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Abstract—The accelerated move towards the adoption of the
industrial Internet of Things (IIoT) paradigm has resulted in
numerous shortcomings as far as security is concerned. One
of the IIoT affecting critical security threats is what is termed
as the ” False Data Injection” (FDI) attack. The FDI attacks
aim to mislead the industrial platforms by falsifying their
sensor measurements. FDI attacks have successfully overcome the
classical threat detection approaches. In this study, we present a
novel method of FDI attack detection using Autoencoders (AEs).
We exploit the sensor data correlation in time and space, which
in turn can help identify the falsified data. Moreover, the falsified
data are cleaned using the denoising AEs. Performance evaluation
proves the success of our technique in detecting FDI attacks. It
also significantly outperforms a support vector machine (SVM)
based approach used for the same purpose. The denoising AE
data cleaning algorithm is also shown to be very effective in
recovering clean data from corrupted (attacked) data.

Index Terms—IIoT Security, False Data Injection Attacks,
Machine Learning, Autoencoders, Support Vector Machine

I. INTRODUCTION

THE rapid proliferation of the Internet of Things (IoT)
technology in industrial enterprises has exposed the vul-

nerability of critical infrastructure to serious cyber-attacks.
Industrial IoT (IIoT) has helped solve many intractable issues
in the industry by allowing system self-controlling and offering
real-time response systems. To ensure the successful roll-out
of IIoT applications, security issues need to be well-studied
and addressed for such applications. Specifically, IIoT sensors’
readings at pivotal industrial areas are critical subjects whose
loss or malfunction due to attacks or otherwise can lead to
considerable losses that may include the loss of human lives
[1]. For instance, the Stuxnet attack on the Iranian nuclear
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system [2] has led to large losses and interruptions. Monitoring
of industrial systems such as hydraulic, oil, and gas stations
against cyber-attacks has received great attention recently
[3]. One of the major types of attacks that can affect such
systems is termed the “False Data Injection” (FDI) attack.
FDI attacks present a serious form of cyber-attacks against
industrial infrastructures. They corrupt sensor measurements
to deceive the attacked industrial platform [4]. In [5], the study
demonstrates that an intruder can build an FDI attack without
being detected by classical approaches such as state estimation
(SE) and bad data detection (BDD) [6]. State estimation
is one of the basic solutions in detecting FDI attacks in
critical infrastructures. Relying on state estimation to achieve
comprehensive sensing accuracy leads to measurements al-
teration/fabrication [7]. The study in [5] highlights this kind
of weaknesses. If an intruder is aware of the measurements
figures, he/she can falsify the devices readings. To address this
critical vulnerability, two recent studies [8], [9], introduced
machine learning (ML) using support vector machine (SVM)
to efficiently detect FDI attacks. The study in [8] investigates
the performance of supervised and semi-supervised machine
learning approaches based on SVMs against several attacks.
In their experimentation, they observed that the SVM solution
performs better than the regular solutions that employ the state
estimation (SE) approach for the detection of both observable
and non-observable attacks. In addition, their results showed
that the semi-supervised learning approaches are stronger to
deal with the different data sparsity degrees than the fully-
supervised learning approaches.

ML has been used in many applications to address security
threats. For example, in [10], the authors present an analysis
of ML techniques applied to the detection of cyber threats
such as intrusion, malware, and spam. The goal is to study
the current maturity of these solutions and to identify their
main limitations. In [11], the authors present an ML-based
technique for detecting cyber threats. The system focuses on
differentiating between true positive and false positive alerts
thus helping to rapidly respond to cyber threats. Another
security threat, SQL injection, is studied in [12]. The authors
in this survey study various machine learning algorithms used
for the detection of SQL injection threats. An experimental
analysis is performed in [13] of the ML methods for the Botnet
DDoS attack detection. The studied methods are Support
Vector Machine (SVM), Artificial Neural Network (ANN),
Nave Bayes (NB), Decision Tree (DT), and Unsupervised
Learning (USML). In [14], the authors cover existing security
threats on ML techniques and give a survey on them from



the aspects of the training phase and the testing phase. They
also categorize the defensive techniques of machine learning
into security assessment mechanisms, countermeasures, data
security, and privacy.

In [9], the study presents two methods to detect false
data injection. The first method uses supervised learning over
labeled data and a trained SVM. The other method does not
need to train data to detect the measurements deviation. In both
schemes, they applied principal component analysis (PCA) to
project the data on a low-dimensional space based on the
observation that normal data and attacked data tend to be
separated after projection. Finally, they concluded that SVM
performs better than the classical attacks detection methods,
such as state estimation (SE) and bad data detection (BDD)
classical approaches, once it has an appropriate number of
trained data sets.

In this paper, we propose to use autoencoders (AEs) as
our machine-learning tool for the detection of FDI attacks.
Recently, autoencoders have gained a lot of interest to address
many security issues and cyber-attacks in communication net-
works. Autoencoders are neural networks that tend to learn a
latent feature representation of the input, normally in a smaller
dimension space. Another attractive feature of autoencoders is
that they do not need “labeled” data for their training. In [15],
the study proposes using autoencoders to learn latent features
and to reduce the size of the feature vector to be fed to some
machine-learning based classifier. The work in [15] considers
two applications, namely, network anomaly intrusion detec-
tion and malware classification. In [16], the study proposes
different anomaly detection models based on different deep
neural network structures, including AEs, convolutional neural
networks, and recurrent neural networks. In [17], sparse AEs
are used to learn a new feature vector, of reduced size, to be fed
to an SVM used for detecting network intrusion attacks. AEs
are used to efficiently reduce the size of the feature vector in an
unsupervised fashion. In [18], a denoising autoencoder (DAE)
feeding a compact multi-layer perceptron (MLP) is used for
network intrusion detection. DAEs are also used in [19] to
extract some reduced size robust features of data. The same
authors in [20] use stacked AEs to enhance the classification
capability of neural networks. AEs are again used to learn
important features to be fed to the MLP stage of the detection
algorithm.

Since sensor networks are generally resource-constrained,
the use of ML-based techniques for security purposes pro-
vides the additional advantage of optimizing the resource
utilization for this purpose which can extend the network
lifetime. Therefore, in this paper, we propose the use of an
ML-based technique that uses AEs for the detection of FDI
attacks. The main benefit behind the used ML-based approach
is its ability to deal with data that has no structure and no
model can represent it. ML-based approaches are able to
extract features from raw sensor measurements. As mentioned
earlier, one of the main attractive features of AEs is the
fact that they can be trained in an unsupervised fashion to
learn important features of the data. The AEs can learn latent
correlation structures in the data samples. In our work, we
exploit the correlation in two dimensions, namely, time and

space (i.e. “time” correlation between the same sensor data at
different times and “spatial” correlations across the sensors).
AEs can learn efficient, reduced size feature representation
of the data. With this feature representation, attacked data
samples will show high dissimilarity between the AE input
and the corresponding output.

Our approach differs from those using AEs for similar
purposes (e.g. in [15]–[18]) in that we propose to use AEs
as classifiers not just to learn some reduced size features. This
has the benefit of simplifying the training process since there
is no need for labeled data for training. Another important
feature of the use of AEs as classifiers is their ability to
detect other attacks since AEs are trained with unlabeled clean
data. Any attack that causes a distortion in the data correla-
tion structure would be identified by an AE-based detector.
Other conventional detectors (classifiers) must be trained with
labeled data sets for every attack that they have been designed
to detect, and they are not guaranteed to detect any other
attacks for which they were not trained. This, in addition
to simplifying the training of AE-based detectors, enhances
the performance of AE-based schemes in comparison to other
attack detection algorithms. Moreover, it is more natural to
detect false data injection attacks using AEs as they can learn
latent correlation structures in the data. Dissimilarity between
the expected correlation model and the observed correlation
model can lead to a more natural classification compared to,
for example, SVM, where it is assumed that the two classes
can be separated by a hyperplane in some feature space.

The main contributions of this paper can therefore be
summarized as follows:

• We propose the use of autoencoders as a classification ap-
proach to detect false data injection attacks. Autoencoders
are able to learn hidden correlation structures in the data
in an unsupervised manner that would allow them to
detect corrupted data by assessing how far the corrupted
data correlation structure is from the expected, “learned”
correlation structure. Our proposed autoencoder learns
correlation in two dimensions: the time (same sensor
data at different times) and the spatial (across sensors)
dimensions. This would allow for better representation
of the correlation model at the hidden layers. To the best
of our knowledge, this work is the first to propose the use
of AE-based scheme to detect SDFI attacks. Additionally,
our proposed scheme has the potential of detecting other
types of attacks without the need for any modifications
to it.

• We propose the use of denoising autoencoders to clean
the corrupted data, by recovering the expected correlation
structure. Our results show the efficacy of our proposed
data cleaning denoising autoencoders in recovering clean
data from corrupted data. To the best of our knowledge,
this is the first work to propose the use of denoising AEs
to clean corrupted (attacked) data.

The remainder of the paper is organized as follows. Section
II presents a technical background. In Section III, we present
the details of our problem description. Section IV shows
the performance evaluation of our AEs machine. Section V



Fig. 1: Architecture of an Autoencoder with One Hidden
Layer

concludes the study.

II. TECHNICAL BACKGROUND

In this work, an ML-based approach is used to detect false
data injection attacks. The technique relies on the use of an
autoencoder (AE), which is a type of neural networks (NN)
that has proven to be very effective in detecting anomalies
[21]. Furthermore, a type of AEs, called denoising AE, is
used to clean up falsified data by recovering the correlation
structure (in the time and spatial dimensions) of sensor read-
ings. We will compare our proposed AE-based solution to
a baseline classification technique, namely, Support Vector
Machine (SVM) as SVMs have been pretext of smart grids [8],
[9]. In the next two subsections, a detailed technical review of
the basics of AEs and SVMs is presented.

A. Autoencoders

An AE is a fully-connected, unsupervised neural network
ML algorithm that applies backpropagation. As can be noticed
from Fig. 1, an AE consists of an input layer, one or more
hidden layers and one output layer. Generally, by letting bold
letters represent vectors, the output of the neural network is
represented as:

y = hθ(x), (1)

where x = [x1 x2 · · · xn]T is the input vector, hθ is the full
forward propagation function and θ is the set of weights and
biases to be learned by the network during the training phase.
This learning process is done by setting the target values at
the output to be the same as the input values (i.e., y = x):

hθ(x) = x. (2)

As mentioned earlier, an AE works as an unsupervised
learning algorithm that applies backpropagation. Unsupervised
learning means that during the training phase, only raw
features are required with no labelling. Meanwhile, backprop-
agation means that the error between the predicted output and
the target output propagates backwards from the output to each
neuron in the network to update the weights based on some
learning rate (α):

θi+1 = θi + ∆θi, (3)

where i is the index of the training epochs and ∆θi is the
weights update, and is calculated as

∆θi = −α∂E
∂θi

, (4)

and E is the cost function. In our case, we use the Mean
Square Error (MSE) as our error measure, which is given by:

E =
1

N

∑
m

(ym − xm)2, (5)

where N is the size of the training set, xm is the m-th input
vector, and ym is the m-th output vector.

AEs have the ability to learn the structure of the data and
the relationship among entries. Originally, they were used as
a data-compression model. They encode a given input into a
representation of smaller dimension. A decoder is then used
to reconstruct the input back from the encoded compressed
version. The main idea behind the compression and decom-
pression capabilities of AEs is the fact that AEs can exploit the
correlation between data entries. The more the correlated data
entries are, the more compressible they become. To achieve
this compression/decompression, the number of neurons in the
hidden layer is constrained to be less than the number of
neurons in the input/output layer1. The output of the hidden
layer is the compressed (encoded) version of the input, while
the final output is the retrieved version.

Correlation among data entries can not only be used for data
compression but it can also be used for the detection of false
data injection attacks. False data injection would disrupt the
correlation model of the data entries. As a result, a relatively
large MSE is expected at the output of the AE.

B. Denoising Autoencoder

Another type of AEs is the Denoising Autoencoder (DAE).
As introduced in [19], it has the same architecture of AEs.
However, the principle behind DAEs is to be able to recon-
struct data from an input of corrupted data. We train a DAE
by corrupting the data sets and feeding them into the neural
network. During the training phase, the target values at the
output is set to be the original data, while inputs are the
corrupted version of the data:

target output of hθ(x̃) = x, (6)

where x̃ is the corrupted set of input readings and hθ(x̃) is the
DAE output. DAE minimizes the cost function E(x, hθ(x̃)),
where E(., .) is some error measure. A DAE must undo the
corruption rather than simply replicating their input at the
output, and in doing so it captures only the most significant
features of the training data. This training enables the DAE
to recover the correlation among input readings by using the
original data.

1It should be noted that requiring the number of neurons in the AE hidden
layer to be less than the number in the input/output layer is not a general
requirement in AEs; some other AEs models can have the number of neurons
in the hidden layer to be larger than those in the input/output layers like
Sparse AEs



C. Support Vector Machines

An SVM is a classification technique that defines decision
planes to separate data points from different classes. This can
be visualized in Fig. 2 which shows an illustration of a 2-
D example (for simplicity of illustration). The objective of
the SVM is to maximize the width of the “street” separating
the two classes. H0 represents the boundary (hyperplane) that
divides the street into two halves; H1 and H2 are the two
planes (parallel to H0) that touch the nearest points from each
class to the boundary. These planes are given by

H0 : wTx + b = 0,

H1 : wTx + b = 1,

H2 : wTx + b = −1,

(7)

where w is the weight vector, x is input vector and b is the
bias. The distance between the planes H0 and H1 is given by
|w ·x|/||w|| = 1

||w|| . Hence, the distance between H1 and H2

is 2
||w|| .
In order to maximize the margin, we therefore need to

minimize ||w||, with the condition that there are no data points
between the planes H1 and H2. This results in a constrained
optimization problem that can be formulated as

min
w

1

2
||w||2

subject to :

yi(w · xi) + b)− 1 ≥ 0,

(8)

where yi is the label of each data point xi (yi is +1 for one
class and -1 for the other class) and i is the data point iterator.
Note that the constraint can be split into:

w · xi + b ≥ +1 when yi = +1 (class A)
w · xi + b ≤ −1 when yi = −1 (class B).

(9)

The above optimization problem is a quadratic convex opti-
mization problem with linear constraints, which can be solved
using any quadratic programming solvers [22, Chapter 4].

SVMs can be extended to achieve a nonlinear classification
by applying a kernel to the input data, mapping the input to
some high-dimension feature space.

As opposed to AEs, SVMs are supervised learning-based
algorithms. This means that the label of every point must be
provided. Given a set of training points, each belonging to
a class, an SVM training algorithm builds a non-probabilistic
model that classifies new data points to one of the two classes.
Based on the optimization problem described above, an SVM
model represents data entries as points in a high-dimension
space and finds a hyperplane to separate the classes such that
the distance between the nearest data points belonging to each
class to the decision boundary is maximized.

III. PROBLEM DESCRIPTION

In this section, a description of the problem at hand is
presented including the adopted model, the nature of the
attacks and finally the proposed detection technique.

Class A

Class B

H0

H1

H2

d+

d−

Decision 

Boundary

Fig. 2: Support Vector Machine Illustration

A. System Setup

The system that is used as an example in this paper is the
hydraulic system presented in [3]. The data set is a group of
sensor readings scattered for the hydraulic system monitoring
purpose. The data set was experimentally obtained (i.e. not
simulated) with a hydraulic test rig. The system cyclically
repeats constant load cycles (duration of 60 seconds) and
measures process values while the condition of four hydraulic
components (cooler, valve, pump and accumulator) is quantita-
tively varied. The data set includes readings from temperature,
pressure, volume flow, vibration, motor power and cooling
power sensors. The total number of sensors is 15 (6 pressure
sensors, 4 temperature sensors, 2 volume flow sensors, 1 motor
power sensor, 1 vibration sensor and 1 cooling power sensor).
The data set contains raw process sensor data (i.e. without
feature extraction). The number of readings gathered from
each sensor ranges from 132300 to 1323000. We use the least
number of readings to avoid empty incomplete input vectors.

B. False Data Injection (FDI) Attack Description

The attack that this work aims to detect is the False Data
Injection (FDI) attack. In order to adapt the use of our
technique to the needs and nature of IIoT systems, we adopt
the attack model presented in [23]. In this model, the intruder
can alter and/or false inject single or several sensors’ data
at any time to have these false data within a valid range of
authentic measurements.

The integrity attack on measured data is defined as follows.
Let’s define za as the recorded readings vector that may
have some false data. Consequently, za can be described as
za = z + a, where z = [z1, . . . , zm]

T is the clean measure-
ments vector, and a = [a1, . . . , am]

T is the added/fabricated
data vector. Therefore, the vector a represents the vector of the
attack where the i-th element of a, ai, is of a nonzero value
that reflects the intruder’s ability to falsify the i-th reading
and to substitute its corresponding authentic value with an
alternative false value.

C. Proposed Attack Detection Algorithm

As mentioned earlier, in this study, an AE is used for attack
detection due to its capability of capturing the structure of



the data and learning the correlation between readings. Then,
a DAE is used for cleaning the corrupted data previously
detected by the AE. The process is shown in Fig. 3 which
is a flowchart of the proposed scheme.

1) Autoencoder-based Detection Scheme: During the train-
ing phase, the AE is fed with the original data taken from the
sensors. Target values are set to be the same data. By the end
of this phase, the network becomes able to exploit the inter-
correlation between entries to compress and then decompress
back the input vector. Once the training phase is complete
and the weights are set, the AE can then be used for false
data detection.

When false data are fed to the AE, the network tries to com-
press and decompress the input vector. However, due to the
lack of the expected correlation structure in the false data, the
Mean Square Error (MSE) is larger than expected. To detect
false data, the MSE is compared to a pre-determined threshold
which is chosen as the mean of the validation MSE. Once
an MSE value exceeds the mentioned threshold, an attack is
declared. It is worth mentioning that validation is necessary
to avoid overfitting which means that the machine learns the
training data too well that it is unable to investigate new data.
This happens when the training data keep decreasing but the
validation error starts to increase. Therefore, by monitoring the
validation error, early stopping of the training process occurs
once it starts to increase.

2) Denoising Autoencoder-based Data Cleaning: When an
attack is detected, the corrupted data are then fed into a DAE.
DAEs are trained using the corrupted data as inputs and the
original data as target outputs. As a result, the DAE has the
capability of recovering the correlation among inputs. When
falsified data are fed into the DAE, the output is a clean version
of the corrupted input. This version can then be used in further
processing of the system at hand as a substitute during the time
of fixing the sensor under attack.

A pseudo-code of the whole process is given in Algorithm
1.

IV. PERFORMANCE EVALUATION

In this section, the performance evaluation results of the
proposed scheme are presented. This includes comparing it to
another SVM-based scheme from the literature.

A. Simulation Setup and Parameters

Simulations were carried out using the data set of [3]. The
Autoencoder (AE) of the proposed scheme is trained using
60% of the data, its validation is done using 20% of the data
and its testing is done using the remaining 20%. As mentioned
earlier, during the training phase, target values are set equal to
input values and weights are updated, one epoch after another,
such that the MSE is minimized. During validation and testing,
no target output is set. The output is calculated based on
the weights adjusted by the training and finally the MSE
is calculated. The validation error is used for two purposes.
First, it is monitored to avoid overfitting. Second, it is used
to calculate the threshold which, if exceeded by the MSE, an
alarm (detected attack) is set. Testing error is compared (for

Algorithm 1 False Detection Using Autoencoder
1: procedure PREPARE DATA SET
2: Divide data set into: 60% training, 20% validation and 20%

testing.
3: Prepare a falsified copy of the testing data by replacing

readings with another random numbers drawn from the normal
distribution having the same variance.

4: end procedure
5: procedure TRAINING
6: Initialize: Random weights.
7: Input: Nt readings from each sensor.
8: Backpropagation Learning Technique:
9: while Validation error is decreasing do

10: for Each training epoch do
11: Compute MSE based on current weights and current

input: E = 1
N

∑
m(ym − xm)2, where N is the size of the

training set, xm is the m-th input vector, and ym is the m-th
output vector.

12: Update Weights based on the MSE and learning rate.
13: Make sure that the validation error is decreasing to

avoid overfitting.
14: end for
15: end while
16: end procedure
17: procedure TESTING
18: Complexity: O(d · k) for each iteration, where d is the

number of dimensions of the input and k denotes the number of
dimensions of the encoding.

19: Input: Testing data and falsified data.
20: while Results are not satisfying do
21: Change hyper parameters (e.g. learning rate, batch size,

number of hidden layers, optimizer, ... etc.
22: Repeat training phase.
23: end while
24: end procedure
25: procedure DENOISING
26: Training: Use corrupted data as inputs and original data as

target outputs.
27: Testing: Use detected falsified data as inputs.
28: Output: Clean data.
29: end procedure

every input) with the threshold to decide whether the input
data are attacked. It is worth noting that AEs need be exposed
to neither the false data during the training phase nor the labels
for the input training data.

To exploit both the inter-correlation between the sensors and
the autocorrelation of the readings of a single sensor in the
time domain, the input to the AE is set to include more than
one reading from each sensor at every iteration rather than a
single reading per sensor. To choose the best number of time
instants to be considered, the AE was trained and tested for
Nt = 1, 2, 3, 4, 5, and 10, where Nt is the number of
readings (time instants) from each sensor to be fed to the AE
per epoch. The training loss for each Nt value is shown in Fig.
4. It is clear that the lowest loss value is at Nt = 2, where it
is 3.99e-7 for the training loss and 4.37e-7 for the validation
loss. The trend of decreasing training and validation losses at
Nt = 2 can be seen in Fig. 5.

The readings from each sensor are fed to the AE in parallel
to other sensors. There are 15 sensors in the network and each
one feeds the AE with Nt consecutive readings every iteration.
This results in a total of 15 ∗ Nt neurons in the input layer.
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Fig. 3: Flowchart of the AE-based Proposed Solution.
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Fig. 4: The Effect of Varying Number of Readings per
Sensor on the Training and Validation Losses

As mentioned earlier, the output layer is the same as the input
layer. Five hidden layers are used. The compression factor,
which is the ratio between the number of inputs and the inner-
most hidden layer which stands between the encoder and the
decoder, is set to 3. The size of the hidden layers between the
input (output) layer and the innermost layer decreases linearly
according to the compression factor. It is worth mentioning
that the number of hidden layers and the compression factor
are hyper parameters that are determined after several trials.
A summary of the AE simulation parameters is listed in Table
I.

When considering the comparison with SVM, on the other
hand, we find that SVM must be trained with both types of
data (original and false) along with labels for each class. This
requires some extra effort for preparing the false (attacked)
data for training and labeling each set of sensors’ data. During
the training phase, the machine creates the optimization model
(based on Lagrange multipliers). Then, during the testing
phase, the model investigates new inputs and classifies each
of the classes (false data class or clean data class).

Falsified data used for testing and also for SVM training
are obtained by two methods

1) Add a random number to the entries of all sensors. The
random number is drawn from a uniform distribution in

Fig. 5: Training and Validation Losses in the Training Phase.

the range of +/− 10% of the original value - Referred
to as “Case 1” in the rest of this section.

2) Alter the entries of only one sensor (to simulate the case
of only one attacked sensor). The entries of one sensor
are replaced with another value drawn from a normal
distribution with mean and variance that are equal to
those of original data (To create a scenario more difficult
to be detected). This case is referred to as “Case 2” in
the rest of this section

Both machines (AE and SVM) were tested under the two
scenarios.

As mentioned earlier, the AE was tested for Nt =
1, 2, 3, 4, 5, and 10. For the sake of further confirmation of
the best choice of Nt, an actual test under “Case 1” and “Case
2” is carried out for each value of Nt. Furthermore, the test
was done for the SVM as well to make a fair comparison.
Results can be seen in Fig. 6 in which the percentage of
accurate decisions is plotted. In the figure, the Accuracy Rate
can be defined as the percentage of the number of entries that
were correctly decided by the machine (regardless of whether
an attack or clean data were determined) to the whole number
of entries. From the figure, we can confirm that Nt = 2 is the
best choice for the proposed AE-based scheme. However, for
the SVM, Nt = 3 seems to give better results. For this reason,
further comparisons will take place using the best value of Nt
for the corresponding scheme. It can also be seen from Fig.



TABLE I: Autoencoder Simulation Parameters

Parameter Value
Number of readings per sensor (Nt) [1 2 3 4 5 10]

Number of neurons in input layer Nt ∗ 15
Number of neurons in output layer Nt ∗ 15

Compression factor 3
Number of hidden layers 5

Number of neurons per hidden layer Decreases linearly according to the compression factor
Learning Algorithm Unsupervised learning applying backpropagation

Optimizer RMSprop
Learning Rate 0.001
Training Data 60% of whole set

Validation Data 20% of whole set
Testing Data 20% of whole set + equal amount of false data

Number of training epochs 20 (determined by the early stopping criterion)
Threshold mean of validation error
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Fig. 6: The Effect of Varying Number of Readings per
Sensor on the Decision Accuracy

6 that the accuracy in “Case 1” (for both machines) is higher
than that of “Case 2”. This is due to the difficulty of detecting
only one malfunctioning (attacked) sensor. Moreover, the type
of attack is even trickier to be detected. This is because
replacing the sensor readings with values from the normal
distribution with the same mean and variance will slightly
affect the inter-correlation between readings. It is also worth
mentioning that the accuracy of the proposed scheme is higher
than that of the SVM-based scheme in all cases. However, this
will be discussed in more details later.

B. Testing and Comparing the Final Decision Accuracy

A comparison between the two machines from the per-
spective of the percentage of correct attack detection and the
percentage of false alarm is shown in Fig. 7. In the figure,
the Rate of Detection can be defined as the percentage of
the number of false entries that were correctly detected by
the machine to the whole number of entries. Additionally, the
Rate of False Alarm can be defined as the percentage of the
number of clean entries that were mistakenly decided by the
machine as false data to the whole number of entries. Other
famous kernels (other than the linear kernel) were tested for
the SVM (e.g., RBF and Gaussian). The AE has proven to

be more reliable and it outperforms the SVM in both cases.
This can be justified by the capability of AEs to learn the
hidden complex correlation structures of the data. Anomalies
in input data that cause the difference between the expected
data structure and the observed one can lead to a more robust
classification compared to SVM where it is assumed that the
two classes are separable by a hyperplane in some space.

A higher percentage of detection and a lower percentage
of false alarm are recorded. Furthermore, the percentage of
detection of the AE-based scheme reaches 100% in “Case
1”. SVM, with a linear kernel, gives better performance than
with the other two kernels. It is worth mentioning that the AE
gives equal percentages of false alarm in both cases. This is
because during the training phase, the machine was subjected
to original (clean) data only and the same machine is used
for both cases. However, the SVM must be subjected to false
data in the training phase. That is why each case needs a
new trained machine. This is also another major advantage
of AE-based approaches, which is that they can detect other
attacks since AEs are not trained to classify any “specific”
attack. Rather, AEs are trained with clean data. An AE-based
attack detector can detect any attack that causes a significant
distortion in the data correlation model. However, to detect
other attacks in the case of SVM, the machine must be trained
with labeled data for every possible attack and there is no
guarantee that an SVM trained to classify a specific attack
will be able to detect other attacks.

To make a better visualization of the results, Fig. 8 gives
a snap shot of a portion of the time series of the test data
and the decision of both machines. As explained earlier, the
ability of the AE to learn the data structure results in better
performance and higher accuracy. Therefore, Fig. 8 shows less
miss-detections and false alarms in the case of the AE-based
scheme. It is worth mentioning that the AE is not better than
the SVM at every instant. For example, at instant 175, SVM
was able to detect the attack while AE was not. However,
AE still gives a better average performance and a higher
percentage of detection.

The Receiver Operating Characteristics (ROC) plot for both
machines is shown in Fig. 9. The ROC is the relation between
the rate of false alarm and the rate of detection. When
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comparing two methodologies, a better scheme is the one
that achieves a higher detection rate for the same false alarm
rate. It is noticeable from Fig. 9 that the AE-based scheme
outperforms the SVM-based scheme in terms of ROC as well.

C. Complexity Analysis

The training complexity of SVM can be approximated to
O(N3), where N is number of data entries [24]. On the other

Fig. 9: Receiver Operating Characteristics Plot

hand, the training complexity of AEs is O(d · k) for each
iteration, where d is the number of dimensions of the input
and k denotes the number of dimensions of the encoding [25].
To apply this to the case at hand, the number of readings taken
from each sensor is 132300. Only 60% is used for training;
this gives 79380. By taking Nt = 3 readings from each sensor
every iteration, the total number of entries is 79380

3 (= 26460)
for each sensor. With 15 sensors under consideration, this
results in N = 396900 data entries. This gives a training
complexity, approximately equals O(6e16) for the SVM. On
the other hand, for the AE, the dimension of input vector
d = Nt ∗ 15 = 30, while the dimension of the encoded vector
k = 10 (since the compression factor is chosen to be 3). It
is also necessary to consider the number of training epochs,
which is chosen to be 20 in our case. This results in a training
complexity O(30 ∗ 10 ∗ 396900 ∗ 20) = O(2e9). Clearly, the
complexity of the AE is a lot less than that of the SVM. The
training was carried out on a SAMSUNG laptop that uses a
Windows 10 Pro operating system, an Intel 2.40 GHz Core
i7 processor and 8.00 GB RAM. The AE needed less than
one minute to train while the SVM (linear kernel) needed 15
minutes to train.

D. Denoising Autoencoder

In this experiment, the Denoising Autoencoder (DAE) is
used to clean up the corrupted data, detected by the original
AE. The DAE is trained and tested using corrupted data from
both cases (Case 1 and Case 2). As mentioned earlier, when an
attack is detected (by the AE), the falsified data are fed to the
DAE to obtain a clean version as close as possible to original
data. To prove that the output of the DAE is able to regain the
correlation model of the data, the Mean Square Error (MSE) of
the corrupted data (both cases) is plotted before and after the
DAE in Fig. 10. This error represents the difference between
the corrupted data and the original data with and without the
DAE. In Fig. 10, the MSE is noticed to decrease immensely
when DAE is used. This means that the DAE is able to recover
a clean version of the corrupted data by recovering the data
“hidden” correlation model. It is also noticeable that the MSE
in case 2 is less than that in case 1. This is because the nature
of the attack in case 1 causes all sensors to be corrupt, while
in case 2, only one sensor is corrupt. Therefore, although the
attack on only one sensor is harder to detect, if the attack is
causing only one sensor to be corrupted it is easier to recover
the data if the attack is detected. It is worth mentioning that
the input data are normalized, that is why mean square errors
are all less than 1.

E. Limitations

In the following we highlight the limitations of the proposed
algorithm. These limitations can be summarized as follows
• The proposed algorithm is able to detect attacks that ruin

the correlation among sensor readings. If the attack is able
to maintain this correlation, the AE might not be able to
detect it. For instance, if the attacker used data from the
measurements history in which readings are taken from
the same cycle, the AE algorithm may not detect this.
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• The DAE must be trained for each type of attack, unlike
the AE which does not need any labels or supervised
learning. This limits the use of the DAE to the specific
attacks that it was trained to fix.

V. CONCLUSIONS

In this paper, we presented a novel method of detecting
false data injection attacks against a complex hydraulic sensor-
based system using Autoencoders (AEs). The proposed de-
tection method offers better detection performance compared
to support vector machine based methods (e.g. linear kernel,
RBF kernel, and Gaussian kernel). In addition, AEs are easier
to train since they do not require labeled data for training.
Finally, AEs are able to detect different attacks since they can
learn hidden complex correlation structures in the data. Any
attack that will cause significant changes in these correlation
structures can be detected by the AE-based attack detection
algorithm. However, this is not the case for any other classifier
like SVM which is trained to detect a “specific” attack (or a set
of attacks) and it is not guaranteed to detect any other attack
for which it was not trained with labeled data. We adopted
two different scenarios of FDI attacks which we referred to as
case 1 and case 2 in the study. In both scenarios, our approach
offered the highest probability of attack detection with the
lowest rates of false alarm and the lowest execution time. We
also presented the results of using a denoising autoencoder
to recover from the attack’s effects on data. The results
demonstrated the high ability of the denoising autoencoder
to recover the data to their original state with very low mean
square error values.
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