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Abstract—In this paper, we consider the problem of energy
optimization in mobile networks by enabling the MIMO feature
only when necessary. Enabling MIMO features at the base
station increases energy consumption unnecessarily under many
operating conditions. In this study, we employ machine learning-
based approaches to decide on whether a SISO scheme can
achieve the required Quality of Experience (QoE). If SISO can
satisfy the target QoE, the base-station can decide to switch
the MIMO feature off which can result in considerable energy
savings. We consider two different machine learning approaches,
namely, multi-layer perceptron (MLP) and recurrent neural
networks (RNNs), to learn the SISO features from realistic
mobile network data. The trained models are tested against the
data obtained from MIMO cells in which the MIMO feature
is disabled. Our results show the effectiveness of our proposed
approach which presents a real-time, automated approach for
MIMO enabling decisions.

Index Terms—Energy optimization, mobile networks, SISO,
MIMO, Machine Learning

I. INTRODUCTION

Energy optimization has become a very important topic in
dealing with practical communications and networking prob-
lems [1], [2]. This is because of the raised awareness all around
the globe of the importance of having energy-conserving,
green, and sustainable communication systems. The mobile
communications technology, back in 2007, had a share of 2%
in global carbon emissions and this is expected to double by
2020 [3]. This has drawn the researchers’ attention to work
on reducing the energy consumption of mobile networks. The
component with the greatest share of energy consumption
in mobile networks is the Base-station (or eNodeB in LTE
standards) with a share greater than 50% [4]. Therefore, this
work focuses on reducing energy consumption at the eNodeB
in mobile networks.

In 4G networks, one of the most energy consuming features
is the use of Multiple Input Multiple Output (MIMO) scheme.
Unlike the Single Input Single Output (SISO) scheme, the
main idea behind MIMO is to use multiple antennas at the
transmitter and/or the receiver simultaneously. This allows for
higher throughput and guarantees faster downloads and higher
spectral efficiency [5].

Despite the fact that MIMO has many advantages, it con-
sumes a large amount of energy that might not be always
necessary. If a certain level of Quality of Experience (QoE) is
achieved by SISO, a lot of energy can be saved by turning off

the MIMO scheme at the eNodeB. Currently, mobile operators
do this manually based on some user-defined schedules. An
automated method to turn on/off the MIMO capability, based
on the network performance, is certainly needed to reduce the
amount of used energy.

To clarify how controlling MIMO can be effective to
save energy, Vodafone Egypt provided information about the
average energy consumption before and after turning off
MIMO. For the MIMO sites, from our test dataset that will
be presented later, turning off MIMO can cause energy saving
that ranges from 2.5% to 8.6% of the total site energy (an
average of 5.5% energy saving) resulting from only controlling
the radio unit of the base-station. This variation of the energy
savings is because of the fact that sites lie in different locations
and are subject to different conditions, therefore, the total
consumed energy is affected by other conditions other than
the radio unit.

The main objective of this study is to use Machine Learning,
specifically Neural Networks (NN), to learn some features of
the network and decide whether SISO is sufficient to achieve
a satisfactory level of QoE. Based on this, the mobile operator
can decide whether to enable the MIMO capability.

NNs have been gaining a lot of interest recently in the
wireless communications literature [6], [7]. NNs have the
ability to learn the features of a certain system even if it has
no model to represent it. By subjecting the NN to the data
drawn from the system, it will be able to extract the common
features and learn the performance of the system.

The main contribution of this work is to use two types
of NNs: 1) Fully Connected NN (also called Multi-Layer
Perceptron (MLP)) to learn the features of the SISO scheme
2) Recurrent NN to track any trends in the data history.
Both machines are trained using historical data drawn from
realistic SISO cells1. This data includes a number of network
features recorded around the clock. When the training phase is
complete, the machine is subjected to some cell features of a
MIMO site and it emulates the performance of SISO scheme
to decide whether SISO is able to achieve a satisfactory
QoE. To make this decision, the average DownLink (DL) user
throughput is predicted and monitored as a measure of QoE.

1All the data used in this paper are provided by one of the mobile operators
in Egypt.



If the machine decides that SISO is enough, then MIMO can
be turned off to save energy. Otherwise, the MIMO is kept on
to achieve an acceptable QoE performance.

The remainder of the paper is organized as follows. A brief
literature survey is presented in Section II. A background is
presented in Section III. The proposed approach is explained
in Section IV. Performance evaluation is presented in Section
V. Finally, the study is concluded in Section VI.

II. LITERATURE REVIEW

Reducing the carbon footprint of mobile networks has been
of interest in the literature recently. For example, [8] discusses
the possibility of powering mobile networks with green energy.
It presents an overview of the design and challenges of green
energy enabled mobile networks.

The authors in [9], [10] and [11] discuss possible techniques
to reduce the power consumption in base stations (BSs),
since it is the entity with the highest power consumption
in the whole mobile network [4]. They focus on optimizing
air conditioning power consumption and minimizing feeder
losses.

Exploitation of machine Learning (ML) techniques has been
of interest in many research works in cellular networks. In [6],
the authors investigate the possible use cases of machine learn-
ing in future cellular networks. They review the basic concepts
of machine learning and propose their use in 5G networks,
including cognitive radios, massive MIMOs, femto/small cells,
heterogeneous networks, smart grid, energy harvesting and
device-to-device communications. On the other hand, in [12],
the authors are interested in cache content optimization in
small base stations based on learning algorithms.

Using ML for energy saving in base stations has been inves-
tigated in the literature as well. In [13], the authors present a
Reinforcement Learning (RL) approach for resource allocation
in wireless networks. The presented algorithm learns the utility
of performing various tasks over time and uses the application
constraints for task management by optimizing energy usage
and network lifetime. From another perspective, the authors
in [14] adopt machine learning in energy harvesting. They
propose a strategy learning algorithm that exploits the expected
energy and adapts spectrum selection strategies to maximize
the network’s performance. The learning algorithm addresses
how multiple users discover available channels and harvest
energy over the network.

The novelty of our proposed approach lies in focusing on
the energy optimization of the Radio part of the BS and
not air conditioning or feeder losses. It targets the power
amplifiers which are responsible for 65% of the total BS
energy consumption [15]. Additionally, and to the best of our
knowledge, this is the first work to address machine learning as
means for the enabling decision of the MIMO scheme(s) on the
basis of energy saving purposes. The current practice in mobile
networks is to have some user-defined schedules or some other
“experience-based” manual approach. These practices suffer
from the fact that they are not real-time and that they are
human-driven rather than data-driven. Our approach allows for

real-time data-driven seamless operation (i.e. it learns features
and their relationships, which is not the case in the human-
driven approaches).

III. TECHNICAL BACKGROUND

The Machine Learning (ML) mechanism utilized in this
work is Neural Networks (NN). In particular, the Multi-Layer
Perceptron (MLP) and the Recurrent NNs (RNNs) are adopted.

A. Multi-Layer Perceptron (MLP)

Fig. 1: An example of a simple multi-layer perceptron

MLP is a type of feed-forward artificial NN [16]. As shown
in Fig. 1, an MLP consists of at least three layers of nodes: an
input layer, a hidden layer(s) and an output layer. Each node is
a neuron that uses a nonlinear activation function. MLP utilizes
a supervised learning technique called back-propagation for
training [17].

Generally, the output of the neural network can be repre-
sented as:

y = hθ(x), (1)

where x = [x1 x2 · · · xn]T is the input vector, hθ is the
full forward propagation function and θ is the set of weights
and biases to be learned by the network during the training
phase. The training phase is done by setting the output to be
the target values provided by the training data. Therefore, for
a certain hθ, the only unknown in the equation is θ.

The steps of the learning process can be summarized as
follows:

1) Initialize weights and biases (usually random).
2) Use the feed-forward direction (from input to output) to

calculate the output.
3) Calculate the error function (a measure of the difference

between the actual output and the target output). This
error is a function of all the contributing errors from all
connected neurons.

4) Use the error function, in the backward direction, to
update the weights and biases using the equation:

∆θi = −α ∗ δE
δθi

, (2)



where ∆θi is the update of the ith weight/bias, α is
the learning rate and E is the cumulative error function
from all the previous contributing layers.

In this work, the error function that we use is the Mean
Absolute Error (MAE) as will be justified later after presenting
our system model and problem description.

B. Recurrent Neural Network (RNN)

Fig. 2: An example of a simple Recurrent Neural Network

Recurrent Neural Networks (RNNs), as shown in Fig. 2,
are distinguished from feed-forward networks by a feedback
connection to their past decisions, taking their own outputs
moment after moment as inputs. In other words, RNNs have
memory. Adding memory to neural networks allows to track
the information in the sequence itself, e.g. time correlations,
trends, etc.

Generally, the output of an RNN can be given as:

yt = f(Wyh · ht), (3)

where yt is the output at time t, f is the activation function of
the output layer, Wyh is the set of weights and biases between
the hidden layer and the output layer and ht is the hidden layer
output. This part is not different from the feed-forward NN.
However the output of the hidden layer can be given as:

ht = g(Whx · xt +Whh · ht−1), (4)

where ht is the output of the hidden layer at time t, g is
the activation function of the hidden layer, Whx is the set of
weights and biases between the input layer and the hidden
layer, xt is the input at time t, Whh is the set of weights in
the feedback loop of the hidden layer and ht−1 is the output
of the hidden layer at time t− 1.

The training phase is done in a similar way to the feed-
forward networks. However, the calculation of the cumulative
error and its gradient is done in a different way. Details for
the interested reader can be found in [18].

Next, the details of how an MLP and an RNN can be used
to save energy in cellular networks are explained.

IV. PROBLEM DESCRIPTION AND PROPOSED APPROACH

As mentioned earlier, the main objective of this work is to
exploit Machine Learning (ML) approaches to reduce energy
consumption in the radio part of the base stations. This
is achieved by turning off the MIMO feature if and only
if SISO is able to achieve a minimum satisfactory Quality
of Experience (QoE), which is measured in our work by
a minimum average DownLink (DL) user throughput2. Our
models will follow regression models to estimate the expected
user DL average throughput for a SISO scheme based on some
network parameters as will be explained later. It is worth
mentioning that our algorithm does not provide any service
guarantees for any specific UE. MIMO feature is turned on/off
based on the expected average throughput per user.

A. Data

The data used for training, validation and testing are real
data shared by Vodafone Egypt. It includes Key Performance
Indicators (KPIs) from 145 SISO sites calculated at the cell
level every hour. The KPIs are:

• DL Physical Resource Block (PRB) utilization.
• Average Channel Quality Indicator (CQI) per cell.
• DL traffic volume (in GBytes).
• Average number of User Equipment (UE).
• Maximum number of UEs.
• User DL average throughput.

The user DL average throughput is taken to be the output of
the machine as it is the adopted measure of QoE (which is the
current practice in mobile networks), while the remaining KPIs
are taken as inputs. MLP takes only the current measurements
to predict the DL user average throughput, if SISO is used.
On the other hand, RNN tracks the historical trend of the data
to predict the user DL average throughput.

The total number of data points in our data-set is 382,456.
During our experiments, 70% of the available data was used
for training, 20% was used for validation and 10% was used
for testing.

B. ML Models Architectures

We now present the models that we use in the two NN
methods that we use in this study as follows.

1) Multi-Layer Perceptron Architecture: The used MLP
consists of:

• 1 input layer containing 12 neurons (ReLu activation
function).

• 1 hidden layer containing 8 neurons (ReLu activation
function).

• 1 output layer containing 1 neuron (DL average user
throughput) (Linear activation function).

The used optimizer is ADAM, with learning rate of 0.001
and batch size of 50.

2Our approach presented in this paper can be readily generalized to any
other measure of users’ QoE.



It should be noted that number of hidden layers, neurons,
batch size, optimizer and learning rate are all hyper-parameters
that are selected after several trials.

A layout of the used network architecture can be found in
Fig. 3

Fig. 3: Neural Network Architecture

2) Recurrent Neural Network: The used RNN consists of:
• 1 input layer containing 50 neurons (ReLu activation

function).
• 1 hidden layer containing 100 neurons (ReLu activation

function).
• 1 output layer containing 1 neuron (DL average user

throughput) (Linear activation function).
• Feedback connection from the previous hidden layer

output to the current hidden layer input to track the
historical features of the data.

The used optimizer is ADAM, with learning rate of 0.001
and batch size of 72.

It should be noted that the available data are KPIs measures
at every hour from different cells. To use these data to train
the RNN, we assume that the historical trend of data does not
differ from one site to another. Therefore, we separate the data
from different cells, make sure they are arranged from oldest
to newest and use these sequences to train the machine cell
after cell. After each sequence of data, the trained machine is
used as a starting point for the next sequence drawn from the
next mobile network cell.

C. The Algorithm

The proposed scheme is a regression model that takes the
available KPIs as inputs to the Neural Network (NN) and the
DL user average throughput as the output. The main idea is
to create an NN that is trained via the SISO data. This results
in a network that has learnt the performance and behavior of

SISO sites. Eventually, when the network is fully trained, it
can take the KPIs of the MIMO site under consideration and
use its KPIs to predict the DL average throughput using the
SISO behavior learned by the network. If the predicted output
is acceptable (i.e. achieves a satisfactory users’ QoE), which
means that SISO is good enough to handle the network traffic,
then MIMO can be turned off (temporarily) to save energy.
Otherwise, energy must be expended to keep the MIMO on
to maintain a satisfactory users’ QoE.

In our work, we define a satisfactory user QoE as achieving
a user average DL throughput that is not less than 5 Mbps.
Therefore, the output of the ML network is compared to a
threshold of 5 Mbps to decide whether SISO can provide
an acceptable QoE. Clearly, there is a trade-off between the
threshold that represents the satisfactory QoE and the amount
of saved energy.

Our proposed algorithm is described in Algorithm 1. This
description applies to both the MLP and RNN architectures.

Algorithm 1 Using MLP and RNN to save energy in 4G
cellular networks by optimizing MIMO usage: algorithm de-
scription

1: procedure PREPARE DATA SET
2: Normalization of the data to the range from 0 to 1.
3: Divide data set into: 70% training, 20% validation and 10%

testing.
4: end procedure
5: procedure TRAINING
6: Initialize: Random weights.
7: Input: 5 KPIs provided by the training dataset.
8: Output: DL average user throughput.
9: back-propagation Learning Technique:

10: while Validation error is decreasing do
11: for Each training epoch do
12: Monitor the output (DL average user throughput).
13: Compute MAE based on current weights and current

input.
14: Update Weights based on the MAE and learning rate.
15: Monitor validation error to avoid overfitting.
16: end for
17: end while
18: Result: A machine that has learned the features (the historical

trend in case of RNN) of SISO scheme.
19: end procedure
20: procedure TESTING
21: Input: 5 KPIs from the testing data.
22: Output: DL average user throughput.
23: RUN NN in feed-forward direction.
24: Compare predicted throughput to actual throughput.
25: while Results are not satisfying do
26: Change hyper parameters.
27: Repeat training phase.
28: end while
29: end procedure
30: procedure APPLICATION
31: Use the fully trained machine to use the KPIs of a certain

MIMO cell as inputs and apply regression to predict the output
(DL average user throughput) if SISO scheme is used.

32: If output is satisfying (> 5Mbps), MIMO is turned OFF to
save energy. Otherwise, MIMO is used.

33: end procedure



V. PERFORMANCE EVALUATION

In this section, the performance evaluation results of the
proposed schemes are presented.

A. Training Phase

The progress of the training and validation error during the
training phase is shown in Fig. 4. It can be seen that the
training error is slightly lower than the validation error. Both
errors exhibit a decreasing trend. An early halt of the training
process occurs when the validation error starts to increase
while the training error is still decreasing (to avoid overfitting).

Fig. 4: Training and Validation errors (in Mbps) during the
training process of MLP

At the end of the training phase, the performance of the
machine is measured via the loss function. The Mean Absolute
Error (MAE) is the chosen loss function during the training.
Since our aim is to build a regression model to estimate the
user DL average throughput, it is reasonable to consider MAE
as our performance measure. The results are stated in Table I.
The results show that our trained models are able to achieve
very small MAE errors and that the RNN architecture was
able to achieve smaller errors in general.

TABLE I: Mean Absolute Error for Data Normalized from 0
to 1

Machine Training Phase Validation Phase Testing Phase
MLP 0.0962 0.0985 0.1702
RNN 0.0289 0.0304 0.0993

B. Testing Phase

When the machine completes the training phase, it is ready
to be tested. In the testing phase, the machine uses new data
(different from the training and validation data). MAE of the
testing phase is recorded in Table I.

C. Testing using data from MIMO sites

To test the machine on MIMO sites, a group of MIMO sites
are selected for the testing process by the service provider.
MIMO is turned off in these sites and the DL average user

throughput is recorded. The KPIs of these sites are fed to the
proposed machines to predict the DL average user throughput
and compared to the recorded actual throughput.

The MAE of this test is 0.31 for MLP and 0.26 for RNN.
It should be noted that data were originally normalized to
the range from 0 to 1. This is necessary when features have
different ranges, like the case here. To have a look at the error
function related to the original throughput value, normalization
must be inverted. After denormalization, MAE reached the
value of 2.75 Mbps for MLP and 1.38 Mbps for RNN.

It is worth mentioning that the sites used for training,
validation and primary testing are SISO sites. On the other
hand, the sites used in this second testing phase are MIMO
sites which are different from the sites used in the previous
processes.

Fig. 5: Actual throughput, predicted throughput and the
absolute error during a portion of the testing phase for MLP.

Fig. 6: Actual throughput, predicted throughput and the
absolute error during a portion of the testing phase for RNN.

Fig. 5 and Fig. 6 show how close the predicted throughput
(output of the machine) is to the actual throughput (provided
by the data). They also show the absolute error at every point.

It should be noticed that the considered KPIs are not the
only factors that affect the throughput. For example, the



weather conditions, the location of the site, the interference
and surrounding construction can all affect the achieved
throughput. Considering more features is left for extending
the current work.

As mentioned earlier, the threshold for acceptable QoE is
chosen to be 5 Mbps. The percentage of correct decision (to
turn MIMO on/off) for both the MLP and RNN architectures
are presented in Table II. This result is important because the
main objective of this paper is to take a correct decision to
turn MIMO on/off not to predict the exact DL user average
throughput.

TABLE II: Percentage of Correct and Erroneous Decisions

Decision MLP RNN
Correct Decision to turn MIMO on/off 88.21% 90.17%
Erroneous Decision to turn off MIMO 3.61% 2.55%
Erroneous Decision to keep MIMO on 8.18% 7.28%

VI. CONCLUSION

In this paper, we consider the use of ML-based approaches
for energy saving in mobile networks. More specifically, these
approaches help in deciding on the disabling MIMO schemes
if the SISO mode can achieve a network user desired QoE.
We propose two different architectures for ML networks to
estimate the user DL average throughput under SISO base
stations, namely, multi-layer perceptron (MLP) and recurrent
neural network (RNN). We compare the estimated SISO
user DL average throughput to a predefined threshold that
represents the desired QoE. If SISO can achieve the target
QoE, MIMO schemes are turned OFF, otherwise, MIMO
schemes are enabled. We train our models based on real mobile
network data. Results reveal the efficiency and effectiveness of
proposed approaches as they allow for real-time, data-driven
solutions. These are unique features of our proposed solutions
as compared to the current practices in mobile networks.

REFERENCES

[1] Stefano Buzzi, I Chih-Lin, Thierry E Klein, H Vincent Poor, Chenyang
Yang, and Alessio Zappone, “A survey of energy-efficient techniques
for 5g networks and challenges ahead,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 4, pp. 697–709, 2016.

[2] Junaid Ahmed Khan, Hassaan Khaliq Qureshi, and Adnan Iqbal, “En-
ergy management in wireless sensor networks: A survey,” Computers
& Electrical Engineering, vol. 41, pp. 159–176, 2015.

[3] Albrecht Fehske, Gerhard Fettweis, Jens Malmodin, and Gergely Biczok,
“The global footprint of mobile communications: The ecological and
economic perspective,” IEEE Communications Magazine, vol. 49, no.
8, pp. 55–62, 2011.

[4] Margot Deruyck, Willem Vereecken, Emmeric Tanghe, Wout Joseph,
Mario Pickavet, Luc Martens, and Piet Demeester, “Power consumption
in wireless access network,” in 2010 European Wireless Conference
(EW). IEEE, 2010, pp. 924–931.

[5] Thomas L Marzetta, “Massive mimo: an introduction,” Bell Labs
Technical Journal, vol. 20, pp. 11–22, 2015.

[6] Chunxiao Jiang, Haijun Zhang, Yong Ren, Zhu Han, Kwang-Cheng
Chen, and Lajos Hanzo, “Machine learning paradigms for next-
generation wireless networks,” IEEE Wireless Communications, vol.
24, no. 2, pp. 98–105, 2016.

[7] Mingzhe Chen, Ursula Challita, Walid Saad, Changchuan Yin, and
Mérouane Debbah, “Machine learning for wireless networks with
artificial intelligence: A tutorial on neural networks,” arXiv preprint
arXiv:1710.02913, 2017.

[8] Tao Han and Nirwan Ansari, “Powering mobile networks with green
energy,” IEEE Wireless Communications, vol. 21, no. 1, pp. 90–96,
2014.

[9] Antonio Spagnuolo, Antonio Petraglia, Carmela Vetromile, Roberto
Formosi, and Carmine Lubritto, “Monitoring and optimization of energy
consumption of base transceiver stations,” Energy, vol. 81, pp. 286–293,
2015.

[10] Josip Lorincz, Tonko Garma, and Goran Petrovic, “Measurements and
modelling of base station power consumption under real traffic loads,”
Sensors, vol. 12, no. 4, pp. 4281–4310, 2012.

[11] N Faruk, AA Ayeni, MY Muhammad, LA Olawoyin, A Abdulkarim,
J Agbakoba, and MO Olufemi, “Techniques for minimizing power
consumption of base transceiver station in mobile cellular systems,”
International Journal of Sustainability, vol. 2, no. 1, pp. 1–11, 2013.
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