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Abstract—We consider the design of space-time codes for
multi-resolution multiple-input multiple-output (MIMO) broad-
cast communication systems. Two classes of receivers are consid-
ered: high-resolution (HR) receivers, which have access to reliable
channel state information (CSI) and can perform coherent detec-
tion, and low-resolution (LR) receivers which do not have access
to CSI and can only perform non-coherent detection. We propose
a layered encoding structure, whereby, for the LR receivers, the
transmitted codewords are chosen to be points on the Grassmann
manifold whereas, for the HR receivers, incremental information
is encoded in the particular bases of the transmitted codewords,
thereby representing points on the Stiefel manifold. For the
HR receivers, we develop a computationally-efficient two-step
detector. Using this detector, we show that the proposed structure
enables reliable coherent communication of the incremental HR
information without compromising the reliability with which the
basic LR information is non-coherently communicated. We also
show that this structure enables full diversity to be achieved for
both LR and HR receivers. Finally, we show that this structure
achieves the maximum number of degrees of freedom for non-
coherent LR channels and coherent HR channels with unitarily-
constrained input signals.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication
systems offer a spectrally-efficient means for the reliable
transmission of high data rates [1], [2]. However, the mode
in which these systems operate depends, to a large extent, on
the accuracy of the channel state information (CSI) available
at the receivers. For instance, when accurate CSI is available at
the receiver, the communication channel operates in a coherent
mode, whereas when no CSI is available, the channel operates
in a non-coherent mode [3], [4]. In comparison with their
non-coherent counterparts, coherent channels are amenable to
simpler detection mechanisms and can support the reliable
communication of higher data rates.
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Similar to point-to-point communications, MIMO systems
are expected to be effective in broadcast scenarios wherein
one transmitter wishes to send multi-resolution information to
multiple receivers. Depending on their mobility and relative
locations from the transmitter, a receiver may or may not be
able to acquire reliable CSI. In such cases, the transmitter may
wish to send basic low-resolution (LR) information that can be
detected by all receivers, including those without CSI, and in
addition, it may wish to send incremental high-resolution (HR)
information to receivers with reliable CSI.

In [5] it was shown that, when the signal-to-noise ra-
tio (SNR) is sufficiently high and the coherence time of the
channel is at least as large as the sum of the number of
transmit and receive antennas, the capacity of the non-coherent
MIMO channel is achieved by a signaling scheme in which the
transmitted codewords are isotropically distributed on the so-
called Grassmann manifold. Distinct points on this manifold
are equivalence classes that represent distinct subspaces. In
contrast, the capacity of the coherent MIMO channel is
achieved by Gaussian-distributed codewords [6], which, for
several considerations are often difficult to use in practice,
and unitarily-structured block codes are utilized instead [2].

In this paper, we address the problem of designing space-
time codes that allow the simultaneous transmission of infor-
mation to two classes of receivers: HR receivers, which have
access to reliable CSI and can perform coherent detection,
and LR receivers which do not have access to reliable CSI
and can only perform non-coherent detection. For the LR
receivers, the transmitted codewords represent points on the
Grassmann manifold, whereas for the HR receivers incremen-
tal information is transmitted in the particular bases of the LR
codewords, which represent points on the Stiefel manifold. In
particular, to encode incremental information, we will exploit
the fact that Grassmannian-structured codewords are invariant
under the right action of unitary groups. Right multiplication
of an element from this group with a Grassmannian-structured
codeword will rotate its bases, but will preserve the subspace it
spans. Using this layered structure a receiver with no CSI will
be able to detect the basic LR information, whereas a receiver
with reliable CSI will be able to detect both the LR and the



incremental HR information. It will be shown that imposing
the unitary constraint on the HR information codewords, not
only facilitates their detection, but also preserves the reliability
with which the basic LR information is communicated. In
particular, for the HR receivers, we develop a computationally-
efficient two-step detector, which will enable us to show
that the proposed layered structure achieves full diversity
for both the LR and HR receivers. Furthermore, it will be
shown that the number of communications degrees of freedom
achieved by the proposed layered structure is maximal for both
non-coherent LR channels and coherent HR channels with
unitarily-constrained input signals.

Similar ideas were presented in [7], [8] for transmitting data
in a mulituser MIMO (MU-MIMO) settings. However, in our
work we consider a multilayer (multi-resolution) broadcasting
setup. Also, we propose some practical structures for the
coherent and non-coherent space-time codes whereas in [7],
[8] the authors were interested in codes that can achieve the
degrees of freedom (DoF).

II. PRELIMINARIES

In this section we will provide a brief background on the
Stiefel and Grassmann manifolds, which will be necessary for
subsequent analysis.

For T ≥M , the Stiefel manifold ST,M (C) is defined as the
set of all unitary T ×M matrices, that is,

ST,M (C) = {Q ∈ CT×M : QHQ = IM}. (1)

The Stiefel manifold ST,M (C) is submanifold of CT×M of
TM −M2/2 complex dimensions.

The Grassmann manifold GT,M (C) is defined as the quo-
tient space of ST,M (C) with respect to the equivalence relation
that renders two elements P,Q ∈ ST,M (C) equivalent if their
T -dimensional column vectors span the same subspace, i.e.,

P = QV (2)

for some matrix V in the unitary group UM = SM,M (C).
Since each element of GT,M (C) represents an equivalence

class in ST,M (C), the number of complex dimensions of the
Grassmann manifold can be expressed as:

dim(GT,M (C)) = dim(ST,M (C))− dim(SM,M (C))
=M(T −M). (3)

III. SYSTEM MODEL

We consider a broadcast MIMO communication system with
M transmit antennas with two classes of receivers operating
over the block Rayleigh flat-fading channel in Figure 1. The
channel is assumed to be constant over T consecutive time
slots. Using Ni to denote the number of receive antennas of
the i-th receiver, the communication system can be modeled
as

Yi = XHi + Wi

= UAHi + Wi, i = 1, 2, · · · , (4)

where Yi is the T ×Ni received matrix of the i-th receiver,
X = UA is the T ×M transmitted matrix which contains
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Fig. 1: The MIMO broadcast system model.

both the LR and the HR information. When the SNR is suffi-
ciently high, the capacity of the LR channel observed by, say,
receiver 1 can be achieved if X were isotropically distributed
on GT,M (C), provided that N1 ≥ M , T ≥ M + N1 and
M ≤ bT/2c [5]. For ease of exposition, these conditions will
be assumed to be satisfied throughout. To realize the isotropic
distribution for X on GT,M (C) under these conditions, in this
paper, the LR information is encoded in the subspace spanned
by the matrix U and the HR information is encoded in the
M ×M unitary matrix A ∈ UM , which represents a rotation
of the subspace spanned by U. The matrices Hi and Wi

represent the channel and noise observed by receiver i, and
the elements of these matrices are assumed to be statistically
independent, identically distributed (i.i.d) circularly-symmetric
zero mean complex Gaussian random variables. The entries of
Hi have unit variance and the entries of Wi have variance N0.
For notational convenience, we will drop the receiver index i
and will allude to the coherent and non-coherent operating
modes as necessary.

In the proposed layered encoding scheme, the LR layer
contains the basic information and is represented by a unitary
non-coherent code, with codewords that are isotropically dis-
tributed on the complex Grassmann manifold GT,M (C). Since
this manifold represents the set of M -dimensional subspaces
in CT , every codeword in this non-coherent code represents a
particular M -dimensional subspace, which is spanned by the
T ×M matrix U. This LR layer has the advantage that it can
be decoded coherently if the receiver has reliable CSI or non-
coherently if CSI is not available. In contrast, in our construc-
tion, the HR layer contains the incremental information and
is represented by a coherent code with particular codewords
drawn from the group of M ×M complex unitary matrices
UM . This layer can only be decoded coherently by a receiver
that has access to reliable CSI.

We will later show that restricting the matrix A in (4),
which represents the incremental HR information, to possess



a unitary structure ensures the preservation of the distance
characteristics of the non-coherent code. This implies that
the performance of the LR (non-coherent) code will not be
affected by the transmission of the HR information. Also,
restricting the matrix A to be unitary does not increase the
required transmitted power, i.e., the HR (coherent) layer is
completely transparent to the LR (non-coherent) layer and
no additional power provisioning is required to maintain the
performance of the LR layer.

IV. THE OPTIMUM NON-COHERENT DETECTOR

In this section, we will discuss the optimum non-coherent
detector, which is equivalent to the following generalized
likelihood ratio test (GLRT) detector [9].

Û = argmax
U

sup
H
p(Y|U,H). (5)

Using the facts that the matrix U is unitary and that the fading
coefficients are i.i.d Gaussian-distributed random variables, it
can be shown that the detector in (5) is equivalent to the
following maximum likelihood (ML) detector [9]:

Û = argmax
U

Trace(YHUUHY). (6)

From (6) it can be readily verified that encoding the HR
information in the unitary matrix A ∈ UM does not com-
promise the performance of the non-coherent GLRT detector.
In particular, we can write H

d
= AH, where d

= denotes
equality in distribution. This implies that the encoded HR
information will ‘see’ an equivalent channel matrix AH with
the same statistics as the original channel matrix H. As such,
it can be readily seen that the GLRT detector will exhibit
the same performance, as if the HR information layer were
not present; a Grassmannian-structured codebook will exhibit
a particular diversity order regardless of whether incremental
HR information is transmitted.

Restricting attention to the current case in which U ∈
GT,M (C), and using the approach in [10], the pairwise error
probability (PEP) can be upper bounded by

PEP(U1 → U2) ≤
1

2

M∏
m=1

[
1 +

(
SNR
M

)2
(1− s2m)

4(1 + SNR
M )

]−N
,

(7)
where SNR , E(TraceXXH)/(N0MT ) and 1 ≥ s1 ≥
· · · ≥ sM ≥ 0 are the singular values of the M ×M matrix
UH2 U1. By properly designing the Grassmannian codebook,
the greatest singular value of UH2 U1, s1, can be guaranteed to
be strictly less than 1 for any two distinct codewords U1 and
U2 in GT,M (C). In that case, it can be readily verified that
the asymptotic SNR exponent equals MN , thereby ensuring
that the Grassmannian codebook achieves full diversity order,
as if the HR information were not transmitted.

V. COHERENT DETECTORS

In this section, we will discuss the optimum coherent
detector for the class of receivers with reliable CSI. For
such receivers both the HR and LR information can be

reliably detected, and the optimal detector in this case is the
conventional ML one. Despite its optimality, the ML detector
is computationally expensive to implement in practice. To
circumvent this difficulty, we will develop a computationally-
efficiency suboptimum detector, and we will show that this
detector achieves full diversity, as does the optimal ML one.

A. The Optimum One-Step Coherent Detector

Since the noise matrix is Gaussian-distributed, the optimum
coherent detector that “jointly” decodes the LR and HR
information layers can be expressed as the detector that yields

X̂ = argmin
X
‖Y −XH‖2. (8)

Using SL and SH to denote the cardinality of the LR Grass-
mannian codebook and the HR unitary codebook, respectively,
it can be seen that the detector in (8) requires an exhaustive
search over SLSH codewords, which is computationally ex-
pensive to implement in practice. To alleviate this difficulty, in
the next section we will develop a sequential two-step detector
that is computationally-efficient and that will be shown to
achieve full diversity.

B. The Two-Step Coherent Detector

In this section we develop a sequential two-step detector
that is less complex than the one presented in Section V-A. In
the first step of this detector, the GLRT approach in (6) is used
to detect the LR Grassmannian codeword. In the second step
of the sequential detector, the GLRT output, Û, is assumed
to be the correct Grassmannian codeword and is subsequently
fed to an ML detector for detecting the HR information in A.
The output of this ML detector is given by

Â = argmin
A
‖Y − ÛAH‖2. (9)

This two-step detector is significantly less complex than the
one-step detector in (8), as it requires searching over SL +
SH codewords, as opposed to the SLSH codewords that are
searched over in (8). From a performance perspective, the two-
step detector does not take advantage of the available CSI
when detecting the LR information in U. This results in a
performance degradation in comparison with one-step detector.
However, as the following theorem shows, both detectors yield
the same diversity order (the proof of the theorem is omitted
due to space limitation).

Theorem 5.1: Let the LR and HR codebooks, {U} and
{A}, satisfy the full diversity singular values criterion for
non-coherent codes in [10] and the full diversity determinant
criterion for coherent codes in [1], respectively. Then, the
sequential two-step coherent detector achieves a diversity of
order MN , i.e., full diversity.

Remark: Since full diversity is achieved by the suboptimal
sequential two-step detector, this diversity order must be also
achieved by the optimal one-step coherent detector. 2



VI. DEGREES OF FREEDOM

Having considered the detection of the LR and HR infor-
mation layers, we will now focus our attention on the number
of degrees of freedom that they achieve. To do so, we will
use the fact that the incremental HR information is sent over
the Stiefel manifold, whereas the basic LR information is sent
over the Grassmann manifold, cf. Section II. The following
corollary characterizes the degrees of freedom achieved by
the proposed layered encoding structure.

Corollary 6.1: The achievable degrees of freedom, over T
time slots, for the conjoined LR and HR layers is TM−M2/2,
whereas the achievable degrees of freedom for the LR layer
is M(T −M).

Proof: By construction, the LR information is encoded
over matrices that are isotropically distributed on the Grass-
mann manifold, GT,M (C), and the total LR and HR infor-
mation is encoded over matrices that are are isotropically
distributed on the Stiefel manifold, ST,M (C). The proof of
this lemma follows directly from the dimensionality of these
manifolds discussed in Section II. The achievability of these
degrees of freedom follows directly from the achievability of
the non-coherent degrees of freedom; as mentioned above,
with our proposed code structure, the presence of the coherent
layer is completely transparent to the non-coherent layer, and
therefore the maximum number of degrees of freedom for the
non-coherent layer is achievable. Hence, it is straightforward
to show that the degrees of freedom of the coherent layer are
also achievable.

It is also worth mentioning that the proposed construction
does not achieve the maximum number of degrees of freedom
for the HR receivers. In particular, for these receivers, when
no constraints are imposed on X, the maximum number of
degrees of freedom is given by T min{M,N}, which, under
the conditions in Section III, reduces to TM . However, by
restricting X to be in ST,M (C), this number is reduced by
M2/2. This reduction can be regarded as the price paid
to ensure that the basic LR information rate, which can be
decoded by all receivers, is maximized. Restricting X to be
in ST,M (C) is equivalent to restricting A to be in UM , which
offers the advantage of preserving the channel statistics of the
LR channel; cf. Section IV. This ensures that code designs that
are favorable for standard point-to-point non-coherent MIMO
systems can be readily utilized in the current multi-resolution
layered scheme. For completeness, in the next section, we will
allude to some of these designs.

VII. COHERENT AND NON-COHERENT CODE
CONSTRUCTIONS

In this section, we present coherent and non-coherent code
constructions that will be used in Section VIII in evaluating
the performance of the proposed layered coding scheme.

A. HR Layer (Coherent) Code Construction

In Section V, we showed that HR coherent codes drawn
from the unitary group UM ensure that the performance of the
LR non-coherent codes is not compromised. A candidate of

such coherent codes is the standard 2×2 Alamouti scheme [2],
whereby the matrix A is constructed as follows:

A =
1√
2

(
s1 s2
−s∗2 s∗1

)
, (10)

where s1 and s2 are two complex symbols drawn from any
constant modulus constellation, e.g., PSK. Note that Alam-
outi’s scheme can be used for M = 2 with PSK modulation
to construct our coherent orthogonal code. For larger M ,
square orthogonal coherent code designs that exhaust all the
M2/2 degrees of freedom are not readily available, but can
be constructed directly on UM .

B. LR Layer (Non-Coherent) Code Construction

For the LR (non-coherent) code construction, we consider
two approaches: the exponential parameterization approach [4]
and the direct design approach [3].

1) The exponential parameterization method [4]: In this
approach non-coherent codes are obtained from coherent block
codes using the exponential map. In particular, the non-
coherent code matrices {U} in (4) are constructed using

U =

[
exp

(
0M αV
−αVH 0M

)]
IT,M , (11)

where V ∈ CM×(T−M) is the matrix representing the coherent
code, IT,M ∈ CT×M is the matrix containing the first M
columns of the T × T identity matrix, and α is a homothetic
factor which ensures that the singular values of V are less than
π/2 [4]. Although this approach facilitates the design of non-
coherent codes, it does not provide performance guarantees.
Another approach that addresses this issue is the direct one,
which we present next.

2) The direct design [3]: In this approach, the minimum
chordal Frobenius norm between the spaces spanned by any
two matrices Ui,Uj ∈ GT,M (C) is maximized. This norm
is given by

√
2M − 2Trace (Σij), where Σij is the matrix

containing the singular values of UHi Uj , cf. [11].
Using the approach in [3], the SL Grassmannian constella-

tion points required for the non-coherent code of the LR layer
can be cast as the following optimization problem:

min
{Ur}

SL
r=1

max
1≤i,j≤SL

Trace(Σij)

subject to Uk ∈ GT,M (C), k = 1, . . . , SL. (12)

VIII. SIMULATION RESULTS

In this section, we provide numerical evaluation of the
performance of the proposed layered coding scheme. In all
cases, we will use T = 4 and M = N = 2. For the HR layer,
we will use Alamouti’s scheme in Section VII-A for sending
two 4-QAM symbols, which gives rise to an HR transmission
rate of 1 bit per channel use (bpcu). For the LR layer, we will
use the exponential parameterization method and the direct
design in Sections VII-B1 and VII-B2, respectively.

In Figure 2, we plot the bit error probability when the
exponential parameterization method is used for constructing
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Fig. 2: The LR layer is constructed on G4,2(C) using the
exponential parameterization method and the HR layer is

constructed using the 2× 2 Alamouti code.
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Fig. 3: The LR layer is constructed on G4,2(C) using the
direct design technique and the HR layer is constructed

using the 2× 2 Alamouti code.

the non-coherent code of the LR layer. In this method we used
the space-time code matrix V given by [12]

V =

(
s1 + θs2 φ(s3 + s4)

φ(s3 − θs4) s1 − θs2

)
(13)

where φ2 = θ = ei
π
4 and si, i = 1, · · · , 4, are the four 4-QAM

symbols to be transmitted on the LR layer. In this case, the
homothetic factor to maximize the product distance is selected
to be α = 0.3 [4].

In Figure 3, we plot the bit error probability when the direct
technique is used for designing a 256-point Grassmannian
constellation for the communication on the LR layer.

From Figures 2 and 3, it can be readily seen that all the bit
error probability curves have the same high SNR slopes. This

implies that the optimal one-step detector and the sequential
two-step detector achieve the same diversity order, which is
the same diversity order achieved by the non-coherent receiver.
This confirms the result reported in Theorem 5.1 and, in
addition, confirms that the performance of the non-coherent
layer receiver is not adversely affected by the transmission of
the HR layer.

IX. CONCLUSION

In this paper, we proposed a new layered multi-resolution
broadcast space-time coding scheme which allows the simul-
taneous transmission of LR non-coherent information for all
receivers, including those with no CSI, and HR coherent
information to those receivers that have reliable CSI. The
proposed scheme ensures that the communication of the HR
layer is transparent to the underlying LR layer. We showed
that both the non-coherent and coherent receivers achieve full
diversity, and we showed that the proposed scheme achieves
the maximum number of communication degrees of freedom
for non-coherent LR channels and coherent HR channels with
unitarily-constrained input signals.
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