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Abstract— In this paper, the design of distributed space-
frequency codes (DSFCs) for wireless relay networks employing
the amplify-and-forward (AAF) protocol is considered. The term
distributed comes from the fact that the space-frequency code
is distributed among randomly located relay nodes. DSFCs are
designed to achieve the multi-path (frequency) and cooperative
diversities of the wireless relay channels. We derive sufficient
conditions for the proposed code design to achieve full diversity
based on minimizing the pairwise error probability (PEP). We
prove that the proposed DSFC can achieve full diversity of order
LN , where L is the number of paths of the channel andN is
the number of relay nodes, for anyN and for the cases ofL = 1
(flat, frequency-nonselective fading channel) andL = 2 (two-ray
fading channel).

I. I NTRODUCTION

The advent of future wireless multimedia services, requiring
high signal quality and high data rate, has increased the
attention toward the study of wireless channels. The wireless
resources, such as the bandwidth, are scarce and it is difficult
to meet the high data rate requirement unless some efficient
techniques are employed. Spatial diversity has proved to be
an eminent candidate for achieving the signal quality and high
data rate promised by the future multimedia services. Spatial
diversity is also of special interest as it does not increase
the overhead in the system in terms of the bandwidth and
delay. The seminal work [1] revealed the increased capacity of
the wireless channels by employing Multiple-Input Multiple-
Output (MIMO) channels.

In wireless applications, it is affordable to have multiple
antennas at the base station but it is difficult to equip the
small mobile units with more than one antenna due to space
constraints of the mobile units. Hence, the use of multiple
antennas at the mobile units is limited. This gave rise to what
is known ascooperative diversityin which the nodes emulate
a virtual multiple element transmit antenna.

The techniques of cooperative diversity have been intro-
duced in [2], where different protocols were proposed to
achieve spatial diversity through node cooperation. Among
those protocols are the decode-and-forward and amplify-and-
forward protocols. The amplify-and-forward protocol does not
suffer from the error propagation problem because the relays
do not perform any hard-decision operation on the received
signal but noise accumulates with the desired signal along the
transmission path.

The main problem with the multi-node decode-and-forward
protocol and the multi-node amplify-and-forward protocol
is the loss in the data rate as the number of relay nodes
increases. The use of orthogonal subchannels for the relay
node transmissions, either through TDMA or FDMA, results
in a high loss of the system spectral efficiency. This leads to the
use of what is known as distributed space-time coding, where
relay nodes are allowed to simultaneously transmit over the
same channel by emulating a space-time code. Several works
have considered the application of the existing space-time
codes in a distributed fashion for the wireless relay network
[3], [4], [5].

For the case of multi-path fading channels, the design
of distributed space-frequency codes (DSFCs) is crucial to
exploit the multi-path (frequency) diversity of the channel. The
presence of multi-paths provides another mean for achieving
diversity across the frequency axis. In this paper, we propose
a design for distributed space-frequency codes (DSFCs) over
relay channels that can exploit the multi-path diversity of
wireless channels. We prove that the proposed design of DSFC
can achieve full diversity of orderLN , whereL is the number
of multi-paths per channel andN is the number of relay nodes.
We prove the previous result for any number of relaysN and
for the cases ofL = 1 (flat fading channel) andL = 2 (two-
ray fading channel).

II. SYSTEM MODEL

In this section, the system model for the distributed space-
frequency coding is presented. We consider a two-hop relay
channel model where there is no direct link between the
source and the destination nodes. A simplified system model
is depicted in Fig. 1. The system is based on orthogonal
frequency division multiplexing (OFDM) modulation withK
subcarriers. The channel between the source and then-th relay
node is modeled as multi-path fading channel withL paths as

hs,rn(τ) =
L∑

l=1

αs,rn(l)δ(τ − τl), (1)

where τl is the delay of thel-th path, andαs,rn(l) is the
complex amplitude of thel-th path. Theαs,rn(l)’s are mod-
eled as zero-mean complex Gaussian random variables with
varianceE

[|αs,rn(l)|2] = σ2(l), where we assume symmetry
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Fig. 1. Simplified system model for the distributed space-frequency codes.

between the relay nodes to simplify the analysis. The channels
are normalized such that

∑L
l=1 σ2(l) = 1. A cyclic prefix is

introduced to convert the multi-path frequency-selective fading
channels to flat fading sub-channels on the subcarriers.

The system has two phases as follows. In phase 1, if
N relays are assigned for helping the source, the source
broadcasts the information to theN relays. The received signal
in the frequency domain on thek-th subcarrier at then-th relay
node is given by

ys,rn(k) =
√

PsHs,rn(k)s(k) + ηs,rn(k), k = 1, · · · ,K,
(2)

where Ps is the transmitted source power,Hs,rn(k) is the
attenuation of the source to then-th relay channel on thek-
th subcarrier,s(k) is the transmitted source symbol on the
k-th subcarrier, andηs,rn(k) is the n-th relay additive white
Gaussian noise on thek-th subcarrier.ηs,rn(k) is modeled as
circularly symmetric complex Gaussian random variable with
varianceN0/2 per dimension. The relay noise terms on the
subcarriers can be easily seen to be statistically independent
assuming that the noise terms at the input of the FFT at the
relay nodes are independent.

The channel attenuation in the frequency domain,Hs,rn(k),
is given by

Hs,rn(k) =
L∑

l=1

αs,rn(l)e−j2π(k−1)∆fτl , (3)

where ∆f = 1/T is the subcarrier frequency separation,
and T is the OFDM symbol duration. We assume perfect
channel state information at any receiving node but no channel
information at transmitting nodes. We assume that all the noise
terms are independent for different receiving nodes.

The proposed DSFC is described as follows. The transmitted
data from the source node is parsed into sub-blocks of size
NL. Let P = bK/NLc denote the number of sub-blocks
in the transmitted OFDM block. The transmittedK × 1 SF
codeword is given as

s = [s(1), s(2), · · · , s(K)]T

= [GT
1 ,GT

2 , · · · ,GT
P ,0T

K−PLN ]T ,
(4)

whereGi is the i-th sub-block of dimensionNL × 1. Zeros
are padded ifK is not an integer multiple ofNL. For
each sub-blockGi the n-th relay forwards only the data

on L subcarriers. For example, relay 1 will only forward
[Gi(1), · · · ,Gi(L)] for all i’s and send zeros on the remaining
set of subcarriers. In general, then-th relay will only forward
[Gi((n− 1)L + 1), · · · ,Gi((n− 1)L + L)] for all i’s.

In phase 2, each relay node will normalize the received
signal on the subcarriers that it will forward before retransmis-
sion and will send zeros on the remaining set of subcarriers.
If the k-th subcarrier is to be forwarded by then-th relay,
the relay will normalize the received signal on that subcarrier
by the factorβ(k) =

√
1

Ps|Hs,rn (k)|2+N0
[2]. The relay nodes

will use OFDM modulation for transmission to the destination
node. At the destination node, the received signal on thek-
th subcarrier, assuming it was forwarded by then-th relay, is
given by

y(k) =Hrn,d(k)
√

Pr

(√
1

Ps|Hs,rn
(k)|2 + N0

(

√
PsHs,rn(k)s(k) + ηs,rn(k)

))
+ ηrn,d(k),

(5)

wherePr is the relay node power,Hrn,d(k) is the attenuation
of the channel between then-th relay node and the destination
node on thek-th subcarrier, andηs,rn(k) is the destination
noise on thek-th subcarrier. Theηrn,d(k)’s are modeled as
zero-mean, circularly symmetric complex Gaussian random
variables with a variance ofN0/2 per dimension.

III. PAIRWISE ERRORPROBABILITY (PEP) ANALYSIS

In this section, the PEP of the DSFC with the AAF protocol
is presented. Based on the PEP analysis, code design criteria
are derived.

The received signal at destination on thek-th subcarrier
given by (5) can be rewritten as

y(k) =Hrn,d(k)
√

Pr

(√
1

Ps|Hs,rn(k)|2 + N0

√
PsHs,rn(k)s(k)

)

+ zrn,d(k),
(6)

where zrn,d(k) accounts for the noise propagating from the
relay node as well as the destination noise.zrn,d(k) follows
a circularly symmetric complex Gaussian random variable
with a varianceδ2

z(k) of
(

Pr|Hrn,d(k)|2
Ps|Hs,rn (k)|2+N0

+ 1
)

N0. The

probability density function forzrn,d(k) given the channel
state information (CSI) is given by

p(zrn,d(k)/CSI) =
1

πδ2
z(k)

exp
(
− 1

δ2
z(k)

|zrn,d(k)|2
)

. (7)

The receiver applies aMaximum Likelihood(ML) detector to
the received signal, which is given as

ŝ =

arg min
s

K∑

k=1

1
δ2
z(k)

∣∣∣∣∣y(k)−
√

PsPrHs,rn(k)Hrn,d(k)√
Ps|Hs,rn(k)|2 + N0

s(k)

∣∣∣∣∣

2

,

(8)



where then index (which is the index of the relay node) is
adjusted according to thek index (which is the index of the
subcarrier).

Now, sufficient conditions for the code to achieve full
diversity are derived. The pdf of a received vectory =
[y(1), y(2), · · · , y(K)]T given that the codewords was trans-
mitted is given by

p(y/s, CSI) =

(
K∏

k=1

1
πδ2

z(k)

)
exp

(
K∑

k=1

− 1
δ2
z(k)

∣∣∣∣∣y(k)−
√

PsPrHs,rn(k)Hrn,d(k)√
Ps|Hs,rn

(k)|2 + N0

s(k)

∣∣∣∣∣

2 )
.

(9)

The PEP of mistakings by s̃ can be upper bounded as [6]

PEP (s → s̃) ≤ E {exp (λ[ln p(y/s̃)− ln p(y/s)])} , (10)

and the relation applies for anyλ, which can be selected to
get the tightest bound. Any two distinct codewordss and s̃ =
[G̃1, G̃2, · · · , G̃p]T will have at least one indexp0 such that
G̃p0 6= Gp0 . We will assume thats and s̃ will have only
one indexp0 such thatG̃p0 6= Gp0 , which corresponds to the
worst case PEP. Averaging the PEP expression in (10) over
the noise distribution given in (7) we get

PEP (s → s̃) ≤ E

{
exp

(
− λ(1− λ)

N∑
n=1

L∑

l=1

(

Ps|Hs,rn(J + (n− 1)L + l)|2Pr|Hrn,d(J + (n− 1)L + l)|2(
Ps|Hs,rn(J + (n− 1)L + l)|2 + Pr|Hrn,d(J + (n− 1)L + l)|2

+N0

)
N0

)∣∣∣Gp0((n− 1)L + l)− G̃p0((n− 1)L + l)
∣∣∣
2
)}

,

(11)

whereJ = (p0− 1)NL. Takeλ = 1/2 to minimize the upper
bound in (11), hence, we get

PEP (s → s̃) ≤ E

{
exp

(
− 1

4

N∑
n=1

L∑

l=1

(

Ps|Hs,rn(J + (n− 1)L + l)|2Pr|Hrn,d(J + (n− 1)L + l)|2(
Ps|Hs,rn(J + (n− 1)L + l)|2 + Pr|Hrn,d(J + (n− 1)L + l)|2

+N0

)
N0

)∣∣∣Gp0((n− 1)L + l)− G̃p0((n− 1)L + l)
∣∣∣
2
)}

,

(12)

At high SNR, the term Ps|Hs,rn (k)|2Pr|Hrn,d(k)|2
(Ps|Hs,rn (k)|2+Pr|Hrn,d(k)|2+N0)N0

can

be approximated by Ps|Hs,rn (k)|2Pr|Hrn,d(k)|2
(Ps|Hs,rn (k)|2+Pr|Hrn,d(k)|2)N0

[7], which
is the scaled harmonic mean of the source-relay and relay-
destination SNRs on thek-th subcarrier1. The scaled harmonic
mean of two nonnegative numbers,a1 and a2, can be upper
and lower bounded as

1
2

min (a1, a2) ≤ a1a2

a1 + a2
≤ min (a1, a2) . (13)

1The scaling factor is 1/2 since the harmonic mean of two number,X1 and
X2, is defined as2X1X2

X1+X2
.

Using the lower bound in (13), the PEP in (12) can be further
upper bounded as

PEP (s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

L∑

l=1

min

(
Ps

N0
|Hs,rn

((p0 − 1)NL + (n− 1)L + l)|2,

Pr

N0
|Hrn,d((p0 − 1)NL + (n− 1)L + l)|2

)

×
∣∣∣Gp0((n− 1)L + l)− G̃p0((n− 1)L + l)

∣∣∣
2 )}

.

(14)

If Pr = Ps and SNR is defined asPs/N0, then the PEP is
now upper bounded as

PEP (s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

L∑

l=1

min

(
SNR|Hs,rn((p0 − 1)NL + (n− 1)L + l)|2,

SNR|Hrn,d((p0 − 1)NL + (n− 1)L + l)|2
)

×
∣∣∣Gp0((n− 1)L + l)− G̃p0((n− 1)L + l)

∣∣∣
2 )}

.

(15)

A. PEP Analysis for L=1

The case ofL equal to 1 corresponds to a flat, frequency-
nonselective fading channel. The PEP in (15) is now given
by

PEP (s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

min

(
SNR|Hs,rn((p0 − 1)NL + (n− 1)L + 1)|2,

SNR|Hrn,d((p0 − 1)NL + (n− 1)L + 1)|2
)

×
∣∣∣Gp0((n− 1)L + 1)− G̃p0((n− 1)L + 1)

∣∣∣
2 )}

.

(16)

We can easily show that the random variables
SNR|Hs,rn(k)|2 andSNR|Hrn,d(k)|2 follow an exponential
distribution with rate1/SNR for all k. The minimum of
two exponential random variables is an exponential random
variable with rate that is the sum of the two random variables
rates. Hence, min

(
SNR|Hs,rn(k)|2, SNR|Hrn,d(k)|2)

follows an exponential distribution with rate2/SNR. The



PEP upper bound is now given by

PEP (s → s̃) ≤
N∏

n=1

1

1 + 1
16SNR

∣∣∣Gp0((n− 1)L + 1)− G̃p0((n− 1)L + 1)
∣∣∣
2 .

(17)

At high SNR, we neglect the 1 term in the denominator of
(17). Hence, the PEP can now be upper bounded as

PEP (s → s̃) .
(

1
16

SNR

)−N

×
(

N∏
n=1

∣∣∣Gp0((n− 1)L + 1)− G̃p0((n− 1)L + 1)
∣∣∣
2
)−1

.

(18)

The result in (18) is under the assumption that the product∏N
n=1

∣∣∣Gp0((n− 1)L + 1)− G̃p0((n− 1)L + 1)
∣∣∣
2

is non-
zero. Clearly, if that product is non-zero, then the system
will achieve a diversity of orderNL, where L is equal to
1 in this case. From the expression in (18) the coding gain
of the space-frequency code is maximized when the product

mins6=s̃

∏N
n=1

∣∣∣Gp0((n− 1)L + 1)− G̃p0((n− 1)L + 1)
∣∣∣
2

is
maximized. This product is known as the minimum product
distance [8].

B. PEP Analysis for L=2

The PEP in (15) can now be given as

PEP (s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

2∑

l=1

min

(
SNR|Hs,rn((p0 − 1)NL + (n− 1)L + l)|2,

SNR|Hrn,d((p0 − 1)NL + (n− 1)L + l)|2
)

×
∣∣∣Gp0((n− 1)L + l)− G̃p0((n− 1)L + l)

∣∣∣
2 )}

,

(19)

whereL = 2. The analysis in this case is more involved since
the random variables appearing in (19) are correlated. Signals
transmitted from the same relay node on different subcarriers
will experience correlated channel attenuations. As a first step
in deriving the code design criterion, we prove that the channel
attenuations,|Hs,rn(k1)|2 and |Hs,rn(k2)|2 for any k1 6= k2,
have a bivariate Gamma distribution as their joint pdf [9].
The same applies for|Hrn,d(k1)|2 and |Hrn,d(k2)|2 for any
k1 6= k2. The proof of this result is given in the Appendix.

To evaluate the expectation in (19) we need the ex-
pression for the joint pdf of the two random vari-
ablesM1 = min

(
SNR|Hs,rn(k1)|2, SNR|Hrn,d(k1)|2

)
and

M2 = min
(
SNR|Hs,rn(k2)|2, SNR|Hrn,d(k2)|2

)
for some

k1 6= k2. Although M1 and M2 can be easily seen to
be marginally exponential random variables, they are not
jointly Gamma distributed. Define the random variables
X1 = SNR|Hs,rn

(k1)|2, X2 = SNR|Hs,rn
(k2)|2, Y1 =

SNR|Hrn,d(k1)|2, and Y2 = SNR|Hrn,d(k2)|2. All of
these random variables are marginally exponential with rate
1/SNR. Under the assumptions of our channel model, the
pairs(X1, X2) and(Y1, Y2) are independent. Hence, the joint
pdf of (X1, X2, Y1, Y2), using the result in the Appendix, is
given by

fX1,X2,Y1,Y2(x1, x2, y1, y2) = fX1,X2(x1, x2)fY1,Y2(y1, y2)

=
1

SNR2(1− ρx1x2)(1− ρy1y2)
exp

(
− x1 + x2

SNR(1− ρx1x2)

)

I0

(
2√ρx1x2

SNR(1− ρx1x2)
√

x1x2

)
exp

(
− y1 + y2

SNR(1− ρy1y2)

)

I0

(
2√ρy1y2

SNR(1− ρy1y2)
√

y1y2

)
U(x1)U(x2)U(y1)U(y2),

(20)

whereI0(·) is the modified Bessel function of the first kind of
order zero andU(·) is the Heaviside unit step function [10].
ρx1x2 is the correlation coefficient betweenX1 and X2 and
similarly, ρy1y2 is the correlation coefficient betweenY1 and
Y2.

The joint cumulative distribution function (cdf) of the pair
(M1,M2) can be computed as

FM1,M2(m1,m2) , Pr [M1 ≤ m1,M2 ≤ m2]
= Pr [min (X1, Y1) ≤ m1, min (X2, Y2) ≤ m2]

= 2
∫ m1

y1=0

∫ ∞

x1=y1

∫ m2

y2=0

∫ ∞

x2=y2

fX1,X2(x1, x2)

fY1,Y2(y1, y2)dy1dx1dy2dx2

+ 2
∫ m1

y1=0

∫ ∞

x1=y1

∫ m2

x2=0

∫ ∞

y2=x2

fX1,X2(x1, x2)

fY1,Y2(y1, y2)dy1dx1dx2dy2,
(21)

where we have used the symmetry assumption of the
source-relay and relay-destination channels. The joint pdf of
(M1,M2) can now be given as

fM1,M2(m1,m2) =
∂2

∂m1∂m2
FM1,M2(m1,m2)

= 2fY1,Y2(m1,m2)
∫ ∞

x1=m1

∫ ∞

x2=m2

fX1,X2(x1, x2)dx1dx2

+ 2
∫ ∞

x1=m1

∫ ∞

y2=m2

fX1,X2(x1,m2)fY1,Y2(m1, y2)dx1dx2.

(22)

To get the PEP upperbound in (19) we need to calculate the



expectation

E

{
exp

(
− 1

8(
M1

∣∣∣G(k1)− G̃(k1)
∣∣∣
2

+ M2

∣∣∣G(k2)− G̃(k2)
∣∣∣
2
))}

=
∫ ∞

m1=0

∫ ∞

m2=0

exp
(
− 1

8

(
m1

∣∣∣G(k1)− G̃(k1)
∣∣∣
2

+ m2

∣∣∣G(k2)− G̃(k2)
∣∣∣
2
))

fM1,M2(m1,m2)dm1dm2.

(23)

At high enough SNRI0

(
2
√

ρx1x2
SNR(1−ρx1x2 )

√
x1x2

)
is approxi-

mately 1 [10]. Using this approximation, the PEP upper bound
can be approximated at high SNR as

PEP (s → s̃) .
(

2N∏
m=1

∣∣∣Gp0(m)− G̃p0(m)
∣∣∣
2
)−1

×
(

1
16

(1− ρ)SNR

)−2N

,

(24)

whereρ = ρx1x2 = ρy1y2 . Again, full diversity is achieved

when the product
∏2N

m=1

∣∣∣Gp0(m) − G̃p0(m)
∣∣∣
2

is non-zero.
The coding gain of the space-frequency code is maximized

when the productmins6=s̃

∏2N
m=1

∣∣∣Gp0(m) − G̃p0(m)
∣∣∣
2

is
maximized.

The analysis becomes highly involved for anyL ≥ 3. It is
very difficult to get closed form expressions in this case due to
the correlation among the summed terms in (15) for which no
closed-form pdf expressions, similar to (20), are known [11].

We will use a linear mapping to form the transmitted
subblocks, that isG = VNL×NLsG, wheresG is theNL× 1
data vector transmitted in the subblockG. sG is from QAM
or PSK constellation. It was proposed in [12] and [13] to
use both Hadamard transforms and Vandermonde matrices to
design the VNL×NL matrix. The transforms based on the
vandermonde matrices proved to give larger minimum product
distance than the Hadamard based transforms. Two classes of
optimum transforms were proposed in [12] as follows

1) If NL = 2k (k ≥ 1), the optimum transform is
given by Vopt = 1√

NL
vander(θ1, θ2, ..., θNL), where

θ1, θ2, ..., θNL areθn = ej 4n−3
2NL π, n = 1, 2, ..., NL.

2) If NL = 3.2k (k ≥ 0), the optimum transform is
given by Vopt = 1√

NL
vander(θ1, θ2, ..., θNL), where

θ1, θ2, ..., θNL areθn = ej 6n−1
3NL π, n = 1, 2, ..., NL.

IV. SIMULATION RESULTS

In this section, we present some simulations for the pro-
posed distributed space-frequency code. We compare the per-
formance of the proposed codes to the DSFC with the decode-
and-forward (DAF) protocol proposed in [14]. Fig. 2 shows
the case of a simple two-ray,L = 2, channel model with a
delay ofτ = 5µsec between the two rays. The two rays have
equal powers, i.e.,σ2(1) = σ2(2). The number of subcarriers
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Fig. 2. SER for DSFCs for BPSK modulation,L=2, and delay=[0, 5µsec]
versus SNR.

is K = 128 with a system bandwidth of 1 MHz. We use BPSK
modulation and Vandermonde based linear transformations.
Fig. 2 shows the symbol error rate (SER) of the proposed
DSFCs versus the SNR defined asSNR = Ps+Pr

N0
, and

we usePs = Pr, i.e., equal power allocation between the
source and relay nodes. We simulated three cases: all channel
variances are ones, relays close to source, and relays close
to destination. For the case of relays close to source, the
variance of any source-relay channel is taken to be 10 and
the variance of any relay-destination channel is taken to be
1. For the case of relays close to destination, the variance of
any source-relay channel is taken to be 1 and the variance
of any relay-destination channel is taken to be 10. Fig. 3
shows the case of a simple two-ray,L = 2, with a delay
of τ = 20µsec between the two rays. The simulation setup
is the same as that used in Fig. 2. From Figs. 2 and 3, it is
clear that DSFCs with the DAF protocol and DSFCs with the
AAF protocol achieve the same diversity order. DSFCs with
the DAF protocol achieve better SER performance since they
deliver a less noisy code to the destination node as compared
to DSFCs with the AAF protocol, where noise propagation
results from the transmissions of the relay nodes. Although
DSFCs with the DAF protocol have a better SER performance,
DSFCs with the AAF protocol have the advantage of requiring
simple processing at the relay nodes. The DAF based DSFCs
require the decoding of the received source signal while the
AAF based DSFCs require only scaling of the received source
signal.

V. CONCLUSION

In this paper, a design of distributed space-frequency codes
was proposed for the wireless relay network employing the
amplify-and-forward protocol. We derive sufficient conditions
for the proposed code structure, based on the PEP analysis,
to achieve full diversity and maximum coding gain. We prove
that the proposed codes can achieve full diversity of orderLN ,
promised by the multi-path and cooperative diversities of the
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Fig. 3. SER for DSFCs for BPSK modulation,L=2, and delay=[0, 20µsec]
versus SNR.

wireless relay channel, for the special cases ofL = 1 and
L = 2.

APPENDIX

Consider the two random variablesHs,rn(k1) and
Hs,rn(k2), we will assume without loss of generality that
τ1 = 0, i.e., the delay of the first path is zero.Hs,rn(k1)
is given by

Hs,rn(k1) = αs,rn(1) + αs,rn(2)e−j2π(k1−1)∆fτ2

= < (Hs,rn(k1)) + j= (Hs,rn(k1)) ,
(25)

where<(x), and=(x) are the real, and imaginary parts ofx,
respectively. From (25) we have

< (Hs,rn(k1)) = <(αs,rn(1)) + <(αs,rn(2))
cos(2π(k1 − 1)∆fτ2) + =(αs,rn(2)) sin(2π(k1 − 1)∆fτ2)
= (Hs,rn(k1)) = =(αs,rn(1)) + =(αs,rn(2))
cos(2π(k1 − 1)∆fτ2)−<(αs,rn(2)) sin(2π(k1 − 1)∆fτ2).

(26)

Based on the channel model presented in Section II both
< (Hs,rn(k1)) and = (Hs,rn(k1)) are zero-mean Gaussian
random variables with variance1/2. The correlation coeffi-
cient, ρri, between< (Hs,rn(k1)) and= (Hs,rn(k1)) can be
calculated as

ρri = E {< (Hs,rn(k1))= (Hs,rn(k1))} = 0. (27)

Hence,Hs,rn(k1) is a circularly symmetric complex Gaussian
random variable with variance1/2 per dimension and the same
applies forHs,rn(k2). To get the joint probability distribution
of |Hs,rn(k1)|2 and |Hs,rn(k2)|2, we can use the standard
techniques of transformation of random variables. Using trans-
formation of random variables and the fact that bothHs,rn(k1)
and Hs,rn(k2) are circularly symmetric complex Gaussian
random variables, it can be shown thatX1 = |Hs,rn(k1)|2
and X2 = |Hs,rn(k2)|2 are jointly distributed according to a
bivariate Gamma distribution with pdf [9], [11]

fX1,X2(x1, x2) =
1

1− ρx1x2

exp
(
− x1 + x2

1− ρx1x2

)

I0

(
2√ρx1x2

1− ρx1x2

√
x1x2

)
U(x1)U(x2),

(28)

whereI0(·) is the modified Bessel function of the first kind of
order zero andU(·) is the Heaviside unit step function [10].
ρx1x2 is the correlation between|Hs,rn

(k1)|2 and|Hs,rn
(k2)|2

and it can be calculated as

ρx1,x2 =
Cov(X1, X2)√

Var(X1) Var(X2)
. (29)

Following tedious computations, it can be shown that

ρx1,x2 =
1
2

+ 2σ2(1)σ2(2) cos(2π(k2 − k1)∆fτ2), (30)

where the last equation applies under the assumption of having
σ2(1) + σ2(2) = 1 and both,σ2(1) andσ2(2), are non zeros.
From (30) it is clear that0 ≤ ρx1,x2 ≤ 1.
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