing accuracy u0, minimum
smoothing accuracy umin, constants βu ∈ (0, 1),
βρ > 1, τ ≥ 0, minimum step length dmin.

2 for l = 0, 1, 2, . . . do
3 To obtain wl+1, choose any sub-solver to

approximately solve

min
w∈M

Q(w, ρl, ul)

with warm-start at wl and stopping criterion

∥grad Q(w, ρl, ul)∥ ≤ δ.

4 if
(dist(wl,wl+1) < dmin or ul ≤ umin) and Ck(wl+1) <
τ then

5 Return wl+1;
6 end
7 ul+1 = max{umin, βuul};
8 if (l = 0 or − Ck(wl+1) ≥ τ) then
9 ρl+1 = βρρl

10 else
11 ρl+1 = ρl;
12 end
13 end

inaccuracies that might arise when the smoothing parameter is
too small. The manifold optimization sub-problem in line 3 is
solved in each iteration using the Manopt MATLAB toolbox
[28].

IV. COMPARISON WITH OPTIMIZED IRS-ASSISTED OMA
In this section, we discuss the baseline IRS-assisted up-

link OMA scenario to compare against NOMA. An optimal
solution is derived that maximizes the average sum rate of
the OMA users. Unlike the NOMA scheme, in the IRS-
assisted OMA, each user transmits its data separately within its
allocated time fraction, αk, while other users remain idle. This
time allocation for the users, αk’s, is optimized to maximize
the sum rate of the users. Since the objective is to maximize the
sum rate, each user must transmit using its maximum power,
pmax
k , during its allocated time to maximize its rate, hence,

maximizing the sum rate. Therefore, the optimization problem
can be expressed as

max
αk,Θk

K∑
k=1

αk log2

(
1 +

pmax
k |gTΘkhk+vk|2

σ2
n

)
(24a)

s.t. αk log2

(
1 +

pmax
k |gTΘkhk+vk|2

σ2
n

)
≥ Rmin

k , ∀k,

(24b)∑K

k=1
αk = 1. (24c)

Since in OMA each user transmits its data separately within its
allocated time, the optimization of the passive beamforming
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Figure 2: Sum-rate vs. number of reflectors L, with, (a) fixed
locations and (b) random locations

at the IRS can be performed separately for each user. The
IRS phase shifts are chosen so that all the elements of the
cascaded user-IRS-BS channel, hkiwigi∀i, are aligned to have
the same phase, which is the phase of the direct channel vk,
i.e., θi=θvk−θgi−θhki

. This way, each user can maximize its
effective channel gain, which maximizes the sum rate. By
substituting the values of Θk in (24) and solving the linear
program in αk, we can readily get the optimal OMA time
allocation for each user.

V. SIMULATION RESULTS

In this section, we provide extensive simulation results to
validate the proposed manifold optimization-based algorithm
for IRS-assisted uplink NOMA system. The results of the pro-
posed algorithm are compared against the results of the SDR-
based optimization as a benchmark because SDR is widely
used in the IRS optimization literature. Additionally, the IRS-
assisted NOMA system is compared against the IRS-assisted
OMA baseline to demonstrate the superiority of NOMA over
OMA in the considered simulation scenarios.

The following are the simulation parameters used [29]. The
path loss at the reference distance in (2) is set to be η0 = 10−3,
and the path loss exponents for the direct links (users to BS),
IRS to users links and BS to IRS link are assumed in this
simulation setup to be αBU = 5.5, αIU = 2.2 and αBI = 2.2,
respectively. The noise power σ2

n is set to be −114 dBm, and
the Rician factor of the channels in (1) is set as Kq = 2.2.
The number of users is set as K = 3, whereas the maximum
transmission power allowed at each user is 20 mW. All the
simulation results are averaged over 103 trials.

Fig. 2 shows the sum rate performance for different sce-
narios versus the number of IRS reflecting elements, L. In
Fig. 2 (a), the locations of the IRS and the users are assumed
static where the IRS-users distances are set to be {10, 40, 100}
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m, the BS-IRS distance is 25 m, and the BS-users distances
are set to be {30, 80, 200} m, respectively. Whereas in Fig.
2 (b), the BS-IRS and the IRS-users distances are randomly,
uniformly-generated within the interval between 50 m and 100
m. Then, in each trial, the users are ordered according to their
effective channel strength as in (4), and the performance is
averaged over all trials.

The figure shows that the performance of the proposed
manifold optimization algorithm is superior to the SDR-based
solution, which is widely used in the literature. The figure also
reveals that the manifold optimization based NOMA outper-
forms both optimized and equal-time (i.e., αk = 1/K) OMA
schemes. This is expected since there are large differences
between the users’ distances to the IRS which is the NOMA-
favorable situation. However, the graph shows that the NOMA-
SDR can only beat the equal-time OMA, but results in inferior
performance compared to the optimized OMA scenario. This
observation signifies the importance of the proposed manifold
optimization technique to achieve the IRS-NOMA expected
gains, especially, in the NOMA favorable scenarios.

VI. CONCLUSIONS

This paper proposes an efficient manifold-based optimiza-
tion technique for the passive beamforming problem at the IRS
in the context of uplink NOMA transmission. The proposed
algorithm significantly outperforms the SDR-based optimiza-
tion technique. Simulation results show that the SDR-based
technique cannot outperform the optimized OMA scheme in
the simulated scenarios. This is because SDR is not well-suited
to tune the IRS phases to achieve the full gains of IRS-NOMA
scheme. However, the proposed IRS-NOMA manifold-based
optimization technique can reap the gains of the IRS-NOMA
scheme and show its superiority in the scenarios where IRS-
NOMA is expected to do better than the IRS-OMA schemes.
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