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Abstract—Compressive Sensing has been utilized in Cognitive
Radio Networks (CRNs) to exploit the sparse nature of the
occupation of the primary users. Also, distributed spectrum sens-
ing has been proposed to tackle the wireless channel problems,
like node or link failures, rather than the common “centralized
approach” for spectrum sensing. In this paper, we propose a
distributed spectrum sensing framework based on consensus
algorithms where SU nodes exchange their binary decisions to
take global decisions without a fusion center to coordinate the
sensing process. Each SU will share its decision with its neighbors,
and at every new iteration each SU will take a new decision
based on its current decision and the decisions it receives from
its neighbors; in the next iteration, each SU will share its new
decision with its neighbors. We show via simulations that the
detection performance can tend to the performance of majority-
rule Fusion Center based CRNs.

Index Terms: Compressive Sensing, Consensus Algorithms,
and Cognitive Radio Network.

I. INTRODUCTION

Cognitive Radio Networks (CRNs) have been highlighted
as an elegant solution to the spectrum crunch and to utilize the
spectrum under the current spectrum licensing paradigm [1]. In
CRN model, there are two types of users: primary users (PUs)
and secondary users (SUs). SUs which do not possess a license
to use a spectrum band are nevertheless allowed to transmit
when the PUs are sensed inactive. In order to assure a minimal
quality of service (QoS) for the PUs, then spectrum sensing is
a mandatory task for SUs to detect the presence of the PUs in
order to identify the available transmission opportunities [2].
Cooperative spectrum sensing has been proposed to combat
imperfect conditions of wireless channel environments such
as shadowing, fading, and time varying fluctuations in the
wireless channel.

Recently, Compressive Sensing (CS) has been investigated
as a means for detecting sparsity patterns and recovering sparse
signals. CS can reconstruct signal support from a small number
of measurements conditioned that the signal is sparse in some
domain. With a relation to CRNs, CS has been proposed to
reduce the power consumed at the SUs to sense the channels
occupied by PUs. Therefore, it is desirable in terms of power
consumption to make a small number of linear measurements
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of the channels instead of scanning each channel seperately
[3].

In CRNs, the conventional approach for cooperative sens-
ing is the centralized approach. In this sensing paradigm, the
measurements of the secondary users are collected by a fusion
center, then a final a decision is made based on these reported
decisions. However, it is not robust to the wireless channel
nature.

Distributed average consensus algorithms [4] have been
investigated in different research areas such as distributed com-
puting, wireless sensor networks, and cooperative control of
multi-agent systems. In these problems, the goal is to achieve
an average consensus on local information over a network of
agents. Average consensus algorithms have been utilized for
distributed cooperative spectrum sensing; the authors of [5]
have proposed two binary consensus approaches: diversity and
fusion for infrastructure-less CRNs (i.e., without any aid of
fusion center). For diversity based consensus algorithm, each
CR user utilizes its transmissions to repeat its initial vote.
After the sensing phase, the algorithm starts in which the
CR network is given K time steps (transmissions) to reach a
consensus. Each node can use all its transmissions to repeat its
initial vote and only fuses the received information at the end
of the consensus algorithm. This strategy can, in particular, be
useful in reducing the impact of link failures. For the fusion
binary consensus approach, each secondary user updates its
binary decision, at every step, based on the received votes
from its neighbors. In the next time step, it then transmits
its updated vote to its neighbors. The convergence of the
network performance for fusion-based algorithm is faster than
the diversity-based algorithm, however, it is less immune to
link failures as the diversity-based algorithm performs.

In this paper, we utilize the tool of CS for infrastructure-
less based CRNs where each SU makes linear measurements
to detect the occupancy of PUs. Diversity based consensus
algorithm is applied in the CRN, we show that the detection
performance can tend to the performance of majority-rule
Fusion Center (FC) based CRNs depending on the number
of algorithm iterations, links’ quality between SU nodes, and
the number of measurements.

The rest of the paper is organized as follows. In Section
II, we provide a mathematical overview on CS and the bi-
nary consensus algorithms. The system model is described in
Section III. In Section IV, we propose our binary consensus



scheme. Simulation results are presented in Section V. Finally,
we conclude the paper in Section VI.

Notations: boldface uppercase letters denote matrices and
boldface lowercase letters are used for vectors. C, R denote
the complex and real domain, respectively. For a matrix A, its
transpose denoted by AT .

II. PRELIMINARIES

In this section, we briefly review the mathematical back-
ground of compressive sensing and binary consensus algo-
rithms.

A. Compressive Sensing

For an illustration for Compressive Sensing (CS) theory,
consider a real-valued signal x ∈ RN×1, which is sparse in
some domain Ψ = [ψ1,ψ2, . . . ,ψN ] ∈ RN×N. The signal x
can be written as follows:

x =
N
∑

i=1

siψi = Ψs. (1)

The signal x is called K-sparse if it is represented as a linear
combination of only K basis vectors from the domain Ψ, that
is, only K of the si coefficients in equation (1) are non zero.

In CS, only small number of measurements denoted by
the vector y is needed to recover the sparse signal x using a
T × N measurement matrix Φ, where T < N , as shown in
the following equation:

y = Φx = ΦΨs = Θs (2)

and the number of required measurements for reliable recovery
satisfies the condition T ≥ K logN [6].

Since T < N , the system of equations has no unique
solution, and hence, it is impossible to uniquely recover x
from y. However, given that the vector x is K-sparse, where
K << N , then the CS theory allows us to reconstruct the
signal, provided that the measurement matrix Φ is chosen
such that it satisfies the Restricted Isometric Property (RIP)
condition, as follows.

(1− δ) ∥x∥2
2
≤ ∥Φx∥2

2
≤ (1 + δ) ∥x∥2

2
. (3)

The signal reconstruction problem can be formulated as an
ℓ1-norm minimization problem as follows.

min
x̂∈RN

∥x̂∥
1

s.t. ∥y −Φx̂∥
2
≤ ϵ (4)

where ϵ is some small tolerance dependent on the noise
level. Different recovery techniques were developed to im-
prove the computational complexity of compressive sensing
reconstruction. Techniques such as “subspace pursuit” and
“orthogonal matching pursuit” have been developed that ex-
hibit computational complexity of O(NM) and O(N logM),
respectively. Also the authors in [3] proposed two compressive
sensing based collaborative spectrum sensing techniques that
are computationally efficient; the first approach is using matrix
completion technique in which the technique reconstructs a
low rank matrix from small number of entries. The second
approach is based on joint sparsity recovery. This approach

utilizes the correlation between sparsity patterns measured by
the CRs, however, it is mentioned that the correlation between
the measurements will be reduced in the presence of noise and
wireless channel environments.

B. Binary Consensus Algorithm

In this subsection, we provide a basic review of binary
consensus algorithms for distributed spectrum sensing [4]. To
allow SUs to cooperatively arrive at a global decision and with
no help from a designated central entity, each SU makes a local
decision regarding the presence or absence of a PU, denoted as
H1 or H0, respectively. SUs then exchange their binary local
decisions with their direct neighbors for K time steps, where
K is the running time of the algorithm. Upon the termination
of the algorithm, each SU individually makes a decision of
H1 or H0, based on the received decisions from neighboring
nodes. Let b(k) = [b1(k), . . . , bM (k)]T be the vector of local
decisions at time step k at the M SUs. The binary consensus
algorithm can be summarized as follows.

1) At the first time step (k = 0), each SU initially
transmits its local decision to its neighbors that are
connected to it at this time step.

2) At each consecutive time step (0 < k < K), each SU
collects the decisions transmitted by its neighboring
SUs. It then combines these decisions, along with the
previously received decisions from past time steps,
through a combining function which generates a new
decision b(k); this new decision is to be transmitted
to neighboring nodes at the current time step k. This
can be mathematically expressed as:

b(k) = F(b(n), n = 0, · · · , k − 1), 0 < k < K − 1
(5)

where F(.) is the combining function.
3) Upon the termination of the algorithm (k = K), each

node makes a final decision based on the previously
obtained decisions from all time steps 0 < k < K,
through a decision function. This can be mathemati-
cally expressed as:

b(K) = D(b(n), n = 0, · · · ,K − 1) (6)

where D(.) is the decision function.

Based on the appropriate choice of the combining and de-
cision functions, the binary consensus algorithm is guaranteed
to converge to a common decision after a sufficiently long
running time, i.e., bi(K) = b⋆, ∀i = 1, · · · ,M as K → ∞
[4].

In this paper, we focus on one variation of binary con-
sensus algorithms, namely, diversity-based binary consensus
algorithm [5], in which a SU uses its initial local decision
for decision reporting at all consecutive time steps, and the
combining function is basically a majority rule for the received
decisions along the K time steps. The combining and decision
functions in this case are mathematically expressed as:



F(b(n), n = 0, · · · ,k − 1) = b(k − 1), 1 < k < K,

D(b(n), n = 0, · · · ,K − 1) =

Dec

(
1

M
(b(0) +

1

Kp

K−1
∑

t=0

A(t)b(t))

)

(7)

where Dec(x) =

{

1, if x ≥ 0.5
0, if x < 0.5

with 1 and 0 corresponding

to deciding H1 and H0, respectively. When x is a vector, the
function operates on it element-wise.

It is proven in [5] that the global probability of detection
can be expressed as follows

Pd(K) ≈
M
∑

i=0

(

M
i

)
⎡

⎣(1− π11)Q

(
(M

2
− i)

√
K

√
1−p
p i

)
⎤

⎦

M−i

(8)

×

⎡

⎣π11Q

(
(M

2
− i)

√
K

√
1−p
p |i− 1|

)
⎤

⎦

i

where Q(x) = 1√
2π

∫∞
x e−t2/2dt and π11 is the probability of

detection at the ith SU.

The asymptotic behaviour the algorithm can be written as

lim
K→∞

Pd(K) =
M
∑

i=⌈M
2
⌉

(

M
i

)

(1− π11)
M−iπi

11 (9)

which implies that the performance of the binary consensus
algorithm will converge to the performance of the majority
decision rule as K → ∞. It is worth noting that, the asymp-
totic behaviour of the diversity-based consensus algorithm is
independent of the network connectivity and depends on the
number of SUs and signal to signal-to-noise ratio (SNR).
Moreover, the false alarm probability is independent of signal
power and link quality, and it only depends on the noise
parameter.

Vector consensus: In this work, we extend the consensus
on a scalar value, i.e., PU occupancy of single channel into an
approximate consensus on vector, i.e., the PUs occupancy of
multiple channels. Consequently, this consensus problem maps
to a vector consensus problem. Approximate vector consensus
is characterized by two important things: 1) ϵ-agreement which
indicates how far the output vector of each node is from
the true vector, 2) Termination, in which the approximate
consensus (i.e., the difference between each element in the
output vector and the true vector does not exceed ϵ) can be
reached in finite time [7].

III. SYSTEM MODEL

Signal Model

We consider a cognitive radio network with M SU nodes
that locally monitor a subset of N channels. A channel is either
occupied by a PU node or unoccupied, corresponding to the
states 1 and 0, respectively. We assume that the number P
of occupied channels is much smaller than N . The goal is to
recover the occupied channels from the SU nodes observations.
Since each SU can only sense limited spectrum at a time,
it is impossible for limited M SUs to observe N channels
simultaneously. Therefore, each SUs node makes a small
number of measurements T using a measurement matrix Fi

whose elements are drawn from a Gaussian distribution [3].

The channel gain Gi,j between the ith SU and the channel
j is defined as follows:

Gi,j = d−α/2
i,j |hi,j | , (10)

where di,j is the distance between the ith SU and the jth PU,
α is the path loss exponent, and hi,j is a complex-Gaussian
channel gain between the ith SU and the jth PU; without
loss of generality, the transmitted signal from the jth PU is
normalized to unity.

frequency
N channel sub-bands

Empty sub-band Occupied sub-band

Fig. 3: Sparsity Nature of Spectrum Occupation by PUs.

Collectively, the PUs signals of the network can be written
as follows:

XN×M = RN×N × (GM×N )T (11)

where R ∈ RN×N is a diagonal matrix, whose diagonal
elements represent the states of all channels whether active
’1’ or inactive ’0’, and G ∈ CM×N is the channel gain matrix
between the PUs and SUs whose its elements Gi,j .

Also, the received signal can be written as:

YT×M = FT×NXN×M +WT×M (12)

where is W is the measurement noise matrix, whose elements
are independent with zero mean and a variance of σ2. And
F ∈ RT×N is the measurement matrix1 as defined previously.

IV. PROPOSED SENSING SCHEME

Phase one: Independent ℓ1-norm Recovery

After each SU node i makes its measurements, each SU i
applies the following ℓ1-norm recovery algorithm [8]:

min
x̂j∈RN

∥x̂j∥1 (13)

1It does not matter in system performance if every SU node uses a different
measurement matrix or not [3].
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Fig. 1: Fusion-based CRN.
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Fig. 2: Infrastructure-less CRN.

Symbol Description
M Number of SUs.

τ̄ij(k) Instantaneous SNR of ith SU at jth SU at time step k.
τ Min. acceptable threshold for successful decoding.
α Path loss exponent.
T The number of measurements at each SU node.
Fi The measurement matrix of the ith SU.

bi(0) Initial binary decision vector of ith SU.
N Number of frequency sub bands.
A Adjacency matrix
η Local detection threshold.

TABLE I: List of symbols.

s.t. ∥Fjx̂j − yj∥22 ≤ σ2

j , ∀j ∈ {1, . . . ,M} (14)

where x̂j is the vector of recovered signal at SU j, and σ2
i is

estimated noise power.

Then, we employ a threshold test at each SU node to
generate the decision vector bj(0), ∀j ∈ {1, . . . ,M} about
the occupancy of the N channels.

bji(0) =

{

1, xji(0) ≥ η
0, xji(0) < η (15)

where bji(0) is the initial binary decision about the jth channel
at the ith SU node.

Phase two: Consensus Algorithm

Network model between the CR nodes: We model the
secondary network as an undirected random graph G(M,E),
where M , the set of nodes, represents the SUs, and E, the
set of edges, denotes the connectivity of SUs. A node i is
connected to node j if τij(k) > τ , where τij(k) is the
instantaneous SNR of the signal of SU i at SU j at time
step index k, and τ is the minimum acceptable SNR required
for successful decoding of secondary transmission. Assuming
channel reciprocity, then τji(k) = τij(k) and both SUs are
in the neighborhood of each other if their instantaneous SNR
exceeds the decoding threshold. The probabilistic nature of
the wireless channel and consequently, of the instantaneous
SNR of received secondary signals are the reasons behind the
“randomness” in the network graph. Due to the absence of a
central entity for coordinating transmissions, nodes which are
in the same transmission range of each other exchange their
decisions.

To model the connectivity between SUs in the network, the
adjacency matrix A(k) ∈ RM×M is defined as:

aij(k) =

{

1 if τ̄ij(k) >= τ, i ̸= j
0 otherwise

(16)

where aij(k), i, j ∈ {1, · · · ,M} denotes the (i, j)th element
of the matrix A(k). aij(k) = 1 in this context means that
nodes i and j are connected. For ease of exposition, we neglect
the intricate details of the wireless channel transmission and
communication scheme and assume aij(k), i ̸= j, ∀ k ≥
0 to be Bernoulli random processes with p = Pr(aij(k) =
1) = Pr(τ̄ji(k) > τ), which implicitly models wireless channel
characteristics.

We apply the following consensus scheme for K iterations
between the SU nodes:

bj(k) = Dec

(
1

M
(b(0) +

1

Kp

K
∑

t=1

B(t)aT
j (t))

)

(17)

where bj(k) is the decision vector at the jth SU node at time
k, B(t) = [b1(t), b2(t), . . . , bM (t)] ∈ RN×M , and aj ∈ RM

is the jth column vector of the adjacency matrix A.

Convergence of the consensus algorithm: The updated
term in the algorithm at a certain time instant can be written
as (for convenience, we remove the time index)

uj = BaT
j =

⎡

⎢
⎣

b11 · · · b1M
...

. . .
...

bN1 · · · bNM

⎤

⎥
⎦

⎡

⎢
⎣

aj1
...

ajM

⎤

⎥
⎦ . (18)

Then, for channel j, the updated term at the ith SU will be as
follows

uji = bj1ai1 + bj2ai2 + · · ·+ bjiaii
︸ ︷︷ ︸

0

+ · · ·+ bjMaiM . (19)

Using lemma 1 in [5], we can show that

lim
K→∞

Dec

(
1

M
(bji(0) +

1

Kp

K
∑

t=1

uji(t))

)

= b∗j , (20)

∀j = 1, . . . , N, ∀i = 1, . . . ,M.

Then, the convergence is held for each element of the decision
vector bi, ∀i = 1, . . . ,M . Then, it can be verified that the



detection probability will converge to that of the majority-rule
based fusion system:

lim
K→∞

Pd(K) =
N
∑

j=1

M
∑

i=⌈M
2
⌉

(

M
i

)

(1−π11|Rjj=1)
M−iπi

11|Rjj=1
.

(21)

V. SIMULATION RESULTS

In this section, we investigate the performance of our
proposed algorithm through simulations. We compute the
probability of detection at time k as follows:

Pd(k) =

∑

j|Rjj=1

∑M
i=1

1(bji(k) = 1|Rjj = 1)

M × P
(22)

and for the false alarm probability, we calculate it as

Pfa(k) =

∑

j|Rjj=1

∑M
i=1

1(bji(k) = 1|Rjj = 0)

M × (N − P )
(23)

where 1(A) is the indicator function for an event A and
takes the value ’1’ if A is valid and ’0’ otherwise. In
addition, we compare the performance of the proposed
distributed algorithm with a “centralized” fusion algorithm as
an upper bound for the infrastructure-less based performance
at different SNRs. For the fusion based CRN2 we use the
majority-rule decision making, for which the probability of
detection is given as follows:

Pd =

∑

j|Rjj=1
1(Dj >= M/2|Rjj = 1)

P
(24)

and for the false alarm probability is given by

Pfa =

∑

j|Rjj=0
1(Dj >= M/2|Rjj = 1)

N − P
(25)

where Dj =
∑M

i=1
bji.

The simulated model consists of N = 200 channels. The
locations of PUs are uniformly distributed over an area of
1000× 1000 m2, with a minimum distance of 10 m between
any two SUs, and the pathloss exponent is set to be α = 2. We
set the algorithm iterations number to be K = 10. We have
randomized the simulation parameters for 500 trials

Fig. 4 shows the effect of the number of iterations on the
network performance, i.e., the asymptotic behaviour of the
algorithm. It is clear that the performance of the algorithm
will converge to a constant value after nearly K = 20.
Another observation is that the performance of infrastructure-
less network is upper bounded by the performance of the
centralized network, which, in part, is due to the fact that not
every SU is connected to all the other SUs. Fig. 5 shows the
effect of the link connectivity on the detection performance. It
is clear that as the probability to establish links between the SU
nodes increases, the performance of the detection algorithm
enhances in terms of both the detection probability and the
false-alarm probabiliy.

2The link quality for the fusion based system is assumed to be perfect;
p = 1.

Fig. 6 shows the effect of the number of measurements
on the detection performance. It is clearly seen that increasing
the number of measurements will enhance both the detection
probability and the false-alarm probabiliy.

To show the effect of connectivity on the consensus algo-
rithm, Fig. 7 shows the probability of detection as a function
of the number of algorithm iterations K for M = 12 users.
We consider two different scenarios of connectivity conditions
between the SU nodes: 1) poor network connectivity (p = 0.3),
2) good network connectivity (p = 0.8) for two different values
of SNR 5 and 10 dB.

Fig. 8 shows the performance degradation as the number
of PUs increases. This indicates that, for a fixed number of
measurements T , increasing the number of PUs will degrade
the performance of detection. In other words, the sparsity of
occupancy vector will reduce, and hence, the recovery for
the occupancy vector will degrade (as the sparsity constraint
becomes less valid as we increase the number of PUs).
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Fig. 4: Performance comparison between fusion based CRN and
infrastructure-less CRN: N = 200 channels, T = 50 measurements, P
= 4 users, M = 12 users, α = 2.
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channels, T = 50 measurements, P = 4 users, M = 12 users, α = 2.
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VI. CONCLUSION

In this paper, we propose a distributed detection framework
utilizing compressive sensing for infrastructure-less CRNs,
which allows each SU to exchange its decisions with its

neighbors at each iteration of a consensus algorithm. We
have shown that an approximate consensus is reached after a
sufficient number of iterations, depending on the link quality
and the number of measurements at each node. Simulations
results are used to study the different effects of the network
parameters, like the link quality, the number of measurements,
and the number of PUs, on the detection performance of the
proposed algorithm.
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