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Abstract—We consider a random access primary network. At
the beginning of each time slot, a number of secondary users
sense the channel and make an access decision based on the spec-
trum sensing outcome and the channel state information (CSI).
Specifically, the channel is accessed by a secondary transmitter
with a probability that depends on both the sensing metric and
the gain or signal-to-noise-ratio (SNR) of the channel between the
transmitter and its respective receiver. Spectrum sensing operates
in a “soft” mode where the sensing metric is used directly rather
than making a binary decision concerning primary activity. We
consider backlogged secondary users and primary users with
infinite queues. The secondary access probabilities are obtained
via solving an optimization problem designed to maximize the
secondary throughput given a constraint on primary queue
stability. The problem is shown to be convex and, hence, the
global optimum can be obtained efficiently. Numerical results
reveal a significant performance improvement in the secondary
throughout with stable primary queues over the use of spectrum
sensing with conventional detection or the implementation of
sensing alone without making use of the CSI information.

I. INTRODUCTION

Cognitive radio technology relies on the coexistence of
licensed (or primary) and unlicensed (secondary or cognitive)
radio nodes on the same radio resource, e.g., the same fre-
quency channel. While the primary users are allowed to access
the spectrum at any time, the secondary users seeks opportu-
nities for transmission by exploiting the inactive periods of
primary terminals.

In [1] and [2] the cognitive radio problem is investigated
from an information-theoretic standpoint, where the cogni-
tive transmitter is assumed to transmit concurrently with the
primary user. Centralized and decentralized protocols at the
media access control (MAC) layer aiming at minimizing
secondary interference on primary transmissions have been
studied in [3] and [4] by modeling the radio channel as either
busy or available according to a Markov chain. Probabilis-
tic secondary access based on sensing and/or the feedback
obtained from the primary or secondary receivers has been
investigated in works such as [5], [6], [7], [8].

In this paper, we design a secondary access scheme that
depends on channel knowledge availability and soft sensing
at the secondary transmitters. The channel state information
(CSI) between the secondary transmitters and their respective
receivers are assumed to be known in the form of channel gains
or signal-to-noise ratios (SNR). This CSI provides information

about the transmission reliability over a certain channel. The
soft sensing approach has been introduced in [9] and employed
in [10] and [11]. It is based on the observation that, in a binary
hypothesis testing problem, the value of the test statistic can be
used as a measure of detection reliability. The further the value
of the test statistic is from the decision threshold, the more
confident we are that the decision is correct. Therefore, instead
of using the hard decisions of the spectrum sensor to decide
whether to access the channel or not, a secondary user can have
different access probabilities for different values of the test
statistic and CSI. Using this technique, one can significantly
reduce the probability of collision with primary users and also
the probability of overlooking spectrum opportunities.

The contributions of this paper are as follows. We devise
a probabilistic secondary access scheme that relies on the
concept of soft sensing and the availability of CSI. We provide
a queueing analysis of the primary queues assuming back-
logged secondary users. The secondary access probabilities
as a function of the sensing metric and CSI are obtained via
maximizing the secondary throughput given a constraint on
primary queue stability. The optimization problem is proved
to be convex and, hence, can be solved efficiently [12].

The rest of the paper is organized as follows. We provide the
system model and discuss spectrum sensing in Section II. Our
proposed spectrum access technique is presented in Section
III, whereas some numerical results are provided in Section
IV. Section V concludes the paper.

II. SYSTEM MODEL

We consider a random access primary network. It consists
of Mp source nodes. Each time slot is assigned to only
one primary user with a probability 1

Mp
. The assignment is

made at the very beginning of the time slot. A secondary
network, consisting of Ms terminals, attempts to exploit the
unutilized primary channel resources to communicate their
own data packets using slotted ALOHA as their multiple
access protocol.

A. Channel Model

At the beginning of each time slot, the secondary transmit-
ters sense the medium to detect its occupancy state. They also
have knowledge of the channel gains between themselves and
the secondary receivers. The channel gains are considered to



be fixed over a number of transmission slots. That is, we adopt
a slow or quasi-static fading model. The method of obtaining
the channel gains or CSI in practice depends on whether the
system is time division duplexing (TDD) or frequency division
duplexing (FDD). Under a TDD scheme, the transmission
between two terminals occur over the same carrier frequency.
Hence, it is reasonable to assume channel reciprocity, which
means that the channel in either transmission direction is
almost the same. Then the channel between the secondary
transmitter and receiver can be obtained by using pilot symbols
emitted by the secondary receiver. Under the FDD scheme, and
since the transmission takes place over a different frequency
band depending to the direction of communication, channel
reciprocity cannot be invoked. Here, the receiver estimates the
channel and feeds back its estimates to the transmitter. In this
work, we do not delve into the technicalities of CSI estimation.
We assume the presence of perfect estimates at the secondary
transmitting nodes.

The wireless channel between a given node and its destina-
tion is modeled as a Rayleigh flat fading channel with additive
white Gaussian noise. The signal received at a receiving node
j from a transmitting node i at time t can be modeled as

ytij =
√
Giρ

−γ
ij h

t
ijx

t
i + ntj , (1)

where Gi is the transmitting power, assumed to be the same for
all nodes, ρij denotes the distance between the two nodes, γ
the path loss exponent, and htij is the channel fading coefficient
between nodes i and j at time t. The channel coefficients are
modeled as independently and identically distributed (i.i.d)
zero mean, circularly symmetric complex Gaussian random
variables with unit variance. The term xti denotes the trans-
mitted signal which has an average unit power. The i.i.d
additive white Gaussian noise processes ntj have zero mean
and variance N0.

For the secondary terminals and since we assume the
availability of CSI at the secondary transmitters, the packet
error probability is

1−
(

1− k1Q
(√

k2
Gi|hij |2
ργijN0

))L
, (2)

where L is the packet size, k1 and k2 are constants that
depend on the modulation scheme [13], [14]. Since the CSI
is not known at primary transmitters, the primary packet error
probability Pe is obtained by averaging the error probability of
(2) with respect to the channel fading coefficient. Furthermore,
we assume that whenever there is a collision due to the
concurrent transmission of two or more terminals, all the
packets involved are lost.

B. Queueing Model

Each node in the primary or secondary networks has an
infinite buffer for storing fixed length packets (see Fig. 1).
The channel is slotted in time and a slot duration equals
the packet transmission time. The arrivals at the ith primary
node’s queue (i ∈Mp), and the jth secondary node’s queue
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Fig. 1. Network queueing and channel model

(i ∈Ms) are Bernoulli random variables, i.i.d from slot to
slot with mean λpi and λsj , respectively. Hence, the vector
Λ = [λp1, ..., λ

p
Mp
, λs1, ..., λ

s
Ms

] denotes the average arrival
rates. Arrival processes are assumed to be independent from
one node to another.

In a communication network, the stability of the network’s
queues is a fundamental performance measure. Stability can
be loosely defined as having a certain quantity of interest kept
bounded. In our case, we are interested in the queue size being
bounded. For an irreducible and aperiodic Markov chain with
countable number of states, the chain is stable if and only if
there is a positive probability for every queue of being empty,
i.e., limt→∞ Pr{Qi(t) = 0} > 0. (For a rigorous definition of
stability under more general scenarios see [15] and [16]). An
arrival rate vector Λ = [λp1, ..., λ

p
Mp

] is said to be stable if all
the queues are stable.

If the arrival and service processes of a queueing system
are strictly stationary, then one can apply Loynes’s theorem
to check for stability conditions [17]. This theorem states that
if the arrival process and the service process of a queueing
system are strictly stationary, and the average arrival rate is
less than the average service rate, then the queue is stable; if
the average arrival rate is greater than the average service rate
then the queue is unstable.

The primary user successfully transmits a packet if
there is no collision with the secondary users and there
is no transmission error. Let Pp be the probability
of primary unsuccessful transmission. Probability Pp =
1 − 1−Pe

Mp
Pr{no secondary user transmits}. The probability

Pr{no secondary user transmits} is provided in the next sec-
tion, whereas Pe, as previously mentioned, is obtained via
averaging (2) over the channel gains.

The Markov chain modeling the evolution of the primary
queue length is shown in Fig. 2. The transition probabilities
are based on the assumption that packet arrivals occur near
the end of the time slot, therefore, if the queue is empty an
arriving packet cannot be transmitted during the same time
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Fig. 2. The primary user’s queue evolution Markov chain

slot. The probability of the queue length increasing by one is
λpPp. If the queue is nonempty, the probability of the queue
length decreasing by one is (1− λp) (1− Pp). For a queue
length k > 0, if πk is the probability of being in state k, we
have the following balance equation

πk

(
λpPp+ (1− λp) (1− Pp)

)
= πk−1λpPp + πk+1 (1− λp) (1− Pp) .

(3)

The balance equation between state 0 and state 1 is

π0λp = π1 (1− λp) (1− Pp) . (4)

In this case, for k ≥ 1 we have

πk = π0
1

Pp

(
λpPp

(1− λp) (1− Pp)

)k
(5)

The normalization condition
∑∞
k=0 πk = 1 means that

π0 =
1− λpPp

(1−λp)(1−Pp)

1− λpPp

(1−λp)(1−Pp)
+

λp

(1−λp)(1−Pp)

=
1− λp − Pp

1− Pp
(6)

That is,

π0 = 1− λp
1− Pp

= 1− λp
µp
. (7)

where µp = 1 − Pp is the probability of successful primary
transmission. Note that for the sum

∑∞
k=0 πk to exist, the

term λpPp

(1−λp)(1−Pp)
must be less than unity. This means that

for a stationary distribution to exist for the Markov chain, the
condition λp + Pp < 1 must hold. This is the condition for
the primary queue stability, and is equivalent to λp < µp.

C. Spectrum Sensing

Spectrum sensing is an essential functionality of cognitive
radios, since the devices need to reliably detect weak primary
signals of possibly unknown types [18]. In our study of the
effect of sensing errors on cognitive radios performance, and
in our proposed joint design technique, we adopt the non-
coherent energy detection technique because of its simplicity
and versatility.

Detection of the presence of the ith primary user by the jth

secondary user can be formulated as a binary hypothesis test
as follows,

H0 : ytij = nj

H1 : ytij =
√
Giρ

−γ
ij h

t
ijxi + nj . (8)

The null hypothesis H0 represents the absence of the primary
user, hence a transmission opportunity for the secondary user.
And the alternative hypothesis H1 represents a transmitting
primary user.

Under the conventional hard sensing procedure, the per-
formance of the spectrum sensor is characterized by the two
types of errors and their probabilities, (i) false alarms having
probability α, (ii) and missed detections having probability β,

α , Pr {decide H1|H0 is true} , (9)

β , Pr {decide H0|H1 is true} . (10)

A false alarm occurs when an idle channel is erroneously
detected as busy, thereby depriving the secondary users from
a possible transmission opportunity. On the other hand, a
miss event, where a secondary user fails to detect primary
activity, results in a collision between primary and secondary
transmissions and a degradation in the performance of the
primary system. With the assumption that secondary users
do not have prior knowledge of primary activity patterns, the
probability of misdetection β could be minimized subject to
the constraint that the probability of false alarm is no larger
than a given value α using the optimal Neyman-Pearson (N-P)
detector [19].

III. PROPOSED SPECTRUM ACCESS MECHANISM

In a listen-before-talk cognitive radio network, secondary
nodes’ channel access decisions are solely based on the
outcomes of the spectrum sensing phase. Occurrence of errors
in spectrum sensing is inevitable, and results in either a lost
transmission opportunity or a collision as explained above. To
overcome the negative effects of spectrum sensing errors and
for the secondary users to have better channel access decisions,
it is necessary to find a method with which they can assess the
reliability of the spectrum sensor outcomes. Here we propose
the use of the decision statistic ||yps||2 used by the energy
detector as a measure for the reliability of the spectrum sensor
decisions.

The reasoning behind the use of the value of the decision
statistic is that under hypothesis H0, the value of ||yps||2 has
a much higher probability of being closer to zero and far away
from the threshold, as can be seen in Fig. 3 depicting the CDF
of ||yps||2 under both hypotheses. Therefore, the lower the
value of ||yps||2, the more likely hypothesis H0 is true, and the
more reliable the decision is. On the other hand, as the value
of the decision statistic approaches the decision threshold it is
more or less equally likely that it is resulting from either one
of the hypotheses. Therefore, the closer the value of ||yps||2
is to the decision threshold, the less reliable the outcome of
the spectrum sensor is.
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In order to exploit the reliability measure established above
in taking channel access decisions, we propose the following
scheme for channel access:
• A value η for the sensing metric is chosen such that when
||yps||2 > η, the secondary user assumes that the primary
user is highly likely to be actively transmitting. Therefore,
the secondary user does not access the channel. The value
of η can be obtained given some specification on the false
alarm probability.

• The interval [0, η] is divided into n subintervals as shown
in Fig. 4.

• Given the secondary channel statistics and noise power at
the receiver, a maximum ε can be chosen as the highest
possible or practical channel gain, SNR, or any other
transmission reliability CSI.

• The interval [0, ε] is divided into m subintervals as shown
in Fig. 4.

• For each subdomain i ∈ [1, n] and j ∈ [1,m], assign an
access probability ai,j .

• Whenever the decision statistic or sensing metric falls in
the ith interval and the CSI lies in the jth interval, the
secondary user accesses the channel with the associated
access probability ai,j .

This scheme enables us to have higher access probabilities
for the sensing metric subintervals closer to zero, since in these
subintervals there is a very low probability of colliding with
primary transmissions. Moreover, lower access probabilities

are assigned to the subintervals close to the decision threshold
where there is a higher risk of collisions. On the other hand,
higher access probabilities are associated with subintervals
with high index j, because a higher channel quality means
a higher probability of transmission success.

In this work we consider the maximization of the secondary
throughput given a constraint on the stability of the primary
queues. That is, we seek to maximize the secondary throughput
provided that all the queues of the primary users remain
stable. For simplicity, we adopt a symmetry assumption under
which the channel statistics are the same for all secondary
users. Moreover, all the secondary users employ the same
access probabilities. The throughput maximization with pri-
mary queue stability goal can be formulated as the following
constrained optimization problem

max
ai,j ,i∈[1,n],j∈[1,m]

µs, subject to λp < µp. (11)

To solve the optimization problem of (11), we start by
calculating the average primary and secondary throughputs,
µp and µs, respectively, under the proposed secondary access
scheme. The probability of secondary channel access while
the primary is active is given by

∑
i∈[1,n]

∑
j∈[1,m]

p1i qjai,j , (12)

where ai,j is the access probability associated with subinter-
vals i and j (see Fig. 4), p1i is the probability that the value
of ||yps||2 falls in the ith subinterval when hypothesis H1 is
true (primary user exists in the channel), qj is the probability
that CSI falls in the jth subinterval. Similarly, we define the
probability that a secondary user accesses the channel when
hypothesis H0 is true as

∑
i∈[1,n]

∑
j∈[1,m]

p0i qjai,j , (13)

where p0i is the probability that the value of ||yps||2 falls in
the ith subinterval under H0. Therefore, the average primary
throughput is given by

µp =
1− Pe

Mp

1−
∑
i∈[1,n]

∑
j∈[1,m]

p1i qjai,j

Ms

, (14)

where Pe is the outage probability of the link between any
primary node and its destination.

For a secondary terminal to have successful transmission, it
should correctly identify the time slot as idle and access the
channel. In addition, all other secondary users should abstain
from transmission during the same time slot. Therefore, the



average secondary throughput is given by

µs =

1− λpMp

(1− Pe)
(

1−∑i∈[1,n]
∑
j∈[1,m] p

1
i qjai,j

)Ms

 ·
 ∑
i∈[1,n]

∑
j∈[1,m]

p0i qjcjai,j

1−
∑
i∈[1,n]

∑
j∈[1,m]

p0i qjai,j

Ms−1

(15)

where cj is the probability of transmission success when the
CSI has the jth value. The first term is 1− λp

µp
, which is the

probability of the primary queue being empty as derived in
the previous section. This term accounts for the assumption
that successful secondary transmission dictates the silence of
the primary terminal lest its transmission collide with that of
the secondary user causing packet loss.

Let bi+(j−1)n = ai,j , u1i+(j−1)n = p1i qj , u
0
i+(j−1)n = p0i qj ,

and vi+(j−1)n = p0i qjcj . Substituting in (15), we obtain

µs =

1− λpMp

(1− Pe)
(

1−∑k∈[1,nm] u
1
kbk

)Ms

 ·
 ∑
k∈[1,nm]

vkbk

1−
∑

k∈[1,nm]

u0kbk

Ms−1

(16)

Fortunately, the optimization problem of (11) using (14) and
(16) can be converted to a convex program. The global
optimum of convex optimization problems can efficiently be
obtained via standard numerical techniques [12].

The convexity of problem (11) given (14) and (16) can
be shown by taking the logarithm, which is a monotonic
function, of both the objective function and the constraint,
and applying the rule that a function is convex if and only
if it is convex when restricted to any line that intersects its
domain [12]. Due to space limits, we consider here only the
term 1 − ε

(
1− uT b

)−Ms with ε = λpMp/ (1− Pe), b is a
column vector with elements bk, u is a column vector of u1k,
and T denotes matrix transposition. We form the function

g (t) = log
(

1− ε
(
1− uT b̄− tuTw

)−Ms
)

(17)

where t is a scalar parameter, b̄ belongs to the domain of the
problem, and w is a vector such that b̄ + tw also belongs
to the domain of the problem. The domain is specified by the
inequality constraint of the optimization problem (11) and that
0 ≤ bk ≤ 1 ∀i.

According to the aforementioned property of convex func-
tions, if g (t) is proved to be concave with respect to t
(and, hence, its negative would be convex), then the function
log
(

1− ε
(
1− uT b

)−Ms
)

is concave with respect to all bk.
The concavity of g (t) can be easily proven via differentiating
twice and examining the sign of the second derivative, which
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is given by

g̈ (t) =
εMs

(
uTw

)2 [
ε− (Ms + 1)

(
1− uT b̄− tuTw

)Ms
]

[(
1− uT b̄− tuTw

)Ms+1 − ε
(
1− uT b̄− tuTw

)]2
Since the queueing stability condition requires
that ε <

(
1− uT b̄− tuTw

)Ms , then ε <

(Ms + 1)
(
1− uT b̄− tuTw

)Ms . Consequently, g̈ (t) is
negative and log

(
1− ε

(
1− uT b

)−Ms
)

is concave.

IV. RESULTS AND DISCUSSIONS

Here we compare the performance of the proposed joint de-
sign of spectrum sensing and channel access mechanisms with
and without knowledge of the CSI at secondary transmitters.
We consider a system with Mp = 4 primary users and Ms = 2
secondary users. The distance between the primary users and
their destination is set to 100 m, the distance between the
secondary users and their destination is also 100 m, and the
distance between the primary and secondary users is 150 m.
The transmit power is assumed to be the same for all users
and is given by G = 10 mW. The path loss exponent γ = 3.7
and N0 = 10−11 W.

It follows from the received signal model of (1) that the
received signal y is a complex Gaussian random variable with
zero mean and variance σ2

0 = N0 under hypothesis H0 and
σ2
1 = Gρ−γ + N0 under hypothesis H1. Note that we drop

user-specific subscripts under the assumption of user symmetry
mentioned in Section III. Given this, probability p1i in (12) is
given by

p1i = exp

(
− (i− 1)η

2nσ2
1

)
− exp

(
− iη

2nσ2
1

)
, (18)

whereas probability p0i in (13) can be expressed as

p0i = exp

(
− (i− 1)η

2nσ2
0

)
− exp

(
− iη

2nσ2
0

)
. (19)

We use η/N0 = 4.6 and n = 4 sensing subintervals. The
secondary transmit CSI, taken as the secondary link SNR, is
divided into m = 4 regions, namely, [−∞, 10], [10, 15], [15,
20], and [20, ∞] dB. The probability qj that the SNR lies in
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the interval [lB, uB] with lB and uB expressed in linear scale
is given by

exp

(
− lBN0ρ

γ

G

)
− exp

(
−uBN0ρ

γ

G

)
(20)

The transmission success probabilities depend on the coding
and modulation schemes employed by the secondary trans-
mitters. Here, we assume binary phase shift keying (BPSK)
modulation [14] for both primary and secondary transmissions
and use (2) with L = 1024 bits and k1 = k2 = 1 to calculate
the secondary success probabilities cj’s, as well as the primary
error probability Pe. Probabilities cj are obtained by averaging
(2) over the range of SNR values defining the jth interval.

It can be clearly seen from Fig. 5 that the incorporation
of two-bit quantized CSI into the channel access decisions
improves the secondary throughput up to 25% at small λp
under the primary queue stability constraint. This improvement
is mainly because the proposed access scheme takes the
reliability of the sensing measurements into consideration via
the concept of soft sensing. Furthermore, the knowledge of the
CSI, even quantized to four levels, allows the secondary nodes
to transmit with a higher probability when there is a higher
chance of transmission success, and to remain silent when the
secondary channel is in deep fade. This reduces the probability
of collision between the secondary nodes, and between the
secondary and primary nodes.

To get more insight into how the channel access proba-
bilities ai,j are selected, Fig. 6 depicts the channel access
probabilities for the first sensing interval (the interval nearest
to zero) and different CSI (SNR) intervals as a function
of primary arrival rate. It is noted the access probability is
zero for the lowest SNR interval (j = 1), and as the SNR
increases the range over which each access probability is
one increases. As the primary arrival rate increases, all the
access probabilities decrease to limit secondary interference
to primary transmissions in order to guarantee the stability of
primary queues.

V. CONCLUSIONS

In this paper, we employ both secondary CSI and soft
sensing to implement a cognitive multiple access scheme.
Our results for the system’s performance under the proposed

scheme show a significant improvement over the sensing-
only scheme in terms of the throughput of both primary
and secondary networks. The future extension of this work
involves the incorporation of automatic repeat request (ARQ)
feedback into the secondary decision making. As an error
control mechanism, ARQ is ubiquitous in networks and its
leveraging is expected to provide more throughput gains.
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