1. (25) The coefficient of static friction between the flat bed of the truck and the crate it carries is 0.3. Determine the minimum stopping distance \(s \) which the truck can have from a speed of 70 km/h with constant deceleration if the crate is not to slip forward.

2. (25) The ball is released from position \(A \) with a velocity of 3 m/s and swings in a vertical plane. At the bottom position, the cord strikes the fixed bar at \(B \), and the ball continues to swing in the dashed arc. Calculate the velocity \(v_C \) of the ball as it passes position \(C \).

3. (25) A rope is wrapped around a cylinder of radius \(r \) and mass \(m \). Knowing that the cylinder is released from rest, determine the velocity of the center of the cylinder after it has moved downward a distance \(s \).

4. (25) A 5-kg projectile is fired from ground level with an initial velocity \(v_A = 20 \) m/s in the direction shown. When it reaches its highest point \(B \), it explodes into two 2.5-kg fragments. If one fragment travels vertically upward at 3 m/s, determine the distance between the fragments after they strike the ground.
Equation Sheet

\[v = \frac{dx}{dt} \quad a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v \frac{dv}{dx} \]

Uniform rectilinear motion
\[x = x_0 + vt \]

Uniformly accelerated rectilinear motion
\[v = v_0 + at \]
\[x = x_0 + v_0 t + \frac{1}{2} at^2 \]
\[v^2 = v_0^2 + 2a \left(x - x_0 \right) \]

Acceleration components

Tangential & normal:
\[a_t = \frac{dv}{dt} \quad a_n = \frac{v^2}{\rho} \]

Radial and transverse:
\[a_r = \vec{r} - r\dot{\theta}^2 \quad a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta} \]

Work and energy: \[T_1 + U_{1\rightarrow 2} = T_2 \]
Conservation of energy: \[T_1 + V_1 = T_2 + V_2 \]

Impulse and momentum: \[m\vec{v}_1 + \int_{t_1}^{t_2} \vec{F} dt = m\vec{v}_2 \]

Coefficient of restitution: \[e = \frac{v'_B - v'_A}{v_A - v_B} \]
\[\vec{v}_B = \vec{v}_A + \vec{v}_{B/A} = \vec{v}_A + \vec{\omega} \times \vec{r}_{B/A} \]
\[\vec{a}_B = \vec{a}_A + \vec{a}_{B/A} = \vec{a}_A + \left(\vec{\omega}_{B/A} \right)_n + \left(\vec{\omega}_{B/A} \right)_t \]
\[(a)_n = r\alpha \]
\[(\alpha)_n = r\omega^2 \]
\[\sum \vec{F} = m\vec{a}_g \quad \sum \vec{M}_G = I_G \vec{\alpha} \]

Impulse and momentum for rigid bodies: \[m\vec{v}_{G1} + \int_{t_1}^{t_2} \vec{F} dt = m\vec{v}_{G2} \quad I_G \vec{\omega}_1 + \int_{t_1}^{t_2} \vec{M}_G dt = I_G \vec{\omega}_2 \]

For a uniform cylinder, \[I_G = \frac{1}{6} mr^2 \]
For a uniform rod, \[I_G = \frac{1}{12} ml^2 \]
For a uniform sphere, \[I_G = \frac{2}{5} mr^2 \]
\[I = mk^2 \]