
A POMDP Framework for Cognitive MAC Based
on Primary Feedback Exploitation

Karim G. Seddik1 and Amr A. El-Sherif2
1Electronics and Communications Engineering Department, American University in Cairo, New Cairo 11835, Egypt.

2Department of Electrical Engineering, Alexandria University, Alexandria 21544, Egypt.
email: kseddik@aucegypt.edu, amr.elsherif@ieee.org

Abstract—In this paper, a design for a cognitive MAC protocol
based on Primary User (PU) feedback exploitation is proposed.
A queuing approach is adopted and an infinite-state Partially
Observable Markov Decision Process (POMDP) framework is
proposed where the states represent the number of packets in
the primary queue. The primary user quality of service (QoS)
guarantee is defined through a primary queue stability constraint.
Finally, we propose a greedy algorithm to simplify the design of
the MAC protocol. Existing techniques and results for POMDP
can then be used to develop MAC protocols.

Index Terms—Cognitive Radio, POMDP, Queue Stability

I. INTRODUCTION

Cognitive Radio technology is a communication paradigm
that emerged in order to solve the spectrum scarcity problem
by allowing secondary users (SUs) to exploit the under-utilized
spectrum of the primary users (PUs). Coexistence of such
SUs along with PUs is allowed under the condition that
some minimal quality of service (QoS) level is guaranteed
for PUs. Several works have considered the design of SU
MAC protocols to allow for secondary access with primary
QoS constraint(s).

In this paper, we consider the design of SU MAC proto-
col based on PU feedback exploitation. Several works have
considered the use of PU feedback information to design the
SU access protocol. For instance, in [1], the SU observes the
automatic repeat request (ARQ) from the primary receiver. The
ARQ feedback messages reflect the PU’s achieved packet rate.
The cognitive radio’s objective is to maximize the secondary
throughput under the constraint of guaranteeing a certain
packet rate for the PU. Secondary power control on the
basis of the primary link feedback is investigated in [2]. The
objective was to maximize the SUs’ utility, in a distributed
manner, while maintaining a PU outage constraints. In [3], the
optimal transmission policy for the SU, when the PU adopts a
retransmission based error control scheme, is investigated. The
policy of the SU determines how often it transmits according
to the retransmission state of the packet being served by the
PU.

A simple idea was introduced in a previous work [4] in
which SUs refrain from accessing the channel upon hearing a
NACK from the primary receiver allowing for an interference-
free primary retransmission, thereby increasing secondary
throughput and decreasing primary packet delay. Also, in [5],
the use of PU feedback information along with soft energy

sensing was used to design the SU access scheme with a PU
QoS constraint defined in terms of the PU queue stability.

In this paper, we formulate the SU MAC protocol design
as a partially observable Markov decision process (POMDP).
Different from [4], [5], where only the last PU feedback bit
is considered, we use the PU feedback history to make the
SU access decisions (which allows the SU to have perfect
information about the PU service process). Our formulation
will results in a POMDP with infinite number of states which
is, in general, very difficult to solve and this is why we resort
to the design of a simple, greedy algorithm that will make the
access decisions based on maximizing the instantaneous SU
reward. Finally, we present some simulation results to compare
our proposed greedy algorithm with the algorithm of [4]. Also,
we show that our proposed greedy algorithm will guarantee
the PU queue stability.

II. SYSTEM MODEL

In our model, we consider a time-slotted network with one
primary user and one secondary user (extension to multiple
PUs with TDMA is straightforward). The PU has an infinite
buffer for storing its incoming packets. The packet arrival
process is assumed to be Bernoulli i.i.d. with an average
arrival rate of �

p

packets-per-time slot. A slot duration is equal
to the packet transmission time, and therefore, we assume
0  �

p

 1 or else the queues will not be stable. Finally,
we consider the case where SUs always have packets to send.

Furthermore, we adopt a collision model, for simplicity of
presentation, in which whenever more than one transmission
proceeds at a time, all packets involved are lost. A situation
in which the interference is assumed to be too high for the
receivers to have a decodable signal.

III. THE POMDP FRAMEWORK

In our proposed framework, the SU will be able to receive
the primary feedback bits in the form of ACKs, NACKs
and No-Feedback (No-FB). Based on the received feedback
sequence, the SU can form its “belief vector” about the
primary queue status; the PU queue Markov chain is shown
in Fig. 1.

In Fig. 1, we have two classes of states, namely, the i

F

’s
and i

R

’s states where the subscript F denotes first transmission
and R denotes a retransmission after a PU NACK. Our system
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Fig. 1: The PU queue Markov chain model

model settings allow us to model the SU access decisions as
a PODMP.

The POMDP is characterized by the tuple
�S, A, O,

T, ⌦, R

�
; the set S denotes the states of the PU queue’s

Markov chain, S = {{i
F

} , {j
R

}}, i = 0, 1, · · · and j =

1, 2, · · · . The set A denotes the set of SU actions, i.e.,
A = {access, no access}. The set O denotes the set of
observations which is given by O = {ACK, NACK, No-FB}.
The set T denotes the set of transition probabilities. T (s0|s, a)
is the probability of the queue to move into state s

0 if the
action a is taken while the queue is in state s. The transition
probabilities are given by

T (i

R

|j
F

, no access) = 0, 8i, j
T (i

F

|j
F

, access) = 0, 8i, j 6= 0

T (1

F

|0
F

, access) = �

p

,

T (1

F

|0
F

, no access) = �

p

,

T (i

R

|j
F

, access) =

8
><

>:

1� �

p

if i = j, j 6= 0

�

p

if i = j + 1, j 6= 0

0 otherwise,

T (i

F

|j
R

, no access) =

8
><

>:

1� �

p

if i = j � 1

�

p

if i = j

0 otherwise.

(1)

The set ⌦ denotes the set of conditional observation proba-
bilities. ⌦(o|s0, a) is the probability of observing o when the
state is s

0 after taking the action a and can be calculated as
follows (details are omitted due to space limitations)1.

⌦(o|s0 = i

F

, no access)

=

8
>>>>>>>>>><

>>>>>>>>>>:

0 o = NACK and 8i
F

PACK(0F ) o = ACK, i
F

= 0

PNo-FB(0F ) = 1� PACK(0F ) o = No-FB, i
F

= 0

PACK(1F ) o = ACK, i
F

= 1

PNo-FB(1F ) = 1� PACK(1F ) o = No-FB, i
F

= 1

1 o = ACK, i
F

� 2

0 o = No-FB, i
F

� 2

.

(2)

1By abuse of notations, we set Pr(A|B) = 0 if Pr(B) = 0 (for example
we set ⌦(o|iR, no access) = 0 since Pr(iR, no access) = 0 under our
collision system model assumption).

Note that the values of PACK(0F ), PNo-FB(0F ), PACK(1F ) and
PNo-FB(1F ) can be calculated based on the previous state belief
vector (to be defined later) but their values will not affect our
formulation as will become clear later since the SU reward
under no access will always be 0.

⌦(o|i
F

, access) =

8
><

>:

0 8o and i

F

� 2

1 o = No-FB, i
F

= 0, 1

0 o = ACK or NACK, i
F

= 0, 1

(3)

⌦(o|i
R

, no access) = 0 8o (4)

⌦(o|i
R

, access) =

(
1 o = NACK
0 otherwise

. (5)

The reward function, R, is defined as follows.

R(s, a) =

8
><

>:

1 a = access, s = 0

F

0 a = no access, 8s
�w a = access, s 6= 0

F

. (6)

If the SU accesses the channel while the PU queue is empty
it will gain a reward of 1 successful packet transmission. If
the SU decides not to access, the reward will be 0. If the
SU decides to access while the PU queue is nonempty, then
a collision occurs and the SU reward will be �w, w � 0,
since in this case the PU queue will have a higher probability
of being nonempty in the next time slots. The value of the
design parameter w can be controlled to adjust the level of
protection provided to the PU. If w = 0, then the optimal
decision to maximize the SU reward will be always to access
the channel (since there is no penalty in accessing the channel)
so in this case the SU will aggressively access the channel and
this can cause excessive delays and queue instability at the PU.
As we increase w the SU will be less aggressive in accessing
the channel and a better service will be provided to the PU.

If we start at a certain belief vector b(s
t

) =

[b(0

F

)

t

, b(1

F

)

t

, b(1

R

)

t

, · · · ], where t is the time index, then
the new belief vector after taking an action a

t

observing some
o

t+1 is given by

b(s

t+1) = ⌘⌦(o

t+1|st+1, at)

X

st2S
T (s

t+1|st, at)b(st), (7)

where ⌘ is a normalization factor given by

⌘ =

1P
st+12S ⌦(o

t+1|st+1, at)
P

st2S T (s

t+1|st, at)b(st) .

A. POMDP MAC Policy

In this section, we consider the MAC policy design. The
policy is supposed to map the belief vector to the action space.
Note that the current action affects the reward in two aspects,
the current state reward and the expected reward in the next
states as governed by the underlying Markov chain dynamics



(since the current action will affect the belief vector in the
upcoming time instants). The MAC design can be modelled
as a belief-based Markov decision process (belief MDP). The
current expected reward, corresponding to a belief vector b

and an action a, is given by

r(b, a) =

X

s2S
b(s)R(s, a). (8)

The SU access policy ⇡ specifies an action a = ⇡(b)

for any belief b. Here it is assumed that the objective is to
maximize the expected total reward over an infinite horizon.
The expected reward for policy ⇡ starting from belief b0 is
defined as

J

⇡

(b0) =

1X

t=0

�

t

r(b

t

, a

t

) =

1X

t=0

�

t

E

h
R(s

t

, a

t

) | b0,⇡
i

(9)

where � < 1 is the discount factor. The optimal policy ⇡

⇤ is
obtained by optimizing the long-term reward.

⇡

⇤
= argmax

⇡

J

⇡

(b0) (10)

where b0 is the initial belief.
The optimal policy, denoted by ⇡

⇤, yields the highest
expected reward value for each belief state, compactly repre-
sented by the optimal value function V

⇤. This value function
is the solution to the Bellman optimality equation:

V

⇤
(b) = max

a2A

h
r(b, a) + �

X

o2O
⌦(o | b, a)V ⇤

(⌧(b, a, o))

i
,

(11)
where ⌧(·, ·, ·) is the belief state transition function.

B. Greedy Algorithm

Solving the exact PODMP problem given in (11) is com-
putationally demanding and this does not lead to efficient
practical design of the access policy. In this section, we
propose a greedy algorithm to simplify the design of the
SU access policy. In the proposed algorithm, the SU access
decisions will be made to maximize the instantaneous SU
reward. The instantaneous expected SU reward is given by

rt(a) =

(
1 · Pr(Qt = 0) + (�w) · Pr(Qt 6= 0), a = access
0, a = no access

.

(12)
where t is the time index and Q

t

is the primary queue length
at t.

The SU access decision will be based on the instantaneous
reward. A no-access decision will result in a reward of 0
and the reward for the access decision is 1 · Pr(Q

t

= 0) +

(�w) · Pr(Q
t

6= 0). So the access decision can be simplified
to comparing Pr(Q

t

= 0) to the threshold w/(1 + w). The
access algorithm can be written as

Greedy Algorithm: =

(
access if b(Q

t

= 0

F

) >

w

1+w

no access if b(Q
t

= 0

F

)  w

1+w

,

(13)
where b(Q

t

= 0

F

) is the belief at time instant t that the PU
is empty.

Another implementation friendly aspect of the proposed
greedy algorithm is that we do not need to keep the whole
belief vector. At each time we need to calculate the prob-
ability of having an empty PU queue. This probability can
be calculated at the secondary users by just keeping the
feedback information (the number of ACKs from the last No-
FB transmission). The probability of having an empty queue
at the N -th time instant from the last No-FB transmission
given that we have received K ACKs during this duration
conditioned on having an ACK as the last feedback bit is
given by

Pr(Q

N

= 0

F

|K ACKs, last feedback was an ACK)

= Pr (exactly K arrivals in N time slots|numbers of arrivals � K)

=

✓
N

K

◆
�

K

p

(1� �

p

)

N�K

P
N

n=K

✓
N

n

◆
�

n

p

(1� �

p

)

N�n

,

(14)

where, by abuse of notation, we let Q
N

denote the PU queue
length after N time instants from the last No-FB transmission.

Clearly, if the last feedback bit was a NACK then
Pr(Q

t

= 0

F

| last feedback was a NACK) = 0 since clearly
the PU queue will have at least one packet to re-transmit.
If the last feedback bit was a No-FB then Pr(Q

t

=

0

F

| last feedback was a No-FB) = 1 � �

p

, which is the
probability of no PU arrival in the last time slot.

In the case of overhearing a NACK, then our greedy
algorithm will result in a no access decision at the secondary
user (for the POMDP formulation, the optimum action after
overhearing a NACK is also for the SU to back off, which can
be easily proved).

Note that the model presented here can be easily extended
to incorporate any spectrum sensing approach, e.g., energy
detection. The soft information from any spectrum sensing can
be used to modify the current belief vector and our proposed
greedy algorithm can still be applied.

C. PU Queue Stability for the Greedy Algorithm

Stability can be loosely defined as keeping a quantity of
interest bounded, in our case, the queue size. For a more
general and rigorous definition of stability, see [6] and [7].
If the arrival and service processes of a queuing system are
strictly stationary, one can apply Loynes’ theorem to check
for stability [8]. This theorem states that if the average arrival
rate is less than the average service rate of a queuing system
whose arrival and service processes are strictly stationary, then
the queue is stable, otherwise it is unstable. In our setup, the
stability of the PU queue can be guaranteed if

lim

t!1Pr(Q

t

= 0

F

) > 0,

i.e., there is always a non-zero probability of having an empty
PU queue.

In our proposed feedback-based framework, the SU has
“perfect knowledge” of the service process of the PU queue



(through overhearing the PU feedback bits). It is straightfor-
ward to prove that any w > 0 will guarantee that the proposed
greedy algorithm will result in a stable PU queue. Since for
any w > 0 the probability of an empty PU queue will never
reach 0 since in this case the SU will decide not to access the
channel (as the reward from accessing the channel will be �w

so the no access will result in a higher SU reward of 0). So the
greedy algorithm will always guarantee that the probability of
having an empty PU queue is bounded away from 0 as long
as w > 0.

IV. NUMERICAL RESULTS

In [4], a MAC protocol was designed where the SU employs
random access based on the last overheard feedback bit
under a PU queue stability constraint. In this paper, we have
considered the use of the feedback information from all the
previous slots to make access decisions.

In Figures 2 and 3, we compare the performance of our
proposed greedy algorithm and the algorithm that was pro-
posed in [4], denoted by FB in the figures, in terms of the
SU throughput and the PU delay. In the results shown, it is
assumed that the channels are perfect and the only source of
error at the receivers is the collisions between the primary and
secondary transmissions.

It is noted that the case of w = 0 corresponds to the case
where the SU always accesses the channel. As w is increased,
the SU becomes less aggressive in accessing the channel.
Therefore, for small values of the PU arrival rate �

p

the SU
is losing some of the available transmission opportunities and
its throughput is lower than that in the case of w = 0 and
the FB algorithm, as shown in Fig. 2. On the other hand,
for larger values of �

p

, the greedy algorithm outperforms the
FB algorithm, since it always has a better estimate of the
PU activity, hence avoiding collisions and better utilizing the
free time slots. Increasing w in this case limits the throughput
region of the SU. For instance, for w = 0.5 the SU is able to
access the free time slots for up to a PU �

p

= 0.65. When
w is increased to 2.0, the SU refrains from any transmission
attempt for �

p

beyond 0.35.
From the delay point of view as shown in Fig. 3, for w =

0 the delay is increasing rapidly as the SU is always trying
to access the channel. For increasing values of w, the delay
is slowly decreasing with �

p

. Since as �

p

increases, more
feedback information will be available to the SU, which will
have better estimate of the PU state leading to less collisions.
After a given �

p

(this threshold is decreasing in w), the PU’s
delay drops, indicating that the SU has decided not to transmit
at all, which is in conformance with the observation about the
SU’s throughput. Note that for the algorithm that was proposed
in [4], the optimum access probability on overhearing an ACK
or No-FB was 1 for �

p

 1
3 , and this is why the curves for the

algorithm that was proposed in [4] and our greedy algorithm
with w = 0 coincide for �

p

 1
3 .

Note that the value of w controls the SU throughput and
the PU delay and it is clear that for every range of PU arrival
rates we can optimize the value of w for some cost function
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(like maximizing the SU throughput under some PU delay
constraint), which will be a point for future consideration.

V. CONCLUSIONS

In this paper, we have considered the design of a SU MAC
protocol with PU feedback exploitation. The MAC protocol
design was formulated in a partially observable Markov de-
cision process (POMDP) framework with infinite number of
states. Due to the inherent complexity of solving POMDP with
infinite number of states, we have proposed a greedy algorithm
that maximizes the SU instantaneous reward, in which the SU
access decisions will depend on the overheard PU feedback
bits (which allows the SU to have perfect knowledge of
the PU service process). The proposed greedy algorithm will
guarantee the PU stability and it can be designed to provide
a PU QoS constraint in terms of average PU delay.
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