
Self-Optimization of Cellular Networks Using Deep
Reinforcement Learning with Hybrid Action Space

Mariam Aboelwafa?, Ghada Alsuhli?, Karim Banawan†, and Karim G. Seddik?
?The American University in Cairo, †Alexandria University

Abstract—Wireless networks have been going through tremen-
dous proliferation recently. As a result, a continuous config-
uration and management are necessary to sustain a balanced
performance while facing such continued growth and endless
changes. A self-managed network is required to replace manual
management, which is costly, time-consuming, and error-prone.
In this paper, we propose a machine-learning-based cellular
network management system. The proposed system aims to en-
hance the network stability and adaptability to temporal changes
(e.g., load imbalances across cells). The presented approach is
a deep reinforcement learning scheme that enables a network
manager to learn a policy that maximizes the network average
sum throughput while trying to minimize the consumed energy
and the number of blocked users. In addition to controlling the
transmitted power and the cell individual offset, MIMO can be
switched ON and OFF to control the consumed energy without
affecting the quality of service. This results in a hybrid action
space, i.e., our action vector has some binary actions as well as
continuous actions. We present a novel algorithm to deal with
this hybrid action space. Our results reveal that our proposed
algorithm is flexible, efficient, and reliable. We report significant
performance gains compared to some baselines (without self-
management) and previously proposed algorithms.

Index Terms—Reinforcement learning, mobile networks,
MIMO, Machine Learning

I. INTRODUCTION

Cellular networks have been facing a lot of rapid changes
lately [1]. For instance, the number of users drastically fluc-
tuates over time according to human activities. The coverage
requirement varies as well due to fast urban changes. More-
over, energy conservation has become a universal need in the
past decade [2], [3]. Cellular networks need to be adaptive
enough, i.e., self-organized, to cope with the rapid ongoing
changes and meet the new requirements. A crucial criterion
for the network’s success is to ensure that these rapid network
changes do not cause disturbance in the network. In other
words, a network equilibrium is a must-meet requirement. This
gives network immunity against the surrounding environment
changes and allows it to self-heal from unexpected problems,
such as the non-uniformly distributed loads between the cells.

Self-optimization of the cellular network is usually achieved
by controlling the cell individual offset (CIO) values between
the cells and/or the transmission power of the base stations.
Both approaches can be used to control the cell boundaries.
Most of the existing works focus on balancing the load of
the cellular network by adjusting the CIOs between the cells,
e.g., [4]–[6]. The CIO affects the handover decision of the cell-
edge users. This may enhance the throughput of the users in
congested cells by offloading the edge users to less-congested

cells. Furthermore, the transmission power tuning of the base
stations has been found effective in balancing the load of the
network in [7]–[9]. Increasing the power level of a base station
may be justified by seeking an enhanced channel quality of
the non-edge users. Nevertheless, a strict adjustment of the
network-wide transmission power is necessary to ensure that
increasing the power level does not increase the interference
faced by edge users. Thus, joint optimization of the CIO and
transmission power has proved its superiority in enhancing the
performance of the network and the Quality of Experience
(QoE) of the users in [10], [11], compared to separate op-
timization of each parameter. Another important optimization
aspect of cellular networks is minimizing energy consumption.
MIMO is one of the most energy-consuming features in
cellular networks. Turning MIMO off can save considerable
amounts of energy. Nevertheless, consistent monitoring of the
users’ QoE is necessary to ensure that QoE is not negatively
affected by turning off MIMO. In [12], a neural network-based
algorithm is proposed to learn the behavior of SISO networks
and emulate their performance to decide whether or they are
sufficient to reach a satisfactory user’s QoE.

In this paper, the main target is to reach a stable state
of the cellular network after any sudden variation in the
surrounding environment. We measure this stable state by
meeting five main targets (which can be, in many situations,
conflicting): maximizing the sum throughput of the network,
achieving load balancing among cells, minimizing the number
of blocked users, satisfying QoE for users, and minimizing
the energy consumption. We reach this stable state by jointly
optimizing three parameters/features. The first parameter is the
relative CIO between base stations (eNodeBs or eNBs in 3GPP
standards), which affects load balancing and user blocking.
Second, we control the eNB transmission power. This param-
eter has a direct effect on all of the requirements mentioned
above. The third feature to be controlled is enabling the MIMO
capability of the eNBs. This control affects sum throughput,
QoE, and energy consumption. To the best of our knowledge,
this is the first work to simultaneously address these three
network management controls. Due to the huge dimensionality
of the aforementioned problem, it is challenging to devise a
good analytical model to capture system’s dynamics and/or
tackling the problem using classical optimization approaches.
This motivates the adoption of Machine Learning (ML) tech-
niques in this work as we will show next.

To control the mentioned parameters, we use a Reinforce-
ment Learning (RL) based approach [13]. The RL has been
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effectively used to optimize the performance of the cellular
network in many previous works, for example, see [5], [6],
[14], [15]. In RL, an agent aims at maximizing the long-term
average reward. Thus, RL depends mainly on trial and error,
in particular, at early exploration phases. This is challenging
to apply in a live cellular network since it directly impacts the
QoE of the end-user. To tackle this issue, we use a modified
version of the simulated cellular network1 in [11] using NS3
simulator, which is a powerful tool to simulate a network
with the capability of extracting network key performance
indicators (KPIs). One other major issue with applying RL
for the aforementioned self-optimization of cellular networks
is the fact that we are dealing with a mix of continuous and
discrete control parameters. This is called a hybrid action
space. This learning problem is challenging on its own aside
from cellular network management. To that end, We propose a
new RL architecture that allows the agent to take its decision
in two successive stages. This is lacking in the RL literature
to the best of our knowledge.

The main contribution of this paper can be summarized as:
• Simultaneous control over relative CIOs, eNBs’ trans-

mission power, and MIMO scheme using an RL-based
framework. The framework automates network manage-
ment and trains the cellular network to reach a stable state
to maximize the sum throughput. To achieve this, joint
optimization of the three parameters is formulated as a
Markov Decision Process (MDP).

• Present a novel layered approach to handle hybrid action
spaces. We give a detailed algorithm to enable the agent
to take decisions extracted from discrete and continuous
action spaces and apply them to the environment.

II. TECHNICAL BACKGROUND: REINFORCEMENT
LEARNING

Reinforcement learning (RL) is a process in which an agent
learns to make decisions (apply actions), observes the impact
of its decisions on the surrounding environment, and adjusts
its strategy, based on its observation, to achieve a certain goal
in the long run (maximize a certain specified reward) [16]. RL
can be modeled as a Markov decision process (MDP) in which,
at each time step t, the agent receives some representation of
the environment (a state, S(t), that belongs to a state space, S).
Depending on this state, the agent selects an action, (A(t) from
a predetermined set of actions, A). Next, the agent receives the
consequence of its action. That is: a numerical reward r(t+1)
and a new state S(t+ 1) [13].

We can say that the objective of the decision-maker (agent)
is to reach the sequence of actions (policy) that maximizes the
expected reward function eventually [10]. This objective can
be characterized as:

max
π

lim
L→∞

L∑
t=0

E[λtr(t)], (1)

1Note that, if the simulated environment is similar to to the actual cellular
network, the learned agent can be employed in the live cellular network after
convergence with slight negative effects on the cellular network.

where r(t) is the reward function, λ is the discount factor that
determines the significance of the reward’s future expected
values, and π is the policy to be learned.

The nature of the action space can be discrete, continuous,
or hybrid. In the discrete action space, the actions are selected
from a finite set of actions. The actions in continuous action
space are selected from a bounded interval. Whereas, in the
hybrid action space, some actions are taken from a finite set
while the others are taken from a bounded interval.

To solve the aforementioned MDP using RL, there are
several variants of RL techniques [13]. There is the basic Q-
learning technique that works with a discrete set of actions.
There is also the Deep Q-Network (DQN) technique in which a
deep neural network can be used to approximate the Q-values.
The Double-DQN (DDQN) technique is an extension of DQN
in which two different neural networks are implemented for
action selection and action evaluation [17]. More techniques
exist in literature as well. For a continuous set of actions,
various RL techniques can be used. One way is to use Soft-
Actor-Critic methods which are explained in detail in [18].
Another way is to use Policy Gradient methods (and their
extensions like TD3) which can be understood from [19]. For
hybrid action spaces, there are some parameterized approaches
in the literature to handle this mixed type of action spaces
[20]–[22]. In this work, we present a novel approach to handle
hybrid action spaces in this paper.

III. PROBLEM DESCRIPTION AND PROPOSED APPROACH

A. System Model

We consider an LTE cellular network that consists of N
eNBs and U User Equipment (UEs).

1) eNodeBs: Each eNB sends its transmission in the Down-
Link (DL) with a power level Pn ∈ [Pmin, Pmax] dBm.
At time t = 0, 1, 2, 3, · · · , each UE measures the Signal-
to-Interference-plus-Noise-Ratio (SINR) of near eNBs and
attaches to the cell that results in the highest one.

An eNB can be over-utilized or under-utilized. This is
determined according to the value of the eNB utilization ρn:

ρn =

∑Un

i=1Ki,n

Bn/BPRB
, (2)

where, Un is the number of UEs served by the nth eNB,
Ki,n is the number of Physical Resource Blocks (PRBs) that
serves the ith user in the nth eNB, Bn is the bandwidth of
the nth eNB and BPRB is the bandwidth of one PRB (=180
KHz in LTE). Note that ρn is the ratio of the total number of
required PRBs of the nth eNB (to serve the attached users)
to the maximum number of PRBs that it can offer. Therefore,
ρn < 1 means that the eNB is underutilized while ρn > 1
means that the eNB is overutilized. Underutilization allows
the eNB to serve all its attached users with satisfactory rates
while this does not happen in the case of overutilization.

Every eNB can have the MIMO feature turned on or off
(depending on the network manager’s decision). Turning the
MIMO feature on has a considerable effect on the rate received
at the receiving end, thus, a better QoE can be achieved at the
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UE. However, MIMO is one of the most energy-consuming
features in the eNB. When the MIMO feature is turned on,
a scheduler decides whether to use the multiple antennas
to apply Spatial Multiplexing (SMux) or Transmit Diversity
(TxD) transmission modes, depending on the channel quality
of the UE. Nodes with high channel quality are assigned the
SMux transmission mode to achieve higher data rates. On the
other hand, nodes with lower channel quality (far nodes) are
assigned the TxD transmission mode to improve their received
SINR and combat the effect of channel fading.

2) UEs: The uth UE has random motion. It regularly
searches for a better cell (according to the higher SINR) and
attaches to the better cell if found. Moreover, The channel
quality indicator (CQI) φu of the uth UE is reported to the
associated cell periodically. The CQI is a discrete measure
that represents the quality of the channel. According to the
standard, φu ∈ {0, 1, · · · , 15}. When φu = 0, this means that
the uth UE is out of coverage (blocked). A higher CQI value
corresponds to higher channel quality [23], [24].

When a certain UE is attached to cell i, it might require
handover to another neighboring cell j if [23]:

RSRPj + θj−i > Hys + RSRPi + θi−j , (3)

where RSRPi and RSRPj are the measured Reference Signal
Received Power from eNBs i and j, respectively. θi−j is the
CIO value of eNB i with respect to eNB j and θj−i is the
CIO value of eNB j with respect to eNB i. Hys is a hysteresis
value to minimize repeated handover requests that might occur
due to minor signal quality fluctuations.

B. Reinforcement Learning Framework

The mapping of our joint optimization problem to the RL
algorithm can be explained in brief as follows: The agent is
a central network manager. The environment is the cellular
network under consideration. The state is selected to be a
subset of the network KPIs that are readily available to the
network operator in practice. These KPIs are:
• Resource Block Utilization (RBU) (B(t)): The fraction

of used PRB blocks that serve the users of each cell.
It is an N -length vector. It is a representation of how
congested each cell is.

• Total DL throughput of each cell (R(t)): It is a repre-
sentation of the eNB performance. It can be expressed as
Rn(t) =

∑Un

un=1Run
(t), where Run

(t) is the measured
throughput of user un in the nth eNB.

• Number of active users in each cell (C(t)): This measures
the number of users that are not idle in a certain time step.

• Modulation and Coding Scheme (MCS) Matrix (M(t)):
It is a matrix that gives the fraction of users with a certain
MCS. It is considered to be a representation of the quality
of the channels.

The state is the concatenation of the above vectors (after
reshaping M(t)):

S(t) = [B(t)T R(t)T C(t)T vec(M(t))T ]. (4)

where vec(·) represents matrix vectorization process.

The action contains the features that the agent has control
over. These features are:
• Relative CIO values between every two neighboring cells.
θij = −θji = θi−j − θj−i. This action belongs to a
continuous actions space [−θmax, θmax].

• Transmission Power of each eNB Pn. It belongs to a
continuous action space. The agent chooses a value from
the set [Pn0

−Pmax, Pn0
+Pmax] for some constant value

Pn0
.

• Turning MIMO feature on/off for nth eNB mn. The
whole MIMO action vector is [m1 m2 · · · mN ]T .
This action is selected from a discrete set of size 2N

binary vectors, since each eNB has a decision of mn = 0
(MIMO off) or mn = 1 (MIMO on).

The proposed reward function in this work is2:

r(t) =

N∑
n=1

R(t)− ηR̄(t)

U∑
u=1

1(φu = 0)− µ
N∑
n=1

mn, (5)

where η and µ are hyper-parameters that are selected to meet
the operator’s requirements, and R̄(t) is the average user
throughput at time instant t. This reward function consists
of a linear combination of three terms. The first term is the
total network throughput (to be maximized). The second term
is the sum throughput of the out-of-coverage (blocked) users
scaled by a hyper-parameter η. This term is to be minimized
(a penalty); that is why it is being subtracted. This penalty
is scaled by η to control how significant it is to the agent.
The last term is also a penalty. It is the number of eNBs that
have the MIMO feature turned on. It is also scaled by another
hyper-parameter µ. It should be noticed, that the choice of
the hyper-parameters is determined based on the interests of
the operator depending on the main objective of the service
provider, the channel conditions and the network settings.

Thus, the agent’s objective is to reach the policy (sequence
of action) that tries to maximize the total network throughput,
minimize the number of out-of-coverage users, and minimize
the consumed energy due to turning MIMO on. Note that
choosing the reward function to be the total throughput with
no penalties may not reflect the operator’s objective. Without
the blocked user penalty, the agent may choose to keep only
the users with high rates and alter CIOs or reduce power
levels to force edge users to handover to a poorer performance
cell. That’s why putting a penalty on the number of out-of-
coverage users is important. The other penalty aims at limiting
the consumed energy due to turning MIMO on. Without this
energy penalty, the agent may opt to always turn MIMO on
with no regard to the energy consumption.

C. Proposed Algorithm

The main issue in formulating the proposed cellular network
optimization as an MDP is having a hybrid action space. To
solve this issue, we present a scheme that adopts two existing
RL algorithms in a layered fashion. The first one is the Double

2It should be noted that our proposed framework can readily be extended
for any other reward function.
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Deep Q-Network (DDQN) [17] which is used for discrete
action spaces (MIMO on/off in our case). The second one
is Twin Delayed Deep Deterministic Policy Gradient (TD3)
[19] which is used for continuous action space (transmission
power and CIOs in our case). The presented scheme is simple,
yet efficient and one of its main advantages is that it requires
no modification in the core of the used techniques (DDQN
and TD3).

The agent takes the decision in two stages.
• First Stage: The agent observes the state and takes the

action of MIMO on/off based on the DDQN technique
[17]. The action is taken from the discrete set {0, 1} (for
each eNB). Note that the chosen action is not applied to
the environment until the end of the second stage.

• Second Stage: The first stage action is augmented with
the state being observed and then it decides on the CIO
and the variation in power level actions based on the
TD3 technique. They are selected from the continuous
intervals [−θmax, θmax] and [−Pmax, Pmax] respectively.

After the two stages, the augmented action is given by:

A(t) =[(θij : i 6= j, i, j ∈ {1, · · · , N},
(Pn : n ∈ {1, 2, · · · , N}),
(mn : n ∈ {1, 2, · · · , N})] (6)

A(t) is then applied to the environment. Note that as the agent
explores the whole action space, the effect of the different
combinations of the first stage action (MIMO on/off) and
second stage action (Relative CIOs and Power Levels) is
learned.

An overview of the proposed scheme can be seen in Fig. 1
and it is described in more detail in Algorithm 1.

Algorithm 1 Proposed RL framework
1: Determine Reward Function.
2: Reset all values.
3: repeat
4: procedure STAGE ONE
5: Observe State (S(t)).
6: Select MIMO feature decision (DDQN) (AM (t)).
7: Create a new augmented state (Saug(t) =

[S(t), AM (t)]).
8: end procedure
9: procedure STAGE TWO

10: Observe state (Saug(t)).
11: Select relative CIO and power level actions (TD3)

([AC(t), AP (t)])
12: Apply augmented action to the network Aaug =

[AC(t), AP (t), AM (t)].
13: end procedure
14: Calculate Reward.
15: Calculate next state.
16: until Reward Function Converges

It is worth mentioning that turning on the MIMO feature
for a certain eNB does not mean that SMux can be applied for
all users attached to this eNB. There is a scheduler applied for
each eNB that decides which users to apply SMux and which
to use TxD depending on the channel quality of each user. NS3

TABLE I: Simulation Parameters

Parameter Notation Value
Number of eNBs N 3

Inter-eNB distance dij 500 m
Bandwidth Bn 20 MHz

Basic eNB transmission power Pn0 30 dBm
Penalty on blocked users η ∈ [0, 2]

Penalty on applying MIMO µ ∈ [0, 10]
Training steps Steps 8,000

Steps per episode 255
Step time 0.2 seconds

has SISO as the default running scheme and it leaves absolute
liberty to the user to turn MIMO modes (SMux or TxD) on
or off (i.e. The scheduler does not have a role in selecting the
suitable MIMO mode). The main concern is that turning SMux
for users with low CQI will only make things worse. TxD is
more suitable here to enhance the channel of less fortunate
users. To solve this problem, we created a simple scheduler
that applies SISO for all users when the agent chooses mn =
0. On the other hand, when the agent chooses mn = 1, the
CQI of each attached user is tested and the SMux is selected
for users that have φu ≥ 7, and TxD is selected otherwise.
The CQI threshold is determined such that TxD is applied
for users that use QPSK and SMux for users that have higher
MCS.

IV. PERFORMANCE EVALUATION

A. Simulation Setup:

In our simulations, we consider a cellular network consisting
of 3 eNBs, placed on the vertices of an equilateral triangle,
and 42 UEs. Each cell has 10 users centralized around the
eNB. On the edges between every two nodes, there are 4 edge
users. The inter-eNB distance is set to be 500 meters. UEs
have random mobility patterns in boxes around their starting
points with a constant velocity vu. UEs are assumed to be
active all the time.

The environment, which is represented by the described
cellular network, is simulated using NS3 simulator (LENA
module) [25]. The agent is simulated using Python. The inter-
face between the agent and the environment is implemented
using NS3gym interface [26]. This interface is responsible for
applying agent actions to the environment and feeding back the
reward and new environment state to the agent. After applying
the agent action, the environment is simulated using the control
parameters sent by the agent action. The reward is calculated
using (5). Simulation parameters are as summarized in Table
I.

Next, two scenarios are evaluated. The first one is a cellular
network consisting of 3 identical cells. Each contains 10 users
close to the eNB (center users Uc). Each edge between two
cells contains 4 users (edge users Ue). The second scenario is
a cellular network consisting of 3 unidentical cells. First cell
has Uc = 18 (congested), second cell has Uc = 9 (medium
utilization) and third cell has Uc = 3 (underutilized). For both
scenarios, the target is to find the optimum policy to control
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Fig. 1: An Overview of the Decision Making Process.

relative CIOs, eNBs transmission powers, and MIMO feature
state such that the reward function is maximized.

B. Results of First Scenario: 3 Identical Cells

In Fig. 2, the network sum throughput (in Mbps) is plotted
against the number of episodes of the training phase. We
compare 2 different settings: RL agent and Baseline (BL). The
RL agent is the proposed approach in this paper. It is evaluated
for different values of the hyper-parameter µ which scales
the MIMO energy penalty. It is also evaluated with MIMO
always on and with MIMO always off. BL is the setting in
which the agent has no control over any network feature. It is
evaluated with MIMO always on and with MIMO always off
as well. We observe that the sum throughput increases during
the training phase until it converges. It is noticed that as µ
increases, the agent’s desire to turn MIMO on decreases (since
it negatively affects the reward function). Therefore, the sum
throughput for smaller µ values is higher. However, reducing
µ means increasing the consumed energy as a result of turning
the MIMO feature on.

Fig. 2: Effect of MIMO Energy Penalty µ on Sum
Throughput

We observe also that for all values of µ, the sum throughput
is higher than the BL setting. In addition, the RL agent that has
control over the MIMO feature outperforms the RL agent that
has MIMO turned off by default (SISO). It also approaches a
close performance to the RL agent that has MIMO turned
on by default (but with less energy as we can see later).

Furthermore, we can see in Fig. 2 that turning on MIMO
with no other control on any network feature (BL) gives
a higher sum throughput than turning MIMO off (with and
without control over other features). However, our proposed
scheme with µ = 0, 0.5 outperforms BL with MIMO on but
it consumes less MIMO energy.

It is worth mentioning that at µ = 10, the sum throughput
curve increases at first and decreases afterward. This is because
the first portion of the learning phase is mainly for the
exploration of the action space. This means that the agent is
trying to apply many random actions to examine their effect on
the environment. Turning MIMO on in this case (µ = 10) will
probably increase the sum throughput but it will also increase
the penalty (which is scaled by 10). Therefore, the reward
will decrease, and eventually, the agent will learn that turning
MIMO off is more beneficial (in this case) to the reward
(penalized sum throughput). Since we plot only part of the
reward (sum throughput), the behavior shown in the curve is
logical.

Fig. 3 illustrates the percentage of time the MIMO is turned
on for different values of µ after convergence. Please note that
these percentages are considered a measure of the percentage
of consumed energy compared to turning MIMO on as a
default setting.The presented values of µ include two extreme
cases (µ = 0) and (µ = 10). The first one is having no energy
penalty. The sum throughput approaches the MIMO curve and
MIMO is turned on 97% of time. The second one approaches
the SISO curve and MIMO is turned on 0.9% of time.

From another perspective, we report the minimum through-
put and the number of unsatisfied users to make sure that the
proposed scheme works in their favor as well and not only
from a collective point of view. We see in Fig. 4 and Fig. 5
that our system outperforms BL scheme regarding the less
fortunate users. It is worth mentioning that the unsatisfied users
in Fig. 5 are determined as the users with individual throughput
≤ 1 Mbps. This threshold is determined based on the nature
of the network, the scenario, the Bandwidth used, and the
number of users. It might vary depending on the criterion
determined by the operator. This worst-case might vary by
a very considerable amount which causes these fluctuations.

To study the effect of the blocked users penalty, we varied
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Fig. 3: Effect of MIMO Energy Penalty µ on Ratio of Time
MIMO is Turned on

Fig. 4: Effect of MIMO Energy Penalty µ on Minimum
Throughput

the hyper-parameter that scales it (η) and plotted the percent-
age of unblocked users in the network and the sum throughput
in Fig. 6 and Fig. 7. We notice here that there is a trade-off
between the sum throughput and the percentage of unblocked
users. As (η) increases, the percentage of unblocked users
increases but the sum throughput decreases. This is because
trying to achieve a higher sum throughput might lead to block
users with low CQIs to other cells (because they will consume
resources and will not contribute much in the sum throughput)
and give more resources to users with high CQIs (which will
benefit the sum throughput of the network).

C. Results of Second Scenario: 3 Unidentical Cells

Here, we check the performance of the proposed algorithm
in presence of the second scenario mentioned above, which
consists of 3 unidentical cells. We consider this second sce-
nario as a change in the number of users in the network due
to an event for instance. The proposed algorithm performs
similarly to the first scenario. Several results and investigations
that were reported for the first scenario are not presented for
the second scenario due to the limited space available in this
paper.

In Fig. 8, the sum throughput is plotted vs the training
episodes. As expected, the sum throughput increases during
the training phase until it converges. We can see the effect of

Fig. 5: Effect of MIMO Energy Penalty µ on Percentage of
Unsatisfied Users

Fig. 6: Effect of Blocked Users Penalty (η) on Percentage of
Unblocked Users

the MIMO energy penalty µ. In this scenario as well, the larger
the penalty, the less the sum throughput (due to less desire to
turn MIMO on). Moreover, we notice here also the anomaly
of the curve at (µ = 10) which increases at first and decreases
afterward. This replicates the case of the first scenario and it
is expected due to the special nature of this extreme case as
explained earlier.

The results of the second scenario prove that the proposed
scheme delivers the network to a stable state with a maximized
sum throughput after changes that occur in the network. The
proposed scheme has the advantage of reaching a learned
policy to control the network. Learning means that the stable
state can be regained again after probable occurrences.

V. CONCLUSION

In this paper, we present an RL framework to gain control
over three main features in cellular networks, which are
relative CIOs, transmitted power levels, and MIMO on/off
switching. This control allows the network to reach a stable,
balanced state from the perspective of load balancing, the
number of covered users, QoE, and energy consumption. The
advantage of this work is that it enables the network to regain
this stable state and achieve a balance between different,
sometimes conflicting, targets, without operator intervention,
after any change in the environment. Moreover, this work
creates a layered approach that enables our framework to
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Fig. 7: Effect of Blocked Users Penalty (η) on Sum
Throughput

Fig. 8: Effect of MIMO Energy Penalty µ on Sum
Throughput (Unidentical Cells)

handle hybrid action space in a relatively easy, yet efficient,
way. The results show that the proposed scheme achieves
higher sum throughput than the baseline system (where there is
no RL control) while taking into consideration other important
performance metrics like energy consumption and the number
of blocked users. Moreover, our proposed framework can be
readily extended to other network optimization targets.
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