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Abstract—In this paper, we investigate a spectrum-sensing
algorithm for detecting spatial dimension holes in Multiple-Input
Multiple-Output (MIMO) transmissions for OFDM systems using
Compressive Sensing (CS) tools. This extends the energy detector
to allow for detecting transmission opportunities even if the band
is already energy filled. We show that the task described above
is not performed efficiently by regular MIMO decoders (such as
MMSE decoder) due to possible sparsity in the transmit signal.
Since CS reconstruction tools take into account the sparsity order
of the signal, they are more efficient in detecting the activity of
the users. Building on successful activity detection by the CS
detector, we show that the use of a CS-aided MMSE decoder
yields better performance rather than using either CS-based or
MMSE decoders separately.

I. INTRODUCTION

Recent statistical measures by the Federal Communications
Commission (FCC) showed the fixed assigned bands are
highly underutilized [1]. Cognitive radios (CR) [2] appeared as
a solution to the great inefficiency in bandwidth utilization. To
overcome this, the CR nodes are required to have spectrum-
sensing functions, and harbour dynamic and agile spectrum
access functions that allow it to tap in on sensing idle activity
and tap out of spectrum band on sensing return of activity.

The overlay secondary users (SUs) in cognitive networks
have an incentive to sense primary activity before accessing
any band. SUs need to make sure that there is no PU occupying
the band. If occupied, SUs cannot transmit their signals in
this band. An exception for the previous, however holds, if
the SU transmission can occupy un-tapped dimensions in this
band or propagate along directions un-effective to PU receiver
that show no effect to the PU decoded data. To match this
incentive, spectrum-sensing techniques have been developed,
namely, energy detector, matched-filter detector and feature
detector [3]. Of the three detectors, energy detector has the
benefit of being thoroughly generic.

Energy detector requires no information about the signal
form or the modulation technique used. It is unfortunate
however, that due to this blind activity detection, energy
detectors can mark some bands as occupied (or busy) while
there still exists some opportunities for SU transmission in
this band. One such possible opportunity is making use of the
fact that primary receiver antennas need to be greater than or
equal to the primary transmit antennas for correct decoding. In
case receiver antennas are greater, the spatial dimensions are

not fully utilized (i.e., more transmitters can be supported with
the information still being decodable). Since the opportunity in
this case is in the spatial dimension, we name the occurrence
of such event as “spatial dimension holes”. In order to utilize
these spatial dimension holes, the secondary user needs to
be aware of the number of receiver antennas (which can
be provided by the PU as a metric ) versus the number of
active transmitters. Knowing the number of active transmitters
(without regular information from the primary system) is a
challenging problem for conventional systems that rely on
matrix inversion techniques such as Zero-Forcing and MMSE
Detectors.

Recently, Compressive Sensing (CS) [4]–[7] has been
adopted by the signal processing community as a means for
detecting sparsity patterns and recovering sparse signals. The
use of CS for cognitive networks is not new and has been
proposed in [8]–[10]. However, all these publications consider
using CS for sensing activity in wideband channels. To the best
of our knowledge, using CS tools for exploiting transmission
opportunities in spatial domain with limited antenna resources
has not been tackled previously and this is the main incentive
behind this paper.

In this paper, the uplink of a multiuser MIMO (MU-
MIMO) system is considered1. The primary base station
(BS) is equipped with multiple antennas which enables the
simultaneous transmission from multiple primary users. The
primary BS can demodulate a number of primary users uplink
streams, sharing the same frequency resources, that is less than
or equal to the number of antennas at the BS. If the number
of primary uplink streams is less than the number of antennas
at the primary BS this will provide a “spatial” hole that can
be occupied by the secondary users. Having more antennas at
the primary BS allows for the transmission by the secondary
users in the spatial holes and the interference can be separated
at the primary BS.

In this paper, we consider the use of the CS tools to detect
the number of active primary users and hence detect the
“spatial” spectrum holes that can be accessed by the secondary
users. We also consider the use of the CS tools as well as the
MMSE MIMO detector at the secondary network for decoding
the primary users data for possible relaying of the primary

1MU-MIMO is one of the transmission modes defined in the LTE standard.
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users data.

II. SYSTEM MODEL

Notations: Throughout the paper we refer to vectors with
bold lower cases such as x. Matrices are referred to with
bold upper cases such as AM×N , where A is a matrix of
size M × N . diag(y) refers to the diagonal matrix whose
diagonal elements are the elements of the vector y. Due to
size limitations, we will sometimes refer to diag(y) as D(y).
Hermitian of a matrix A is denoted by AH. AT denotes the
transpose of the matrix A. We use RN to denote the vector
space of the N ×1 real vectors; CN is defined similarly to be
the vector space of the N × 1 complex vectors.

A. Primary System Model

We consider a single cell OFDM primary system with NP

users collaboratively communicating with a single primary
base station receiver (PR-BS) in a multiuser MIMO (MU-
MIMO) setting. The NP transmitters spatially share the spec-
trum by employing a virtual MIMO setting. The number of
receiving antennas at PR-BS NBS should be greater than or
equal to NP , where NP is the maximum number of active
primary users simultaneously assigned to the same subcarriers.

Let xi ∈ CL be a transmit OFDM symbol from the
primary user i. The elements in xi are fed from IQ lattice
constellations such as: QPSK, 16QAM or 64QAM. Moreover,
xi satisfies an average transmit power constraint of unity per
subcarrier. Therefore the total power constraint for the vector
is E{‖xi‖`2} ≤ L, where L is the number of subcarriers used
for transmission.

B. Secondary System Model

We consider an OFDM secondary user (SU) with NS

antennas. The secondary user uses its NS peripherals to sense
the degree of spectrum usage in the spatial domain. For
the model presented in this paper, we consider two different
scenarios that the SU can follow.

1) The SU attempts to make use of the free transmission
dimension to transmit its own information simultaneously
with the active primary users.

2) The SU detects the active primary users, decodes their
transmitted symbols for possible relaying of the PU data.

It is assumed that the channel between the NP primary users
and the NS secondary user antennas is perfectly known at
the SU. This assumption is not far from practical because
channel estimation can be performed by the SU using the
reference signals (RS) transmission by the primary users to
the PR-BS. The primary system performs channel estimation
over a number of transmission slots. Assuming slowly fading
channel, the estimates for the channel between the primary and
the secondary system are assumed to be valid over a number
of transmission slots.

The channel coefficients hs
j,i from the i-th primary user to

the j-th antenna on the secondary user are modelled in time
domain as a multipath fading channel with independent taps
and each tap is modelled as Rayleigh fading where the sum of
the taps’ variances equals 1. The received signal on the k-th
subcarrier at the j-th antenna is

yj(k) =

NP∑
i=1

hs
j,i(k) · xi(k) + nj(k) , k = 1, . . . , L, (1)

where yj is the (L × 1) vector received at the j-th at the j-
th antenna on the secondary user and nj is a vector of i.i.d.
complex Gaussian noise samples received at the j-th antenna
which have zero mean and variance σ2

n,CN (0, σ2
n). The SNR

for the system is therefore, 1/σ2
n. This can be rewritten to

include all subcarriers as

yj =

NP∑
i=1

D(hs
j,i) xi + nj . (2)

By combining the received vectors from all of the NS re-
ceivers, we get

y =


D(hs

1,1) D(hs
1,2) ··· D(hs

1,NP
)

D(hs
2,1) D(hs

2,2) ··· D(hs
2,NP

)

...
...

...
...

D(hs
NS,1) D(hs

NS,2) ··· D(hs
NS,NP

)


︸ ︷︷ ︸

H

 x1
x2

...
xNP

+

 n1
n2

...
nNS

 ,
(3)

where the received signal at the secondary node is given by

y = [yT
1 yT

2 . . . yT
NS

]T

and H is the channel matrix.

III. PROPOSED SENSING STRATEGY

Before discussing the proposed sensing strategy, we refer
to important compressive sensing results used in our work.

A. Compressive Sensing

Compressive Sensing is a technique for reconstructing
sparse vector v ∈ RN from a small set of compressive
measurements. Signal v is denoted as K-sparse if at most K



elements of v are non-zeros. Pioneered by Candes et al. [4],
it has been demonstrated that reconstruction of v in noisy
conditions, (r = Av+n, r ∈ RM ), is unique with negligible
probability of error by solving the `1-minimization problem

P1 : min
ṽ
‖ṽ‖`1

subject to : ‖r−Aṽ‖`2 ≤ ε
(4)

where ε is a term that bounds the tolerable noise energy in
the estimated signal ṽ. Although the M×N matrix A is rank
deficient and loses information, it can be shown to preserve the
information in sparse and compressible signals if it satisfies
the so-called restricted isometry property (RIP) [4]. Checking
whether a matrix satisfies the RIP condition is an NP-Complete
problem [11], however, for random matrices whose entries
are independent and identically distributed (i.i.d.) Gaussian,
the RIP condition is satisfied with high probability given that
M ≥ K log(N/K) [4], [12]. Currently, great research effort
has been invested in improving the computational complexity
of compressive sensing reconstruction techniques. Techniques
such as “subspace pursuit” and “orthogonal matching pursuit”
have been developed that exhibit computational complexity of
O(NM) and O(N logM), respectively. For the context of this
paper, and due to space limitations, we do not consider any
specific reconstruction technique, however, any of the formerly
mentioned techniques can be used for reconstruction. We refer
the reader to [13]–[15] for further discussion regarding the
implementation and complexity analysis for these techniques.

B. Block Sparse Reconstruction

A further extension to the generic compressive sensing
discussed previously is by making use of additional structure
properties in the signal [12]. Some signals have non-zero
elements arranged in the form of blocks and hence denoted
Block Sparse Signals. Block Sparse signals representation
comes naturally in multi-channel signals which are in question
in this paper.

In [5], [6], Eldar and Stojnic demonstrated that extending
the `1-minimization algorithm proposed in [4] by explicitly
making use of block-sparsity yields better reconstruction prop-
erties than treating the signal as being conventionally just
sparse. To describe a block sparse vector of length N , we will
assume that integers n and d are chosen such that n = N/d is
an integer as well. In this context, d represents the block size
and n is the number of blocks. A signal is k-block-sparse if
at most k = K/d blocks are non-zero. The extended problem
therefore becomes

P2 : min
ṽ

n∑
i=1

‖ṽ(i−1)d+1:id‖`2

subject to : ‖r−Aṽ‖`2 ≤ ε
(5)

where ṽ(i−1)d+1:id represent the elements of vector ṽ from
indices (i− 1)d+ 1 to id.

For the previously described model for the signal the relaxed
condition for the number of measurements required to satisfy
the RIP condition becomes M ≥ K + k log(N/k) [12]. This

poses significant improvement over the the M ≥ K log(N/K)
required with signals without block sparse structure. This
translates to M = O(K) as the size of the block increases.

C. Proposed Sensing Algorithm
In the proposed sensing technique, we model the con-

catenated data vector from different primary users x =
[xT

1 xT
2 . . . xT

NP
]T as K-block-sparse where K ≤ NP .

Since a transmitting user can either utilize all the subcarriers
L in a resource block or none at all, the signal can be broken
down into blocks each of size L × 1 and therefore modelled
as a block-sparse signal. The reason for such modelling flows
Let A be the modulation alphabet used. We define an extended
modulation alphabet A′ = A

⋃
{0} to allow for the possible

state of no-transmission in the constellation. We follow these
steps to detect the activity and decode the symbols transmitted
by the users as follows.

1) Activity Pattern Detection: To detect spatial activity, we
customize the convex problem (5), with x̃ ∈ CN being the
target vector to be recovered. We then infer the state of the i-th
user from the different entries in the vector x̃i. The algorithm
is described in steps as follows.
(Step 1) Solve the convex problem (6) for x̃ ∈ CNP

min
x̃

NP∑
i=1

‖x̃i‖`2

subject to : ‖y −Hx̃‖`2 ≤
1

2
σ2
n ·NS · L

(6)

(Step 2) Make a binary decision for each element in x̃ as
follows:

x̂(i) =

{
x̃(i) if |x̃(i)| ≥ ρ

0 otherwise,

where x̂ denotes the output from the decision op-
eration. The threshold ρ is shown in Fig 2 and it
represents the plane of points that are equidistant
form 0 and the nearest symbol in the alphabet A′.
In this step, the values in the indices defined by P
are set to zero and marked as energy empty. If the
constellation used by the PU is known the points in
x̃ to be set to zero can be selected as the members
of the set P such that

P = { i | |x̃(i)| < min
xc∈A

|x̃(i)− xc|}.

This is similar to a minimum distance (MD) rule
over the extended constellation (with the zero con-
stellation point included).

(Step 3) Construct the activity vector a where:

a =
[
a1 a2 . . . aNp

]T
ai =

{
1 if ‖x̂i‖`0 ≥ L/2
0 otherwise,

where ‖ · ‖`0 denotes the `0-norm. The vector a is
characterized by sparsity pattern (S) which define
the indices of the non-zero elements of a
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Fig. 2. QPSK Constellation with threshold contour showing received signals
points (squares) and the signals that are to be zeroed out in red color.

2) Demodulating Active Users Symbols: Once the activity
pattern has been detected, we use an MMSE Detector to detect
the sparse subset of the transmitted signal, x̃s:

x̃s = (HH
s Hs + σ2

nI)
−1HH

s . y (7)

where, Hs is the subset matrix of H formed by the columns,
indexed by the sparsity pattern (S), of the active users. i.e.: Hs

only contains the columns corresponding to the active users
after discarding inactive columns from H. Matrix I is the
|S|L×|S|L identity matrix where |S| is the cardinality of the
set (S). The MMSE equalized signal x̃s is approximated to
the nearest constellation point in A using a minimum distance
decision device.

IV. SIMULATION RESULTS AND EVALUATION

In this section, we present the numerical results for the pro-
posed spatial activity detector. We consider Np = 8 primary
user transmitters with Na active transmitters communicating
with a single PR-BS with NBS = 8 receiving antennas.
The secondary user attempts to detect the activity using NS

receivers. We run simulations for 2 active users out of NP = 8
and number of receiving antennas at the SU is NS = 4, 6, 8.
The number of subcarriers that are assigned simultaneously to
the 8 users is 72 subcarriers and the transmitted symbols are
QPSK modulated. The channel between the PU and SU are
all modelled as a 10-tap channel where the taps are of equal
variance (the variance of each tap is 1/10).

Fig. 3 shows the performance of the `2/`1 activity detector
at different SNR conditions versus activity detected using an
MMSE detector. In this simulation, we consider perfect match
of the users activity states with the estimated states as no error
while incorrectly detecting the activity of even a single user
as an error. The simulation is repeated over 10000 iterations
and the percentage of mis-detections is calculated. We used a
majority rule to infer the activity of user i (for both detectors),
from the reconstructed signal. Every 72 elements will jointly
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Fig. 3. Activity Detection using `2/`1 CS detector and MMSE detector.
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Fig. 4. Probability of Error, misdetection and false alarm in detecting Activity
using CS Detector where NP = 2, NBS = 8, NS = 4.

decide the activity of a user. It can be seen from the Fig. 3
that the activity detection is more reliable when using the `2/`1
detector. As the number of NS receiver antennas decrease, the
performance of MMSE detector levels out while `2/`1 can
still detect correct activity to a certain statistical probability
of error. The figure shows the probability of error in detection
for NS = 4, 6. An interesting observation of the CS activity
detector used, is that in most erroneous cases, the detector
tends to overestimate the activity of the users leading to false
alarms rather than mis-detections. We coin false alarms as
the detection scenarios where the detector marks Mt primary
users as active while the true number is Nt such that Mt

> Nt. The mis-detection scenarios are situations where the
number of active users are underestimated, i.e.: Mt < Nt.
This observation is shown in Fig. 4.



0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR (dB)

S
E

R

 

 

N
p
 = 2, N

BS
 = 8 (CS Decoder)

N
p
 = 2, N

BS
 = 8 (MMSE Decoder)

N
p
 = 2, N

BS
 = 8 (CS−aided MMSE Decoder)

N
p
 = 4, N

BS
 = 8 (CS Decoder)

N
p
 = 4, N

BS
 = 8 (MMSE Decoder)

N
p
 = 4, N

BS
 = 8 (CS−aided MMSE Decoder)

Fig. 5. Symbol Error Rate (SER) using `2/`1 CS decoder, MMSE decoder
and CS-MMSE detector for (i) 2 out of 8 active users and (ii) 4 out of 8
active users.

In Fig. 5 and Fig. 6, we evaluate the performance of
proposed CS-aided decoder by evaluating the resulting symbol
error rate (SER) from decoding at the secondary node when the
active users out of NP = 8 are 2, 4, 6 and 8. For comparison
purposes, we include the decoding results from the stand-
alone `2/`1 decoder and the MMSE decoder under the same
conditions. In all cases, except from the full loaded case (8
active users), the `2/`1, having a more robust activity detection
sense, yields better performance than stand-alone MMSE in
low activity cases. The MMSE, `2/`1 detector and the MMSE
decoder yield the same performance when the number of active
users is 8. This is because when activity is detected for all
users, the stand-alone MMSE problem is the same for the CS-
MMSE detector. The objective function in the `2/`1 decoder
is irrelevant now and the constraint is similar to the MMSE
objective function, hence leads to the same conclusion.

V. CONCLUSION

In this paper, a generic spatial activity detector based on
compressive sensing tools and reconstruction of block-sparse
signals is proposed. We have shown that the proposed detector
outperforms activity detection based on the MMSE estimator.
Also, it has been shown that using the proposed detector
to aid the MMSE estimator in a CS-MMSE model provides
reliable decoding results. This reliable decoding ability can be
an enabler for relaying with fewer antennas at the relay than
the primary receiver(s).
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