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Abstract—Spectrum Sensing in wideband cognitive radio net-
works is considered one of the challenging issues facing op-
portunistic utilization of the frequency spectrum. Collaborative
compressive sensing has been proposed as an effective technique
to alleviate some of these challenges through efficient sampling
that exploits the underlying sparse structure of the measured
frequency spectrum. In this paper, we propose to model this
problem as a compressive support recovery problem, and apply
the adaptive Sequential Compressive Sensing (SCS) approach to
recover spectrum holes. We propose several fusion techniques
to apply the proposed approach in a collaborative manner.
The experimental analysis through simulations shows that the
proposed scheme can substantially increase the probability of
spectrum hole detection as compared to traditional CS recovery
approaches while using a very low sampling rate analog to
information converter, and without requiring the knowledge of
any statistical information about the environmental noise.

Index Terms—Cognitive Radios, Collaborative Spectrum Sens-
ing, Compressive Sensing, Sequential Compressive Sensing.

I. INTRODUCTION

Cognitive radio (CR) technology is gaining more ground
each day as a promising technology to mitigate the limited
availability of radio spectrum resources. However, spectrum
sensing in wideband CR networks remains as one of the most
challenging issues facing the widespread of this technology.
The Secondary User (SU) needs to sense the spectrum in order
to detect the unoccupied channels available for opportunistic
use.

Several issues cause such challenges to spectrum sensing.
One of these issues is the need to sample the signal at a
high sampling rate especially in wideband networks. This
requires expensive, complicated Analog to Digital Converter
(ADC). The current technology forms an obstacle to design
such a high sampling rate with wide dynamic range ADC [1].
Another issue, known as the Hidden Primary User problem,
arises due to severe multipath fading and shadowing in the
sensed channel. In this case, the SU cannot detect the Primary
User (PU) signal leading to interference at the PU receiver.
Collaborative spectrum sensing has been proposed to solve
this problem, but at the expense of increased overhead in the
network.

Compressive Sensing (CS) acquisition techniques have been
proposed as effective means to resolve similar issues in differ-
ent applications. Under the assumption that the signal spectrum

is sparse in some domain, CS algorithms can capture the
signal at much lower sampling rate compared to the Nyquist
rate. Recently, adaptive sensing techniques such as distilled
sensing [2] were proven effective in signal acquisition in noisy
environments using multi-acquisition processes with adaptive
Gaussian measurement matrix focusing the sensing energy on
the non-zero components. This approach was extended to in-
corporate compressive signal acquisition in [3]. The Sequential
Compressive Sensing approach (SCS) proposed in [4] provides
a complete adaptive algorithm with different acquisition and
refinement steps where adaptive sparse measurement matrix is
used to capture the sparse signal.

Several attempts to use CS for compressive spectrum sens-
ing were presented in the literature. The sparsity assumption
is valid in most of the scenarios of spectrum sensing due
to the underutilized nature of the spectrum [5]. In [6], a
wavelet spectrum detection method is used to find the edges
of the piecewise constant Power Spectrum Density (PSD). A
following approach was proposed in [7] and [8], where the
wideband analog signal is directly captured by an Analog to
Information Converter (AIC), solving the bottleneck in the
sampling rate presented in the previous scheme, collaborative
distributed spectrum sensing was also considered. A different
collaborative approach using Kronecker Compressive Sensing
was proposed in [9]. Another interesting approach, which is
more relevant to this work, was proposed in [10]. Instead of
recovering the edges of the spectrum, it was assumed that the
spectrum has a slotted frequency segmentation structure. CS
is utilized to recover the spectrum at a low sampling rate at
each CR. A distributed fusion approach is proposed based on
a consensus averaging technique for multi-hop large networks.

Most of these approaches require the knowledge of the noise
statistics either for the recovery algorithm or for the process
of setting the threshold needed to recover the support of the
spectrum. Due to noise uncertainty, a virtual wall, called SNR
wall, appeared in [11]. This SNR wall limits the sensitivity of
the SUs by the amount of noise uncertainty.

In order to overcome these limitations, we propose mod-
elling spectrum hole detection as a support recovery problem.
We find this formulation more practical since in cognitive radio
we are solely interested in the detection of the holes in the
frequency spectrum. We deploy the adaptive SCS approach
presented in [4] for spectrum hole detection. This enables us



to recover the spectrum holes with the minimum number of
measurements, and alleviates the need for statistical informa-
tion about the noise, resulting in an increased robustness to the
noise uncertainty problem. Moreover, it enables SUs to detect
the Primary User’s (PUs) signal at low SNR, which increases
the sensitivity of the SU receiver.

We also propose a collaborative version of the proposed
spectrum sensing scheme in which the sequential sensing is
distributed among several SUs and the support is recovered
at a central fusion center (FC). We experiment our proposed
scheme with the decision fusion, the quantized data fusion, and
the data fusion rules at the FC. We compare the performance of
each of these algorithms with the corresponding non-adaptive
compressive sensing based algorithm.

II. SIGNAL MODEL AND PROBLEM STATEMENT

We consider a network of J cognitive radio terminals,
distributed randomly in a certain geographic area. Each CR
locally monitors an OFDMA signal with M channels (subcar-
riers). We assume a predefined channel location and unknown
power spectrum density level for the PU in each channel
similar to [10]. The problem of spectrum holes detection is
to determine whether each of these channels is occupied or
available for opportunistic use. We will address the problem
for the scenarios of a single SU detection and collaborative
spectrum sensing through a centralized fusion center (FC).
The channel between any PU and the SUs is considered to
be a multipath-fading channel with additive white Gaussian
noise.

Consider I active primary users, whose signals are repre-
sented by s̃i(t), where I is much smaller than the total number
of channels M . This is justified by the low percentage of
spectrum occupancy by active radios. The received signal at
the j-th SU from all PUs can be modeled as follows

xj(t) = x̃j(t) + wj(t), (1)

where x̃j(t) =
I∑
i=1

h̃i,j(t) ∗ s̃i(t) is the noise-free received

signal from PUs, h̃i,j(t) is the impulse response of the
channel from the i-th PU to the j-th SU, ’∗’ denotes circular
convolution1, and wj(t) is the additive white Gaussian noise
at the j-th SU. Equation (1) can be written in a discrete vector
form as follows

xj = x̃j + wj =

I∑
i=1

h̃i,j ∗ s̃i + wj , (2)

where xj , s̃i h̃i,j , x̃j , and wj are M × 1 vectors. The signal
in frequency domain can be represented by taking the Discrete
Fourier Transform (DFT) of equation (2), as follows

Xj = X̃j + W j =

I∑
i=1

H̃i,jS̃i + W j , (3)

1The received signal is assumed to be OFDMA signal with cyclic prefix

where H̃i,j is an M × M diagonal matrix, whose main
diagonal is the M point DFT of h̃i,j , and Xj , S̃i, W j are
the frequency-domain versions of xj , s̃i, wj , respectively.
Equation (3) can be stacked in a matrix form as

Xj = H́jŚ + W j . (4)

where H́j = [H̃1,j , H̃2,j , . . . , H̃I,j ] is an M ×MI matrix

and Ś = [S̃
T

1 , S̃
T

2 , . . . , S̃
T

I ]
T

is an MI × 1 vector. However,
this representation results in increasing the dimension of the
spectrum signal by a factor of I . Alternative formulation can
be obtained since we assume that in the primary network
every PU is assigned a different channel, i.e., there is at most
one active PU transmitter on each channel, and assuming flat
fading gain on each of the narrow sub-bands. Thus, we can
represent the PUs combined spectrum as an M×1 vector such

that S =
I∑
i=1

S̃i. We can also construct a combined Channel

State Information (CSI) matrix Hj as a diagonal matrix,
where each diagonal element corresponds to the channel gain
between the j-th SU and the active PU occupying this channel.
The sensed spectrum can be represented as

Xj = HjS + W j = X̃j + W j . (5)

Instead of using analog to digital converter with sampling
rate higher than the Nyquist rate, the SU receiver collects a
compressed measurement of the analog signal xj(t). This is
performed using an Analog to Information Converter (AIC)
with much lower sub-Nyquist sampling rate [12]. The under-
lying assumption is that the signal is sparse in the frequency
domain as the number of occupied channels I is much smaller
than the total number of channels M . The K×1 measurement
vector yj collected at the j-th SU from xj(t) is represented
as follows

yj = Φjxj , (6)

where I < K � M , and Φj is a K × M random mea-
surement matrix whose entries are independent and identically
distributed random variables drawn from some probability
distribution. This scheme reduces the sampling rate by a factor
of K/M . Substituting from equation (5), equation (6) can be
rewritten as

yj = ΦjF
−1Xj = ΦjF

−1HjS + W̌ j , (7)

where F−1 is the M ×M inverse DFT matrix and W̌ j =
ΦjF

−1W j . The spectrum sensing problem is to estimate
the spectrum S from the low rate measurement vector yj .
However, as we are interested only in investigating the status
of the channels (free or occupied), the problem is converted
into a spectrum detection problem. Our aim is to detect the
binary decision vector d, which describes the status of the
channels as follows

d = (‖S‖ > 0). (8)

In order to fully recover S, it is required to know the
channel state information (CSI). However, one advantage of



our proposed formulation is that we can recover d efficiently
in the absence of CSI by noting that both X̃j and S share the
same support. This results from the diagonal structure of the
CSI matrix with non-zero diagonal components.

III. NON-COOPERATIVE COMPRESSIVE SPECTRUM
SENSING

In this section, we deal with spectrum sensing at a single
SU. Each SU senses the compressed spectrum and makes its
own decision based on the received signal. For the sake of
comparison, we summarize the non-adaptive based compres-
sive scheme similar to [10] in section III-A followed by our
proposed Sequential Compressive Sensing algorithm in section
III-B.

A. Non-adaptive compressive spectrum detection

We consider the case of a single SU which uses a non-
adaptive compressive spectrum detection scheme. In this case,
we recover the common spectrum S and then compare it to a
threshold in order to detect the occupied channels.

The spectrum vector S can be recovered from the com-
pressed measurements yj in equation (7) by solving the fol-
lowing quadratic constrained linear program (QCLP) problem,
known as Basis Pursuit Denoising (BPDN),

arg min ‖S‖1 s.t.
∥∥ΦjF

−1HjS − yj
∥∥
2
≤ εj . (9)

This problem can be efficiently solved provided that the noise
level is bounded by a parameter εj [13]. For illustration
simplicity, equation (9) can be written in a compact form as

Ŝj = BPDN
(
yj ,ΦjF

−1Hj , εj
)
, (10)

where Ŝj is the recovered spectrum at the j-th SU. The next
step is to find the decision vector d̂j at the j-th SU as

d̂j = (|Ŝj | > ηj), (11)

where ηj is a threshold calculated under Neyman-Pearson
detection settings for a given probability of false alarm. This
computation requires the knowledge of the noise statistics,
which is not always available at the SU receiver. In ad-
dition, the recovery algorithm introduces additional internal
error, as εj does not completely bound the noise such that
‖S − Ŝj‖2 > εj . All these factors lead to noise uncertainty,
which subsequently lead to what is known as the SNR wall
problem that decreases the sensitivity of the SU receiver [11].

B. Sequential compressive spectrum detection

Instead of recovering the complete spectrum and then use
the noise statistics to find a suitable threshold, we propose
to directly use a compressive support recovery algorithm to
recover the spectrum support.

We use the sequential compressive sensing [4], which is
a compressive support recovery algorithm that was shown
to achieve high recovery performance under low SNR. We
assume that the input signal x̃j maintains a fixed support in
the frequency domain during the acquisition processes but the
additive noise terms at each acquisition stage are independent.

SCS is an iterative algorithm in which elementary estimation
of the signal support is obtained through t1 acquisition pro-
cesses (steps), then the search space is refined in an adaptive
manner through s iteration, where t1 and s are calculated as
shown in Algorithm 1. At each step, the signal xj is captured
at sampling rate much lower than the Nyquist rate by a factor
of K/M through the measurement matrix AtF as

yt = AtFxj = AtF x̃j + w̃t,j , (12)

where the subscript t denotes the t-th acquisition step, F is the
M ×M DFT matrix, and At is a K×M sparse matrix. Each
column in the matrix At will have only one non-zero element
which has a value α or −α. The amplitude and the locations
of α are independent and their locations are drawn from i.i.d.
random variables. The structure of the matrix At is preferred
due to the low complexity inherent in the multiplication by a
sparse matrix as compared to the dense Gaussian measurement
matrices [14]. After the acquisition of the signal, a back-
projected initial estimation of the signal is calculated for each
acquisition step as

x̄t = AT
t yt. (13)

The signs of these different vectors are summed as

x̆i =

t1∑
t=1

sgn(x̄i,t), (14)

where the subscript i denotes the i-th iteration. This summa-
tion of signs works like a majority voting for the different
acquisition processes. Assuming a zero mean AWGN process,
the signs of the non-active channels (corresponding to the
noise at different acquisition steps) will cancel each other with
high probability. Meanwhile, the signs corresponding to active
channels are accumulated. This assures us that the noise will
not alter the sign of an active channel with high probability.

In the first stage, the SCS is concerned with the detection of
the non-zero positive spectrum elements, so if the sign of the
m-th channel (m ∈ 1, 2, . . . ,M ) in the signs’ vector x̆i retains
negative after t1 acquisition processes, it is inferred that the
noise alters it, and this channel is declared as a free channel.
The new refined search space vector could be obtained by
finding the indices of the positive numbers in the vector x̆i.

In the next iteration, the columns of the declared free
channels are set to zero in the matrix At, consequently, we can
concentrate the sensing energy in the channels expected to be
occupied and this process is repeated s times. At each iteration
about 50% of the remaining free channels are announced.

As suggested in [4], the same process is repeated in the
second stage for detection of the non-zero negative spectrum
elements. The new refined search space vector could be
obtained by finding the indices of the negative numbers in
the vector x̆i. The overall support of the signal is the union
of both the positive and negative detected spectrum elements
in the two stages.



IV. COOPERATIVE SPECTRUM SENSING

Cooperation between multiple SUs in the sensing process
was introduced to overcome some of the problems that face
spectrum sensing because of noise uncertainty, fading, and
shadowing. Cooperative sensing alleviates the problem of
hidden PU [1], increases the probability of detection and
decreases the probability of false alarm. In addition, it can
further reduce the compression ratio and the sampling rate in
the compressive sensing based techniques. On the other hand,
cooperation can lead to data overload on the communication
network. The cooperation in this setting is performed using
two well known fusion techniques, namely, Decision Fusion
and Data Fusion.

In Decision Fusion approach, each SU senses the spectrum
and makes its own decision using any of the approaches
presented in section III. Then each SU sends its M bit decision
to the FC. The FC applies OR decision rule. In this rule, if
only one SU receiver claims that the channel is occupied, the
FC marks this channel as occupied and this channel is blocked
from opportunistic use by the Sus. This subsequently leads to
improvement in the probability of detection and ensures the
best protection to the PU as compared to other fusion rules
such as majority-voting or AND rules. However, this comes at
the expense of increasing the probability of false alarm. The
decision at FC could be formulated as

d̂ =

 J∑
j=1

d̂j > 1

 (15)

In Data Fusion, compressive sensing can lead to a more
efficient cooperation scheme between the multiple SUs. We
present a novel collaborative data fusion technique based on
the sequential compressive sensing presented in Section IV-B.
For the sake of comparison, we will first present a non-
adaptive data fusion technique based on BPDN in Section
IV-A [10].

A. Optimal global recovery using BPDN

In this method, each cognitive radio sends its compressed
measurement data to a Fusion Center (FC). The FC uses
the algorithm given in Section III-A to recover the common
spectrum and this is done by stacking all the measurements
in one vector then the common spectrum can be recovered by
solving the following BPDN with extended measurements as

BPDN




y1

y2
...
yJ

 ,


Φ1F
−1H1

Φ2F
−1H2

...
ΦJF

−1HJ

 ,

ε1
ε2
...
εJ


 . (16)

Using such algorithm requires each cognitive radio to send
to the FC its measurements, channel state information, and
its noise bounding parameter εj . This has a drawback of
introducing high traffic overhead over the network.

B. Data Fusion algorithm using SCS

We utilize the adaptive nature of the SCS algorithm to de-
sign a novel algorithm for data fusion in cooperative spectrum
sensing. The complete algorithm is shown in Algorithm 1.
Instead of sending the raw data to the FC, each SU process
the data and iterates to generate x̆i using equation (14) in a
way similar to the non-cooperative case in [4]. These signs
vectors are sent to the FC from all the Sus. The FC sums
the signs from all SUs, comparing it to zero, then send back
the decision for the first iteration to the SU. These steps are
repeated for s times as shown in Algorithm 1.

This algorithm shares some similarity with the decision
fusion algorithm mentioned at the beginning of this section
as most of the processing is performed at each local SU with
minimum load over the communication network. However,
our proposed algorithm achieves higher performance gains
because each SU sends the signs vector of the signal and
this makes the algorithm similar in a sense to a quantized
soft combining algorithm. The proposed algorithm achieves a
probability of detection higher than that of the decision fusion,
which can be considered as a hard combining algorithm.

Meanwhile, distributing the acquisition process among sev-
eral nodes reduces the number of acquisition repetitions, which
in return decreases the complexity of the algorithm. All these
merits come at the expense of increased traffic between the
SUs and FC. As each SU sends sM log2 t1 bits compared to
M bits in the decision fusion algorithm where log2 t1 is the
number of bits needed to code one element in the summation
vector. This is still much lower than the traffic overhead in the
data fusion algorithm using BPDN.

V. SIMULATION RESULTS

In this section, we perform numerical simulations to illus-
trate the performance of the proposed sequential approaches.
In all of our experiments, we fixed the sparsity order by
considering a spectrum of interest with M = 30 subchannels
and I = 3 active primary users. As the spectrum utilization
increases, the number of acquisition steps t1 increases. Conse-
quently, both the computational complexity and measurement
budget are increased. The compression ratio is defined as
the ratio between the number of measurements K and the
dimension of the signal M .

The channel is modeled as a multipath fading channel with
a number of taps Np = 4. The gains of these taps are drawn
from a Rayleigh distribution. The received signal is corrupted
by an additive white Gaussian noise and the signal to noise
ratio is considered as the ratio between the average of the
received signal power and the noise power.

Since we model the problem as a detection problem, we
evaluate the performance of the different approaches using
the probability of detection (Pd) for a fixed probability of
false alarm (Pfa). Note that the probability of detection in
our problem refers to the probability of detecting the active
primary users while false alarm errors refer to announcing
a channel as occupied while being empty. In the first set
of experiments, a single SU locally senses the compressed



Algorithm 1 SCS for collaborative SUs using quantized data
Input:
xj(M × 1), F (M ×M), K, and parameter δ > 0
Internal Algorithm Parameters:
s ∝

∼
dlog2 logMe (number of iterations)

t1 ∝∼ dlog 2
δ + log k + log log2 logMe

(The number of acquisition processes per iteration)
α = K

6 (magnitude of non zero entities)
I1 = {1, 2, . . . ,M} (initial index
set)

for i = 1 to s do
for j = 1 to J do

for t = 1 to t1 do
Generate measurement matrix : At(K ×M)
Mask : Set ` column of At to zero ∀ ` /∈ Ipi
Signal acquisition : yt = AtFxj = AtF x̃j + w̃t,j

Backproject : x̄t = AT
t yt

end for
local Sign summation at SUs : x̆i,j =

∑t1
t=1 sgn(x̄i,t,j)

end forOperations at FC
Centralized sign summation at FC: x́i =

∑J
j=1 x̆i,j

Refine search space : Ii+1 = {i ∈ Ii : x́i > 0}
end for

Output:
Is = Is (total support recovery)
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Fig. 1. Pd via SNR at different compression ratios calculated locally at a
single SU receiver with probability of false alarm = 0.01

spectrum and then it makes its own decision. We compare the
performance of the sequential recovery algorithm to that of the
BPDN program under different SNRs and compression ratios,
measured at the same 1% probability of false alarm.

Figure 1 elucidates a noticeable performance improvement
under 0 dB SNR as it perfectly recovers the active channels
at a low compression ratio using only 30% of the Nyquist
measurements, which elevates the need for highly complex
ADC to capture the wideband signal.

We also note that the sequential technique provides high
recovery sensitivity as it can discover 60% of the active sub
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Fig. 2. The probability of false alarm at single SU via the number of iterations
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Fig. 3. The CPU time via the number of channels M and I = 0.1M at
compression ratio=0.5, SNR= 0.

channels at SNR=−20 dB with 50% of the Nyquist measure-
ments. The recovery at such low SNR as compared to the
BPDN method is attributed to its blind detection method (in
the absence of noise statistics). Therefore, it could overcome
the SNR wall problem. Although the sequential CS is an
iterative algorithm, it is evident from Fig. 2 that from the
first iteration it can reach a probability of detection as high as
100% at SNR= 0 dB (as seen in Fig. 1), which fully protects
the PUs while allowing 50% of free channels for opportunistic
use at 0.5 compression ratio. The Pfa decreases as the number
of iterations increases allowing for the detection of more free
channels for opportunistic use. We can reach Pfa as low as
0.01 after only 6 iterations, which follows the behavior of SCS
proved in [4], as the SCS probability of false alarm reduces
to half of its value with each iteration independent of the
value of the SNR while maintaining the non-zero components
with high probability. The CPU time in Fig. 3 shows that
the SCS has lower computational complexity, measured by
CPU processing time, as compared to BPDN for low number
of channels. However, as the number of channels increase,
BPDN requires fewer computations for the same compression
ratio. We note that this computation difference is compensated
by the possible reduction in the number of measurements k
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Fig. 5. Probability of detection for centralized collaborative SU using Data
Fusion and Decision Fusion for different SNR values at a compression ratio
= 0.3 while maintaining a Pfa of 0.01.

required to maintain the same high probability of detection in
the two algorithms.

In the second set of experiments, we examine the effect of
cooperation among SUs. In the Decision Fusion scenario, each
SU sends its decision to the FC. The FC applies OR Fusion
Rule to maximize the Pd because we are primarily concerned
by protecting the PUs signals.

Figure 4 shows the effectiveness of cooperative sequential
approach even when the signal is subject to harsh conditions
in terms of very low SNR= −15dB and using a very low
compression ratio = 0.3. A system consisting of 5 SUs can
achieve Pd = 0.7. The collaborative techniques reduce the
effects of fading and hidden primary user on the Pd so as the
number of SUs J increases the Pd increases.

In the last experiment, we evaluate the performance of
the proposed Data Fusion Sequential approach versus the
Decision Fusion Sequential approach as shown in Fig. 5. It
is evident from this figure that the Data Fusion algorithm
achieves a significant improvement in the Pd as compared
to the Decision Fusion scenario, especially at very low SNR
(about -20 dB). In addition to that, data fusion algorithms
distribute the computational complexity among SUs and FC
at the expense of higher traffic overload on the network by the
factor s log2 t1.

VI. CONCLUSION

In this paper, we have presented an adaptive approach for
collaborative spectrum sensing for cognitive radio networks.
The proposed approach exploits the sparsity of the spectrum
in the frequency domain and the nature of the problem,
which requires basically the detection of the spectrum support.
The Sequential Compression Sensing (SCS) algorithm has
been applied as a support recovery algorithm for both the
single SU and the multiple collaborative SUs network. The
proposed SCS based approach shows improvement over the
non-sequential based approach in terms of the probability of
PU signal detection while maintaining a fixed probability of
false alarm. The proposed approach also works under low
compression ratio, which allows for a significant reduction
in sampling rate, and relaxes the constraints on the ADCs.
A data fusion algorithm has been developed and compared
to the decision fusion scenario. Data fusion rule outperforms
decision fusion at the expense of traffic overload on the
network between the SUs and the FC.
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