ENGR 214: Dynamics
Spring 2009
Assignment 2 (due 4/3/2009)

1. Three blocks m_1, m_2 and m_3 are positioned as shown and a force F is applied on m_1. If the coefficient of friction between any two surfaces is μ, determine:
 a) the maximum force F which can be applied without m_2 slipping over m_1.
 b) the contact force between m_1 and m_3.

2. Disc A rotates in a horizontal plane about a vertical axis at a constant angular velocity $\dot{\theta}_0 = 15$ rad/s. Slider B has a mass of 230 g and moves in a frictionless slot cut in the disc. The slider is attached to a spring of constant 60 N/m, which is undeformed when $r=0$. Knowing that at a given instant the acceleration of the slider relative to the disc $\ddot{r} = -12$ m/s and that the horizontal force exerted on the slider by the disc is 9 N, determine at that instant:
 (a) the distance r
 (b) the radial component of the velocity of the slider

3. Determine the constant speed of the passengers on the amusement-park ride if it is observed that the supporting cables are directed at $\theta=30^\circ$ from the vertical as shown. Each chair including its passengers has a mass of 80 kg. Also, what are the force components along the n, t, and b directions which the chair exerts on a 50-kg passenger during the motion?

4. If the coefficient of friction between the 20-kg block A and the 100-kg block B is 0.5, determine the acceleration of each block for
 (a) $P = 60$ N
 (b) $P = 40$ N