AMERICAN UNIVERSITY IN CAIRO

ENGR 214: Engineering Mechanics II (Dynamics) Final Exam, 29 May, 2011

1. (25) The ball has a mass m and is attached to the cord of length l. The cord is tied at the top to a swivel and the ball is given a velocity v. Show that the angle θ which the cord makes with the vertical as the ball travels around the circular path must satisfy the equation: $\tan \theta \sin \theta=v^{2} / g l$.

2. (25) The $2-\mathrm{kg}$ ball is thrown at the suspended $20-\mathrm{kg}$ block with a velocity of $4 \mathrm{~m} / \mathrm{s}$. If the time coefficient of restitution between the ball and the block is $e=0.8$, determine the maximum height h to which the block will swing before it momentarily stops.

3. (25) The trailer with its load has a mass of 150 kg and a center of mass at G. If it is subjected to a horizontal force $P=600 \mathrm{~N}$, determine the trailer's acceleration and the normal force on the pair of wheels at A and B. The wheels are free to roll and have negligible mass.

4. (25) The $50-\mathrm{kg}$ block is transported a short distance by using two cylindrical rollers, each having a mass of 17.5 kg . If a horizontal force $P=125 \mathrm{~N}$ is applied to the block, determine the block's speed after it has been displaced
 0.6 m to the left. Originally the block is at rest. No slipping occurs.

Equation Sheet

$v=\frac{d x}{d t} \quad a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=v \frac{d v}{d x}$
Uniform rectilinear motion
$x=x_{0}+v t$

Uniformly accelerated rectilinear motion
$v=v_{0}+a t$
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

Acceleration components
Tangential \& normal
$a_{t}=\frac{d v}{d t} \quad a_{n}=\frac{v^{2}}{\rho}$
Radial and transverse:

$$
a_{r}=\ddot{r}-r \dot{\theta}^{2} \quad a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}
$$

Work and energy: $T_{1}+U_{1 \rightarrow 2}=T_{2}$
Conservation of energy: $T_{1}+V_{1}=T_{2}+V_{2}$
Impulse and momentum: $m \vec{v}_{1}+\int_{t_{1}}^{t_{2}} \vec{F} d t=m \vec{v}_{2}$
Coefficient of restitution: $e=\frac{v_{B}^{\prime}-v_{A}^{\prime}}{v_{A}-v_{B}}$
$\vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A}=\vec{v}_{A}+\vec{\omega} \times \vec{r}_{B / A}$
$\vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A}=\vec{a}_{A}+\left(\vec{a}_{B / A}\right)_{n}+\left(\vec{a}_{B / A}\right)_{t}$
$(a)_{t}=r \alpha$
$(a)_{n}=r \omega^{2}$
$\sum \vec{F}=m \vec{a}_{G} \quad \sum \vec{M}_{G}=I_{G} \vec{\alpha}$

For a uniform cylinder, $I_{G}=\frac{1}{2} m r^{2}$

