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ABSTRACT

In this paper, we consider the problem of binary hypothesis
testing for distributed detection in wireless sensor networks
in which a transmission censoring scheme is employed. The
sensor nodes transmit binary decisions to the fusion center
(FC) for final decision making. Sensor nodes with unreli-
able observation samples censor transmission to FC. By hav-
ing two thresholds at each sensor node, a sensor node cen-
sors transmission if its log-likelihood ratio (LLR) falls be-
tween the two thresholds, whereas the more informative sen-
sor nodes transmit their decisions to the FC. In this case of
censoring some of the less-informative sensor nodes, and un-
der our system model assumptions, we demonstrate that cen-
soring can lower the probability of error at FC even if there
is enough power and rate to support the transmissions of the
less-informative sensor nodes.

1. INTRODUCTION

Sensor networks have gained a lot of interest due to their wide
range of applications and this has increased the thrill toward
their study. The applications of sensor networks include mon-
itoring environmental conditions such as temperature, mili-
tary applications such as battlefield surveillance, health mon-
itoring, and many other applications. These diverse applica-
tions of the sensor networks have raised a lot of challenges
due to the fact that the sensor nodes are prone to failures,
and have limited power, limited computational capacities, and
limited memory [1].

In this paper, we consider the problem of distributed de-
tection for sensor nodes sending binary decisions over wire-
less fading channels to a fusion center (FC) where the final
decision is made. We investigate the possibility of censoring
some of the sensor nodes according to the quality of the lo-
cal sensor observations measured by the local log-likelihood
ratios (LLR). The idea of censoring some of the sensor nodes
with unreliable observations have been considered before, for
example, in [2, 3, 4, 5, 6]. Censoring has been proposed for
energy efficiency or information rate reduction assuming that
there is a tradeoff between the amount of censoring (used

for energy and/or data rate reduction) and the detection er-
ror performance. For instance, in [2] where the idea of sensor
censoring has been introduced and where the LLR values are
forwarded to FC, the probability of error is minimized under
a communication rate constraint. In [4], the detection prob-
lem is formulated with constraints on the expected energy cost
arising from transmission and measurement.

In this paper, we consider binary decisions sent from the
sensor nodes to an FC that does not have knowledge of sen-
sor reliability measured by its instantaneous local LLR. We
demonstrate that censoring can indeed enhance the overall
system performance in terms of FC error probability even
without rate or energy constraints. The idea is that when the
sensor nodes send binary decisions to the FC, the quality of
the observation is lost and the FC treats all of the sensors de-
cisions equally or perhaps only taking into account the quality
of the channels between itself and the sensors. In this case it
is better for only the more-informative sensors to send infor-
mation to FC and for the less-informative sensors to censor
transmission. In conventional binary hypothesis testing, there
is a single threshold at each sensor node against which the
sensor’s LLR is compared for local binary decision making.
In order to implement the censoring idea as in [2], each sen-
sor node should have two thresholds. If the local sensor’s
LLR falls between the two thresholds the sensor node censors
transmission, otherwise it transmits its binary decision to FC.

The main contribution of the paper is showing that even
if sufficient rate and power are available to allow transmis-
sions from the less-informative sensor nodes, it is better for
them to refrain from transmitting their local measurements,
because censoring can reduce the required rate and power, and
simultaneously enhance the global error performance at FC.
We provide a theoretical analysis of both the one-threshold
and censoring schemes in a large sensor network, and obtain
the corresponding error exponents using large deviations the-
ory in order to demonstrate the improved performance of dis-
tributed detection when censoring is employed.

The paper is organized as follows. In Section 2, the sys-
tem and data models are introduced. In Section 3, we present
the error exponent analysis for large sensor networks. In Sec-



tion 4, we provide numerical results, whereas Section 5 con-
cludes the paper.

Notations: The symbol .
= is used to denote equality in

the exponential decay rate, that is f(N)
.
= g(N) means that

limN→∞
1
N log f(N)

g(N) = 0. The notation x ∼ N
(
m,σ2

)
is

used to denote that x is a Gaussian random variable with mean
m and variance σ2. We use <(y) to denote the real part of the
complex number y. Q(·) denotes the Q-function defined as

Q(t) = 1√
2π

∫∞
t
e

−z2
2 dz and erf(·) denotes the error function

defined as erf(t) = 2√
π

∫ t
0
e−z

2

dz. E{·} denotes the expec-
tation operator.

2. SYSTEM AND DATA MODELS

The sensor network is assumed to have N sensor nodes that
are used to monitor a certain phenomenon. The sensor nodes
send their local decisions to an FC to make decisions about the
state of nature observed by the sensor network. The wireless
sensor networks is as depicted in Fig. 1. We assume a binary
hypotheses detection problem, i.e., the FC makes decisions
between two hypotheses, namely, H0 and H1.

The i-th sensor node measurement is xn, n = 1, · · · , N .
The xn’s are assumed to be mutually independent under each
hypothesis. We assume that the data model under each hy-
pothesis is given by

H0 : xn ∼ N
(
0, σ2

0

)
H1 : xn ∼ N

(
0, σ2

1

)
,

(1)

where we assume that σ2
1 > σ2

0 . The analysis below can be
readily extended to other H0 and H1 distributions.

Based on its observation, and using an orthogonal trans-
mission scheme, each sensor node transmits one symbol, un,
n = 1, · · · , N , to the FC. Each un is either +1 or -1 depend-
ing on the sensor local observation. The received signal at the
destination due to the nth sensor node transmission is given
by

yn,F = hn,Fun + vn,F , (2)

where hn,F is the channel gain between the nth and the fusion
center and is modeled as complex Gaussian random variable
with zero-mean and variance 1/2 per dimension and vn,F is
the fusion center noise and is modeled as complex Gaussian
random variable with variance N0/2 per dimension.

Next, we consider the conventional system, where each
sensor compares the observed LLR to a certain threshold to
decide whether to transmit +1 or -1. Then we present the
two-threshold scheme. If the LLR is larger than the first, and
higher threshold, the sensor node transmits un = +1, and
if the LLR is less than the second threshold, the sensor node
transmits un = −1. If the LLR is between the two thresholds,
the sensor node censors transmission as the observation at the
sensor node is not highly informative to the FC.
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Fig. 1. A schematic diagram for the wireless sensor network.

3. LARGE SENSOR NETWORKS

We consider the case of a large sensor network where the
number of sensor nodes, N , tends to infinity. We employ
the equal gain combining (EGC) scheme presented in [7] for
combining the binary decisions sent from the different sensor
nodes, which is shown to achieve a close performance to the
optimal fusion rule at the FC for a wide range of SNR’s1.

3.1. Conventional (One-Threshold Based) Scheme for Large
Sensor Networks

In the conventional scheme, each sensor compares the LLR to
a threshold η, and if the LLR is larger than η the sensor sends
+1 to FC, otherwise it sends −1. The probability of having
un = +1 given hypothesis H0 is given by

Pr(un = +1|H0)

= Pr

(
log

(
σ0

σ1

)
+
x2
n

2

(
1

σ2
0

− 1

σ2
1

)
> η|H0

)
= Pr

(
x2
n > γ|H0

)
= 2Q

(√
γ

σ0

)
,

(3)

and

γ =

(
2/

(
1

σ2
0

− 1

σ2
1

))(
η − log

(
σ0

σ1

))
. (4)

1The optimal fusion rule at the FC requires some average local sensor
information which we do assume available at the fusion center. What is un-
available at FC is the instantaneous local LLR.



Parameter γ is the detection threshold with which x2
n is com-

pared in order to make a decision between the two hypotheses.
The probability of having un = −1 given hypothesis H0 is
given by

Pr(un = −1|H0) = 1− 2Q

(√
γ

σ0

)
. (5)

Similarly, The probability of having un = +1 given hypoth-
esis H1 is given by

Pr(un = +1|H1) = 2Q

(√
γ

σ1

)
, (6)

and the probability of having un = −1 given hypothesis H1

is given by

Pr(un = −1|H1) = 1− 2Q

(√
γ

σ1

)
. (7)

At the FC, an EGC is applied to the received signals; the
output from the EGC is given by

yF =
∑

{n:un=+1}

|hn,F | −
∑

{n:un=−1}

|hn,F |+
N∑
n=1

<{vn,F } ,

(8)

The FC applies the following decision rule to determine the
estimated hypothesis

<(yF )
Ĥ=H1

≷
Ĥ=H0

0. (9)

Recall that <(.) denotes the real part of a complex number.
Next, we calculate the error exponent under each hypoth-

esis using large deviations theory techniques [8, 9]. Under
hypothesis H0, the variable <(yF ) can be represented as

<(yF ) =

N∑
n=1

Zn,F , (10)

where

Zn,F =

 |hn,F |+ < (vn,F ) , w.p. Pf = 2Q
(√

γ

σ0

)
;

− |hn,F |+ < (vn,F ) , w.p. 1− Pf = 1− 2Q
(√

γ

σ0

)
.

(11)
and the relation between γ and η is given by (4).

The conditional probability of error, conditioned on H0,
is given by

PE/H0
= Pr (<(yF ) > 0|H0) . (12)

Using Chernoff’s formula, the error probability conditioned
on H0 can be written as

PE/H0

.
= e−N ·maxθ{−λ(θ)}, (13)

where λ(θ) = lnE
{
eθZn,F

}
is the cumulant generating func-

tion (CGF). Averaging over hn,F , the error exponent, ∆0(γ),
for the error probability conditioned on H0 can be derived as

∆0(γ)

= − lim
N→∞

1

N
logPE/H0

= − log

(
inf
θ>0

{
e
θ2N0

4

(
1 +

√
πθ

2
e
θ2

4

(
2Pf − 1 + erf

(
θ

2

)))})
,

(14)

where Pf = Pr (un = +1|H0).
The conditional probability of error, conditioned on H1,

is given by

PE/H1
= Pr (−<(yF ) > 0|H1) . (15)

Following a similar approach, to the one considered for the
case of error conditioned on H0, the error exponent for the
conditional error probability conditioned on H1, ∆1(γ), can
be shown to be given by

∆1(γ)

= − lim
N→∞

1

N
logPE/H1

= − log

(
inf
θ>0

{
e
θ2N0

4

(
1 +

√
πθ

2
e
θ2

4

(
1− 2Pd + erf

(
θ

2

)))})
,

(16)

where Pd = Pr (un = +1|H1).
The probability of error at FC is

Pe
.
= e−N ·∆0(γ) + e−N ·∆1(γ). (17)

Note the use of the equal sign with a dot. The error exponent
is limited by the minimum of ∆0(γ) and ∆1(γ). Investigating
the expressions given in (14) and (16) we can see that ∆0(γ)
is monotonically increasing in γ and ∆1(γ) is monotonically
decreasing in γ (which is intuitively clear since as γ is in-
creased, the FC is more directed towards selecting hypothesis
H0). Therefore, the optimal value for γ, γ∗, that maximizes
the error exponent must satisfy ∆0(γ∗) = ∆1(γ∗). It can be
proved (sketch of the proof is in the Appendix) that γ∗ is the
solution of

1− 4Q

(√
γ∗

σ0

)
= 4Q

(√
γ∗

σ1

)
− 1.

3.2. Two-Threshold-Based Scheme for Large Sensor Net-
works

For the two-threshold based scheme we define two thresholds,
η1 and η2 with η1 ≥ η2, at any sensor node. If the sensor
observation LLR is larger than the higher threshold, then the
sensor node sends un = +1 to the FC. If the LLR is less than
the lower threshold then the sensor sends un = −1 to the
FC. If the LLR falls between the two thresholds, the sensor



censors transmission to the FC as the observation is not highly
informative. We note that the conventional scheme presented
in the previous section can be considered as a special case of
the two-threshold based scheme with η1 = η2 = η. In the
two-threshold-based scheme each sensor node has a state in
the following set {un = +1, censor, un = −1}.

At the FC, EGC is applied to the received signals, where
we assume that we combine the signals from the active sen-
sors only. The output from EGC is given by

yF = ∑
{n:un=+1}

|hn,F | −
∑

{n:un=−1}

|hn,F |+
∑

{n:un=±1}

<{vn,F } ,

(18)

Under hypothesis H0, the variable <(yF ) can be represented
as

<(yF ) =

N∑
n=1

Zn,F , (19)

where

Zn,F =


|hn,F |+ < (vn,F ) , w.p. 2Q

(√
γ1
σ0

)
;

− |hn,F |+ < (vn,F ) , w.p. 1− 2Q
(√

γ2
σ0

)
;

0, w.p. 2Q
(√

γ2
σ0

)
− 2Q

(√
γ1
σ0

)
,

(20)
where

γ1 =

(
2/

(
1

σ2
0

− 1

σ2
1

))(
η1 − log

(
σ0

σ1

))
and

γ2 =

(
2/

(
1

σ2
0

− 1

σ2
1

))(
η2 − log

(
σ0

σ1

))
.

Following a similar approach to the one considered for the
one-threshold case, the error exponent under H0 for the two-
threshold based scheme, δ0(γ1, γ2), can be proved to be given
by (21), whereas the error exponent under H1, δ1(γ1, γ2), is
given by (22). For any selection of γ1 and γ2, the error ex-
ponent at the FC is equal to the minimum of δ0(γ1, γ2) and
δ1(γ1, γ2). We get the error exponents as well as the optimal
thresholds via numerical search.

4. SIMULATION RESULTS

In this section, we present some simulation results for large-
sensor networks. Fig. 2 shows the error exponent as a func-
tion of the average SNR of the reporting channels between the
local sensors and FC. We can see that the scheme with cen-
soring achieves better performance in terms of a higher error
exponent relative to the conventional scheme. A higher error
exponent means a faster decay of the average probability of
error as the number of sensors of the network increases.

Fig. 3 shows the optimal thresholds versus the average
SNR of sensor-FC channels for the conventional and two-
threshold-based schemes for a large sensor network with N
going to infinity and σ2

0 = 0.25 and σ2
1 = 1. If one sensor’s

local LLR falls between the two thresholds of the censoring
scheme, it is better for this sensor not to transmit hoping for
the other sensors to have more reliable observations. If it
sends its binary decision, it would be treated by the FC as
a reliable observation, thereby causing a performance degra-
dation in the conventional one-threshold scheme.

0 5 10 15 20 25 30
0.02

0.025

0.03

0.035

0.04

0.045

0.05

SNR (dB)

E
rr

o
r 

E
x
p
o
n
e
n
t

Large Sensor Network, σ
0

2
=0.25 and σ

1

2
=1

 

 

One−Threshold Scheme

Two−Threshold Scheme

Fig. 2. Error exponents for large sensor network with σ2
0 =

0.25 and σ2
1 = 1. The horizontal axis is the average SNR of

the channels from the sensors to FC.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SNR (dB)

T
h

re
s
h

o
ld

Large Sensor Network, σ
0

2
=0.25 and σ

1

2
=1

 

 

γ (for One−Threshold Scheme)

γ
1
 (Upper−Threshold for Two−Threshold Scheme)

γ
2
 (Lower−Threshold for Two−Threshold Scheme)

Fig. 3. Thresholds’ values for large sensor network with σ2
0 =

0.25 and σ2
1 = 1.

5. CONCLUSIONS

In this paper, we have considered the problem of binary hy-
pothesis distributed detection over wireless sensor networks.
The main result of this work is that if the sensor nodes send bi-
nary decisions to the FC, it is better to censor the sensor nodes
that are less-informative to the FC even if we have enough
rate and/or energy to allow binary transmissions from those



δ0 (γ1, γ2) = − log

(
inf
θ>0

{
e
θ2N0

4

(
1 + 2Q

(√
γ1

σ0

)
− 2Q

(√
γ2

σ0

)
+

√
πθ

2
e
θ2

4

(
2Q

(√
γ1

σ0

)
+ 2Q

(√
γ2

σ0

)
− 1

+

(
1 + 2Q

(√
γ1

σ0

)
− 2Q

(√
γ2

σ0

))
erf
(
θ

2

)))
+ 2Q

(√
γ2

σ0

)
− 2Q

(√
γ1

σ0

)})
.

(21)

δ1 (γ1, γ2) = − log

(
inf
θ>0

{
e
θ2N0

4

(
1 + 2Q

(√
γ1

σ1

)
− 2Q

(√
γ2

σ1

)
+

√
πθ

2
e
θ2

4

(
1− 2Q

(√
γ1

σ1

)
− 2Q

(√
γ2

σ1

)
+

(
1 + 2Q

(√
γ1

σ1

)
− 2Q

(√
γ2

σ1

))
erf
(
θ

2

)))
+ 2Q

(√
γ2

σ1

)
− 2Q

(√
γ1

σ1

)})
.

(22)

sensor nodes. Allowing all of the sensor nodes to transmit bi-
nary decisions can lead to performance degradation in terms
of probability of error since the quality of observations is lost
after a sensor node quantizes its LLR to one bit. Unreliable
sensor nodes’ decisions can highly degrade the system per-
formance when the FC considers only the channels between
itself and the sensors, but not the instantaneous reliability of
local sensor decisions.

6. APPENDIX

We start from the expression for the conditional error expo-
nents ∆0(γ) and ∆1(γ) given in (14) and (16), respectively.
It can be easily seen that ∆0(γ) is a monotonic increasing
function in γ, and ∆1(γ) is a monotonic decreasing function
in γ, which are intuitively clear.

To prove by contradiction, let’s assume that for the opti-
mal threshold, γ∗, we have (2Pf − 1) > (1− 2Pd), then for
any θ we will have

e
θ2N0

4

(
1 +

√
πθ

2
e
θ2

4

(
2Pf − 1 + erf

(
θ

2

)))
> e

θ2N0
4

(
1 +

√
πθ

2
e
θ2

4

(
1− 2Pd + erf

(
θ

2

)))
.

(23)

From (23) then we can easily see that ∆0(γ∗) > ∆1(γ∗).
Then, the error exponent will be dominated by ∆1(γ∗). How-
ever, we can select another threshold γ < γ∗, which achieves
a better exponent (since ∆0(γ) is a monotonic increasing func-
tion in γ and ∆1(γ) is a monotonic decreasing function in γ)
as we have a room between ∆0(γ∗) and ∆1(γ∗); this contra-
dicts the assumption that γ∗ is the optimal threshold.

The other case of having an optimal threshold γ∗ with
(2Pf − 1) < (1− 2Pd) can be proved to be unattainable fol-
lowing a similar approach to the one considered in the previ-
ous case. Therefore, at the optimal threshold we must have
(2Pf − 1) = (1− 2Pd) which leads to the condition given
by

1− 4Q

(√
γ∗

σ0

)
= 4Q

(√
γ∗

σ1

)
− 1,

which results in a unique solution for γ∗.
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