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Abstract—In this paper, we propose a reinforcement learning
(RL) approach to design an access scheme for secondary users
(SUs) in a cognitive radio (CR) network. In the proposed scheme,
we introduce a deep Q-network to enable SUs to access the
primary user (PU) channel based on their past experience and
the history of the PU network’s automatic repeat request (ARQ)
feedback. In essence, SUs cooperate to avoid collisions with other
SUs and, more importantly, with the PU network. Since SUs
cannot observe the state of the PUs queues, they partially observe
the system’s state by listening to the PUs’ ARQ packets. To model
this system, a Partially Observable Markov Decision Process
(POMDP) is adopted, and an RL deep Q-network is employed for
the SUs to learn the best actions. A comparative study between
the proposed scheme with baseline schemes from the literature
is presented. We also compare the proposed scheme with the
perfect sensing system (which constitutes an upper bound on
the performance) and the system exploiting only the last ARQ
feedback. Our results show that the proposed RL based access
scheme yields comparable performance to the baseline ARQ-
based access schemes, yet, with minimal knowledge about the
environment compared to the baseline which assumes perfect
knowledge of key system parameters, e.g., PUs arrival rates. On
the contrary, our proposed scheme autonomously learns these
parameters and, hence, dynamically adapts to their variation.

I. INTRODUCTION

The cognitive radio (CR) communication paradigm is a
major solution to absorb the dramatic increase in wireless and
mobile users. The number of Internet users in the United States
is projected to increase from 272 million users in 2017 to 283.5
million users in 2022 [1]. Therefore, there is a growing interest
in wireless research pertaining to opportunistic radio spectrum
access and interference management.

A cognitive radio network typically follows the cognitive ra-
dio cycle shown in Fig. 1 [2]. In our prior research, we focused
only on the perception and cognitive adaptation aspects of CR
systems [3], [4]. We considered a CR systems in which SUs
exploit the automatic repeat request feedback (ARQ), and/or
the channel quality indicator (CQI), which are transmitted in
the PU network. On another front, the research community
has been also focusing on the learning and reasoning aspects
of cognitive radio networks [2]. Learning in CR networks
aims at collecting and analyzing data over the course of past
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Fig. 1: The Cognitive Cycle [2]

experience of the CR user. It then utilizes the gathered data
for the reasoning step. In [5], a supervised machine learning-
based approach is proposed to regulate dynamic handover in
CR networks. The proposed scheme is shown to result in better
decisions than the traditional cooperative spectrum sensing
(CSS) techniques. In [6], the authors proposed a Distributed
Spectrum-Aware Clustering (DSAC) scheme for cognitive
radio sensor networks (CRSN). The proposed scheme shows
superior performance in terms of scalability and stability
compared to other baseline schemes.

In [7], the authors adopt a reinforcement learning (RL)
approach for dynamic channel allocation and power control
for spectrum management. The used RL approach achieves
less interference to the PU, while keeping a high probability of
successful transmissions. The authors in [8] employ Q-learning
for channel allocation in a CR system. It is observed that Q-
learning results in fast convergence to a near-optimal solution
in small scale networks.

In this work, we build upon the work in [9] by applying
reinforcement learning to the spectrum access problem. In [9],
the authors proposed a protocol based on PU ARQ feedback.
The SU observes the history of the PU ARQ feedback. A
POMDP models the SU access policy. However, an exact
solution for the POMPD was not derived, and the authors
proposed a greedy algorithm that enables the SU to use the
PU feedback history to decide its channel access actions.

In this work, we adopt reinforcement learning to enable



the SU to explore the environment and adapt its actions to
best exploit the PU’s ARQ feedback. By observing the history
of the PU ARQ feedback messages, the SU can estimate
the number of packets in the PU queue and, consequently,
decide on the access probabilities to the PU channel. It is
noted that RL enables the SU to achieve this goal without
prior knowledge about the PU network, the system model or
parameters. Since the SU does not directly observe the state of
the PU’s queue, the system is modelled using a POMDP, and
we adopt a deep Q-network (DQN) to learn the best action for
each PU feedback state. The system is then generalized to the
multiple SUs case by a cooperative multi-agent RL algorithm.
Moreover, our results show that we do not have to exploit the
full history of the ARQ feedback bits, and that using only the
last ARQ bit to make the SUs’ access decision does not cause
any significant performance loss.

The rest of the paper is organized as follows. Section
II presents the system model along with the POMDP and
MAC access policy. The proposed deep RL algorithm and its
implementation are presented in section III. Finally, numerical
results and conclusions are drawn in section IV and section
V, respectively.

II. SYSTEM MODEL

In our cognitive radio model, we consider Ms SUs and
Mp PUs. Time is slotted, and PUs employ a classic TDMA
access scheme such that only one PU accesses the channel
in any given time slot. PUs have infinite buffers for storing
incoming packets. The packet arrival process is a Bernoulli
process with independent and identically distribute arrivals and
average arrival rate λp packets per time slot. It is assumed
that a slot duration is equal to the packet transmission time.
Therefore, 0 ≤ λp ≤ 1, otherwise, the PUs queues will not be
stable.

SUs access the PUs channel using the slotted ALOHA
random access scheme with access probability as()̇. The
access probability is selected based on the SUs estimate of the
state of PUs queues. In our proposed system presented in the
next section, the access probabilities will be determined using
the DQN. The SUs are assumed to be fully backlogged, i.e.,
they always have packets to transmit. Finally, we assume an
ideal communication channel and adopt the collision channel
model. In the collision model, if the PU and SU transmit
concurrently, all involved packets will be lost and the PU will
re-transmit its lost packet in the next time-slot. At the end of
each transmission attempt, the PU receiver sends an ACK or
NACK packet, declaring a successful or failed transmission,
respectively.

A. The POMDP Model

In an ideal cognitive radio system, the SU would know the
state of the PU. The SU would transmit if the PU queue
is empty, and remain silent otherwise. However, in a real
system, SUs do not have access and cannot observe the exact
state of the PU queue. SUs resort to spectrum sensing to
detect when the PU is not transmitting. In this work, SUs
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Fig. 2: The PU queue Markov chain model

listen to the PUs ARQ feedback and use this feedback’s
history to estimate the state of the PUs queues. Since the
actual state of the PUs queues cannot be observed, we use a
partially observable Markov decision process (POMPD) model
to model the system dynamics. Furthermore, since our network
consists of Ms SUs, our systems is considered as a cooperative
multi-agent system.

In our ARQ based system, there are three types of PUs
feedback states, namely, ACKs, NACKs, and No-Feedback
(No-FB). An ACK denotes a successful transmission, a NACK
denotes a failed transmission, and No-FB means that the PU
did not attempt any transmission in the last time slot. Based
on the observed feedback packets, each SU constructs a belief
vector representing the Markov chain states of the PU queue.

The PU queue is modeled using the Markov chain shown
in Fig. 2. This MC the state space given by S = {KD : K =
0, 1, 2, · · · and D ∈ {F,R}}, where K denotes the number
of packets in the PU queue, and the subscript D refers to
the state of the packet at the head of the queue; F refers to
the first transmission, while R means that the packet is being
retransmitted, after receiving a NACK feedback.

The POMDP is characterized by the tuple(
S, A, P (s′|s, a), R(s, a), Ω, O

)
; the set S denotes

the states of the PU queue’s MC, S = {{iF } , {jR}},
i = 0, 1, · · · and j = 1, 2, · · · . The set A denotes the set of
each SU actions (which correspond to different SU access
probabilities). P (s′|s, a) is the state transition probability
function, it denotes the probability to go from state s to state
s′ given the action a. Below we give some examples for
P (s′|s, a) for several values of s, s′ and a.

P (iR|jF , no access) = 0, ∀i, j
P (iF |jF , access) = 0, ∀i, j 6= 0

P (1F |0F , access) = λp,

P (1F |0F , no access) = λp,

P (iR|jF , access) =


1− λp if i = j, j 6= 0

λp if i = j + 1, j 6= 0

0 otherwise,

P (iF |jR, no access) =


1− λp if i = j − 1

λp if i = j

0 otherwise.

(1)



The reward function for each SU is defined as follows,

R(s, a) =


r1 a = access, s = 0F

0 a = no access, ∀s
−1 a = access, s 6= 0F

. (2)

It is the immediate reward that the SU earns for taking a
specific action in a given state. If the queue of the PU is empty,
i.e., s = 0F and the SU accessed the channel, it will gain a
positive reward r1

1. However, If the queue is not empty and
the SU accessed, it receives a penalty for causing a collision.
No reward or penalty is received in the case of not accessing
the channel.

The set Ω is the set of observations and is given by Ω =
{ACK, NACK, No-FB}.

The function O(o|s′, a) defines the conditional probability
of observing o when action a is applied and the system makes
a transition to state s′. It can be calculated as follows 2:
O(o|s′ = iF , no access)

=



0, o = NACK and ∀iF
PACK(0F ), o = ACK, iF = 0

PNo-FB(0F ) = 1− PACK(0F ), o = No-FB, iF = 0

PACK(1F ), o = ACK, iF = 1

PNo-FB(1F ) = 1− PACK(1F ), o = No-FB, iF = 1

1, o = ACK, iF ≥ 2

0, o = No-FB, iF ≥ 2

.

(3)

Note that the values of PACK(0F ), PNo-FB(0F ), PACK(1F ) and
PNo-FB(1F ) will not affect our formulation and are mentioned
here for the completeness of the POMPD analysis.

O(o|iF , access) =


0, ∀o and iF ≥ 2

1, o = No-FB, iF = 0, 1

0, o = ACK or NACK, iF = 0, 1

(4)

O(o|iR, no access) = 0, ∀o (5)

O(o|iR, access) =

{
1, o = NACK
0, otherwise

. (6)

The belief vector is given by b(st) =
[b(0F )t, b(1F )t, b(1R)t, · · · ], where t is the time index.
After taking an action at and observing ot+1, the new belief
at time (t+ 1) can be calculated by

b(st+1) = ηO(ot+1|st+1, at)
∑
st∈S

P (st+1|st, at)b(st), (7)

1The value of r1 is a control parameter in our system that controls the
access decisions of the SU and how aggressive these access decisions could
be.

2By abuse of notations, we set Pr(A|B) = 0 if Pr(B) = 0 (for example
we set Ø(o|iR, no access) = 0 since Pr(iR, no access) = 0 under our
collision channel model assumption).

where η is a probability normalization factor given by

η =
1∑

st+1∈S O(ot+1|st+1, at)
∑
st∈S P (st+1|st, at)b(st)

.

B. POMDP MAC Policy

In this section, we describe the MAC policy in which the
belief vector at the SU is used to define its action. The mapping
between the belief vector and the actions is affected by the
current state’s reward as well as the expected reward in the
subsequent states, which is governed by the dynamics of the
Markov chain. Based on a belief vector b and an action a, the
expected reward is given by

r(b, a) =
∑
s∈S

b(s)R(s, a). (8)

For any belief vector b, the SU access policy π is defined by
an action aπ = π(b), where the policy defines the probability
for each action under a certain belief vector. The target is to
maximize the accumulated reward over an infinite horizon.
Starting with a belief vector b0, the estimated reward for
policy π is given by

Jπ(b0) =

∞∑
t=0

γtr(bt, at) =

∞∑
t=0

γtE
[
R(st, at) | b0, π

]
(9)

where 0 ≤ γ < 1 is a discount factor. The optimal policy π∗

is given by
π∗ = argmax

π
Jπ(b0) (10)

where b0 is the initial belief vector as defined above.
For each belief state, the maximum expected reward value

specifies the optimal policy, π∗. It is closely modeled by the
best value function V ∗, which is the solution for the following
Bellman equation

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈O

O(o | b, a)V ∗(τ(b, a, o))
]
,

(11)
where τ(b, a, o) is the belief state transition function.

It should be noted that one might not always be able to
construct the belief vector, for instance, if the SU does not
know λp. Therefore, and unlike the work in [9], we propose
to implement an RL based MAC that can efficiently learn
model-free systems in which the underlying dynamics are not
fully characterized.

III. DEEP Q-NETWORK ARCHITECTURE AND
IMPLEMENTATION

A. ε-Greedy Q-Learning Algorithm

Q-learning [10] is one of the most commonly used RL
algorithms. It aims at finding the optimal policy that maxi-
mizes the expected reward over a finite or an infinite time
horizon. The Q-function (or table) is a representation of the
quality of all state-action combinations. The Q-table follows
the shape (state, action), and its entries are the Q-values for
the corresponding state-action combination. The Q-learning
algorithm can be summarized as follows:



1) Initialize all entries in the Q-table to zero.
2) The agent starts at state st ∈ S.
3) ε-greedy policy is used to select the agent’s action.

It selects the action with the highest Q-value with
probability 1− ε and a random action (for exploration)
with probability ε.

4) The agent applies the selected action at ∈ A to the
environment. The instantaneous reward rt ∼ R(st, at)
is determined and the environment moves to the next
state st+1 ∼ P (s′|a, s).

5) The Q-table is updated using the Bellman equation:

Q(st, at) =(1− α)Q(st, at)

+ α(rt + γmax
a

Q(st+1, a)),
(12)

where α ∈ (0, 1) is the learning rate, γ ∈ (0, 1) is the
discount factor, and maxaQ(st+1, a) is the maximum
expected reward for all possible actions at the next state
st + 1

It was proven that the Q-learning algorithm converges to
the optimal Q-function if all state-action pairs can be visited
infinitely often [10], [11].

B. Deep Q-Learning (DQN) Algorithm

The size of the Q-table constructed by the Q-learning
algorithm described above can be very large depending on
the number of states of the environment and the number of
possible actions per state. Furthermore, it can be seen that the
Q-value for a non-visited state cannot be inferred from already
visited states. To alleviate these shortcomings, the use of deep
Q-learning has been proposed. In deep Q-learning, a neural
network is used to approximate the Q-function. The input to
the neural network is the state of the environment and the
outputs are the Q-values for all possible actions.

In Deep Q-learning, two neural networks are used, namely,
the predicted network and the target network. Both networks
are parameterized by θ to represent Q(s, a; θ). The input to the
predicted network is the observation s and the output are the
Q-values Q(s, a, θi) for each action a ∈ A, where θi are the
parameters of the predicted network. ε-greedy policy is used
to select the action that maximizes Q(s, a, θi) with probability
1− ε and a random action for exploration with probability ε.
The target network aims to minimize the loss:

Li(θi) = E[(rt + γmax
a′

Q(s′, a′; θ−i )−Q(s, u, θi))
2], (13)

where θ−i are the target network parameters that are used to
update the parameters for the predicted network [12].

In this paper, we consider the case of multiple agents
representing the multiple SUs in the network. In a multi-
agent environment, each agent independently learns its own
Q-function and selects its action. Agents can cooperate by
sharing information needed to select the optimum action for
each agent. In this paper, we use the cooperative Q-learning
algorithm described as follows [13]:

1) Agent n observes the state st of the environment.

Environment

Agent

Reward

L bits of PU ARQ

Action

Input layer
3L neurons

Dense layer

Output layer

Fig. 3: The SU Deep RL Architecture.

2) Agent n shares the row of its Q-table that corresponds to
the current state st, Qn(st), with all other cooperating
agents.

3) Agent n determines its action ân based on

ân = arg max
ân′

(
∑

1<n′<N

Qtn′(st)) (14)

4) Agent n receives a reward rn corresponding to action
ân and state st.

5) Agent n updates the Q-value (Q(st, ân)) using (12), and
the process is then repeated

Fig. 3 depicts the DQN model used in this paper. The SU
(agent) is a deep neural network that has the PU’s ARQ feed-
back (observation) as input. The output of the deep RL model
is the Q-value for each action (an action is the probability with
which the SU decides to access the PU channel in the current
time slot). The SU then chooses the action with the highest
Q-value. In the case of the ε-greedy policy, the SU chooses
the action with the highest Q-value or a random action with
probability 1− ε and ε, respectively.

The structure of the agent’s deep neural network model is
shown in Fig. 3. The agent’s model is implemented using the
Keras functional API [14] and using TensorFlow back-end
[15]. It consists of an input layer and two fully connected
layers. The inner layers use the sigmoid activation function,
and the final output layer uses a linear activation function.

The overall RL environment is implemented using the
OpenAI Gym toolkit [16]. Table I states the values of the
parameters used in our implementation. It is worth noting that
the values are selected based on trial and error to yield the
best performance possible.

IV. NUMERICAL RESULTS

In this section, we present the performance results of our
proposed feedback-based deep RL channel access scheme. We
consider the SUs throughput as the performance metric. For
our RL based scheme, we consider the case where the system



TABLE I: List of network parameters.

Parameter Value
The number of episodes (M) 10000

The discount factor (γ) 0.85
Initial value in ε -greedy exploration(εinitial) 1
Final value in ε -greedy exploration (εmin) 0.01

Decay factor of ε -greedy exploration(εdecay) 0.995
Learning rate (α) 0.001

Agent history length (L) 1-5
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(Ms = 2,Mp = 2, pd = 0.6, pf = 0.3, L = 1).

relies only on the information collected from the PUs’ ARQ
feedback without sensing the PUs’ channel status and compare
it to the works in [9] and [17]. We also consider the case where
the system uses spectrum sensing in addition to the PUs’ ARQ
feedback and compare it with the scheme presented in [18].
Moreover, all systems are compared with the ideal case (which
constitutes an upper bound on performance) where SUs can
perfectly sense the PUs presence, hence, no collisions between
PUs and SUs can take place, and SUs can exploit all idle time
slots. We consider different number of PUs, Mp and SUs,
Ms. Finally, it is assumed that the SUs action space has five
actions. That is, a SU can access the PU’s channel in a given
time slot with an as ∈ {0, 0.25, 0.50, 0.75, 1}.

In Fig. 4, we investigate the effect of the length of the
PU feedback (FB) history (L) collected by the SU on the
achievable SU throughput. Here we consider only one SU
and one PU with no spectrum sensing. The SU bases its
access decision on the last L ∈ 1, 3, 5 ARQ feedback packets
overheard from the PU. The results reveal that increasing the
length of the feedback history used has a minor effect on the
SU throughput. Therefore, it can be concluded that, based on
the studied system setting, the last feedback packet overheard
from the PU has the predominant effect on the SU throughput.

Fig. 4 also compares the performance of our RL-based
scheme with the systems proposed in [17] and in [9] which
exploits PUs’ ARQ feedback for SUs channel access decisions.
It can be seen that the performance of the three systems is
comparable. However, it should be noted that in both [17]
and [9] the SU is assumed to perfectly know the number of
PUs and their arrival rates in addition to observing the ARQ
feedback messages. On the contrary, our scheme assumes that
SUs observe only the PUs ARQ feedback without any prior
information about the number of PUs or any other system
parameters.

In Fig. 5 and Fig. 6 we investigate the performance of our



RL-based access scheme using hard-decision energy detec-
tion for spectrum sensing. Our scheme is compared to the
access scheme proposed in [18] which exploits the last PU’s
ARQ feedback and employs a more sophisticated soft-sensing
energy detector. Since our system is based on hard-decision
spectrum sensing, we had to rework the soft-sensing based
SUs’ throughput analysis of [18]. The hard-decision based
SUs’ throughput of the system proposed in [18] for the case
of two SUs is given by

µs = as(1− pf )(pf + (1− as)(1− pf ))

(λpa
2
sp

2
d − 2λpa

2
spd + λpa

2
s + 2λpaspd − 2λpas − λp + 1),

(15)
where pd is the detection probability of the spectrum sensor
and pf is the probability of false alarm.
The access probability that maximizes the SU service rate a∗s
is obtained by differentiating the SU service rate in equation
(15) with respect to as and equating the result to zero.

Fig. 5 and Fig. 6 depict the per SU throughput for our RL-
based access scheme using the hard-decision spectrum sensing
(RL sensing) using only the last PU’s ARQ feedback (L = 1).
The results are compared to the case of no spectrum sensing
(RL no sensing), the system proposed in [18] (FB sensing), and
the ideal system (perfect sensing). The system is composed of
Ms = 2 SUs and Mp = 2 PUs. The effect of the performance
of the spectrum sensing scheme on the SUs throughput is
investigated by setting the probability of detection pd = 0.9
and probability of false alarm pf = 0.1 in Fig. 5, and setting
pd = 0.6 and pf = 0.3 in Fig. 6.

From Fig. 5 and Fig. 6, it can be seen that there is a
significant improvement in SUs throughput by adding the hard-
decision spectrum sensing to our RL-based access scheme. It
is evident by now that exploiting the information embedded
in the PUs ARQ feedback alongside spectrum sensing, both,
our RL-based scheme and the scheme in [18] have almost the
same performance, which is very close to the ideal scheme of
”perfect sensing”. It is also noted that our RL based access
scheme is robust to the changes in the spectrum sensing
parameters. The achieved throughput is almost unaffected by
the degradation of the detection and false alarm rates of the
energy detector between Fig. Fig. 5 and Fig. 6.

It is important to note that our proposed RL-based access
scheme does not have any information about the PUs, except
for the overheard ARQ feedback. However, in [18] it is
assumed that the SUs know the PUs arrival rates in addition
to overhearing the ARQ feedback messages. The information
about the PUs arrival rate is not expected to be always
available to the SUs. Additionally, this arrival rate can vary
over time, which will force the system in [18] to recalculate
its access probabilities while our RL-based scheme will be
able to learn from the environment and adapt seamlessly to
any change in PUs arrival rates.

V. CONCLUSIONS

In this paper, the design of a deep Q-learning based spec-
trum access scheme for cognitive radio networks is presented.

In the proposed scheme, SUs overhear the ARQ feedback
available in the PUs’ network and exploit it to learn the PUs
behavior. Since the SUs observe only the PUs’ ARQ feedback
and have no information about the PUs packet arrival rates
or the states of their queues, the system is modeled as a
partially observable Markov decision process (POMDP). The
proposed deep Q-learning access scheme is used to solve
this POMDP and find the best SUs’ actions (channel access
probabilities) based on the observed PUs’ ARQ feedback and
past experiences. The performance of the proposed scheme is
shown to be on par with that of other feedback-based access
schemes with more sophisticated channel sensing algorithms,
with the added strength of only having partial information
about the PUs and the primary network.
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