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VIBRATION OF CONTINUOUS SYSTEMS 

 

Introduction 

Models of vibratory systems can be divided into two broad classes, lumped and 

continuous, depending on the nature of the parameters. In the case of lumped systems, the 

components are discrete, with the mass assumed to be rigid and concentrated at 

individual points, and with the stiffness taking the form of massless springs connecting 

the rigid masses. The masses and springs represent the system parameters, and we refer to 

such models as discrete or lumped-parameter models. The motion of discrete systems is 

governed by ordinary differential equations. Continuous systems, on the other hand, 

differ from discrete systems in that the mass and elasticity are continuously distributed. 

Such systems are also known as distributed-parameter systems, and examples include 

strings, rods, beams, plates and shells. While discrete systems possess a finite number of 

degrees of freedom, continuous systems have an infinite number of degrees of freedom 

because we need an infinite number of coordinates to specify the displacement of every 

point in an elastic body. The displacement in this case depends on two independent 

variables, namely x and t. As a result, the motion of continuous systems is governed by 

partial differential equations to be satisfied over the entire domain of the system, subject 

to boundary conditions and initial conditions. 

 

Although discrete systems and continuous system may appear entirely different in nature, 

the difference is more in form than concept. As a matter of fact, a certain physical system 

can be modeled either as discrete or as distributed, depending on the objectives of the 

analysis. It turns out that discrete and continuous systems are indeed closely connected, 

and thus it comes as no surprise that both systems possess natural frequencies and normal 

modes of vibration. 

 

In this topic we will study the free and forced vibration of continuous systems. Emphasis 

will be placed on studying the vibration of taught strings, rods and beams. This covers a 

broad class of engineering applications, as many practical systems can be modeled by one 

or more of such elements in order to study the dynamic behavior 
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Vibration of Strings 

The figure shows a fixed-fixed string of length L. The string is initially under tension T 

and the aim is to study the transverse vibrations denoted by the displacement y(x,t), 

measured from the equilibrium position. It is assumed that both displacement and slope 

are small. 

 

It is also assumed that the tension force in the string remains constant during vibration, 

which follows from the previous assumptions of small displacements. As in all 

continuous systems, the displacement variable depends on both the spatial (x) and 

temporal (t) coordinates. A free body diagram of a string element is shown below. 

Neglecting gravity effects, we can apply Newton’s second law on the string element to 

obtain the governing equation of motion. 

 

Applying y yF m a     gives: 
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where   is the mass per unit length of the string. For small displacements, sin  , 

hence we obtain: 
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But 
y

x






 hence: 
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y y
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x t
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 


 
 (3) 

which can be written as: 

 
2 2

2 2 2

1y y

x c t

 


 
 (4) 

which is known as the one-dimensional wave equation and  
T

c


  is the velocity of 

wave propagation along the string. The wave equation is a partial differential equation, 

and the same form will be encountered in similar problems involving the dynamics of 

distributed-parameter models. The equation must be satisfied over the entire domain and 

is subject to boundary conditions as well as initial conditions. Accordingly, the 

problem posed is both a boundary value problem (BVP) and an initial value problem 

(IVP) from a mathematical point pf view. 

 

We now seek the solution of the wave equation, which represents the variation of the 

transverse displacement at any point along the string and at any time for an arbitrary 

string that is set in motion by certain initial conditions and left to vibrate freely. This 

solution is emulated by the using the principle of separation of variables. In this way, the 

transverse displacement can be expressed as: 

 

 ( , ) ( ) ( )y x t Y x G t   (5) 

It follows that: 

 
2 2

2 2

y d Y
G

x dx


 


 (6) 

and  

 
2 2

2 2

y d G
Y

t dt


 


 (7) 

Substitution into the equation of motion (4) yields: 

 
2 2

2 2 2

1d Y d G
G Y

dx c dt
  (8) 

which can also be written as: 

 
2 2

2 2 2

1 1 1d Y d G

Y dx c G dt
  (9) 

It is noted that the left-hand-side (LHS) of the above equation depends only on the spatial 

variable x, whereas the RHS depends only on the temporal variable, t. In order to satisfy 
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the equation, both sides of equation (9) must be equal to a constant. Let this constant be  

 
2

c . A negative constant was conveniently selected because this choice leads to an 

oscillatory motion. The choice of a zero or positive constant does not yield a vibratory 

motion, and therefore must be excluded. For example, if a zero constant was chosen, this 

leads to: 

2

2 2

1 1
0

d G

c G dt
  

or 

2

2
0

d G

dt
  

whose solution is given by: 

1 2G c t c   

which is rejected because it indicates a solution that increases linearly with time. It can be 

shown that the choice of a positive constant gives rise to two terms; one exponentially 

increasing and the other exponentially decreasing. 

Adopting the negative constant choice, and substituting into the equation of motion gives: 

  
2

2

2

1 d Y
c

Y dx
   (10) 

which can be written as: 

  
2

2

2
0

d Y
c Y

dx
   (11) 

Furthermore, 

  
2

2

2 2

1 1 d G
c

c G dt
   (12) 

which can similarly be expressed as: 

 
2

2

2
0

d G
G

dt
   (13) 

These have the general solutions: 

    ( ) sin cosY x A c x B c x    (14) 

And 

 ( ) sin cosG t C t D t    (15) 
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The 4 constants A, B, C and D are to be determined from the boundary conditions (BC’s) 

and initial conditions (IC’s). It also worthy to note that equation (14) defines the 

deformation shape, whereas equation (15) defines the motion to be harmonic in time. It 

becomes appropriate now to define the unknown constant  as the natural frequency of 

the system, and   c  as the wave number or spatial frequency. The general solution 

may then be expressed as: 

    ( , ) sin( ) cos( ) sin cosy x t A c x B c x C t D t        (16) 

Alternatively, and after some algebraic manipulation, the above solution may also be 

written as: 

 
   

   

1 2

3 4

( , ) sin ( ) cos ( )

sin ( ) cos ( )

y x t a c x t a c x t

a c x t a c x t

   

   

    

  
 (17) 

Once again, the solution must contain 4 unknown constants. 

 

Example: Fixed-fixed string 

Let us now consider the case of a string that is fixed at both ends, as shown.  

 

The imposed boundary conditions indicate that the string displacement at both ends must 

be equal to zero, or: 

(0, ) 0y t  and ( , ) 0y L t  . The general solution is: 

   

( , ) ( ) ( )

sin( ) cos( ) sin cos

y x t Y x G t

A c x B c x C t D t   

 

   
 

Substitution of the first BC into the general solution gives: 

 0 sin cosB C t D t     

which implies 0B  . The general solution hence becomes: 

L 

x 

y 

y(x,t) 
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   ( , ) sin( ) sin cosy x t A c x C t D t      

Substitution of the second BC into the solution gives: 

   0 sin( ) sin cosA L c C t D t      

which implies: 

sin( ) 0L c   

hence 

, 1,2,3,L c n n    

The above equation is termed the frequency equation or characteristic equation of the 

system, as it gives values of the system natural frequencies. Clearly, the system possesses 

an infinite number of natural frequencies, as suggested earlier. Having obtained the 

natural frequencies, the solution at any frequency or mode is expressed by: 

  ( , ) sin( ) sin cos

( ) ( )

n n n n n n

n n

y x t A n x L C t D t

Y x G t

   

 
 

Therefore, at each natural frequency, there corresponds a certain mode shape or an 

eigenfunction defined by  

 ( ) sinn nY x A n x L  

where each “n” represents a normal mode vibration with a natural frequency 

n

n c

L


   

and mode shape 

 ( ) sinn nY x A n x L  

where nA  are arbitrary constants. The figure below shows the first few modes of the 

string, as obtained from the above analysis. 



 7 

 

 

The general solution is given by: 

  ( , ) sin( ) sin cosn n n n n ny x t A n x L C t D t     

where the terms in the first bracket define the displacement pattern at mode “n”, and the 

terms on the last bracket define a harmonic motion at the corresponding natural 

frequency. The free vibration solution is finally obtained as the sum of all modes of 

vibration, or: 

 
1

( , ) sin cos sin( )n n n n

n

y x t C t D t n x L  




   

where ,n nC D  are constants to be determined from the IC’s.  

The eigenfunctions can also be shown to possess an orthogonality property (see next 

section) which is given by: 

0

0
( ) ( )

L

n m

n

n m
Y x Y x dx

h n m


 


  

For a fixed-fixed string, this becomes: 

n=4 

n=1 n=2 

n=3 
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0

0
sin( )sin( )

2

L n m
n x L m x L dx

L n m
 


 


  

In order to study the complete free vibration problem, the initial conditions must also be 

defined. Assume that the string is subjected to the following initial conditions: 

( ,0) ( ) , ( ,0) ( )y x f x y x g x   

Substitution into the general solution gives: 

1

( ) sin( )n

n

f x D n x L




  

and 

1

( ) sin( )n n

n

g x C n x L 




  

In order to obtain the constants ,n nC D  we multiply the above equations by sin( )n x L  

and integrate over the string length. By using the orthogonality codition, we get: 

0

2
( )sin( )

L

nD f x n x L dx
L

   

and 

0

2
( )sin( )

L

n

n

C g x n x L dx
L




   

It thus follows that the constants ,n nC D  determine the contribution of each mode to the 

general solution. Now consider the special case where the initial conditions impose a 

displacement pattern that coincides with one of the natural modes, say mode “k”, and that 

the initial velocity is zero. In this way, we have: 

( ) sin( )f x k x L  

and 

( ) 0g x   

It follows that: 

0

1
n

k n
D

k n


 


 

and 

0nC   
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Therefore, the general solution reduces to: 

( , ) sin( )cos ky x t k x L t   

That is, the string vibrates in its “k
th

” mode due to the fact that the initial conditions cause 

only the “k
th

” mode to be excited. The continuous system in this special case behaves like 

a single DOF system. The same notion can be observed for a multi-DOF system. If, on 

the other hand, an impulse is given to the system, it can be shown that a wide spectrum of 

frequencies or modes are excited, and hence the system response will contain a 

summation of a large number of modes. In practice, the contribution of the higher modes 

is usually smaller, and the system response will be almost predominantly be described by 

the fundamental (i.e. first) mode, together with only a few higher modes. 
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Orthogonality of Eigenfunctions 

Let us now prove the orthogonality condition for a fixed-fixed string. The same technique 

can be applied to other forms of boundary conditions. Recall Eq. (11) obtained 

previously: 

  
2

2

2
0

d Y
c Y

dx
   (18) 

This equation must be satisfied at all natural frequencies or all normal modes of 

vibration. Consequently, at an arbitrary mode “m”, we have ,m mY  as the natural 

frequency and associated eigenfuction, respectively. Similarly, at mode “n”, we 

have ,n nY . Let us first assume that these two modes are distinct. It follows from Eq. (18) 

that: 

  
2

2

2
0m

m m

d Y
c Y

dx
    (19) 

and 

  
2

2

2
0n

n n

d Y
c Y

dx
    (20) 

Multiplying Eq. (19) by nY  and integrating over the string length yields: 

  
2

2

2

0 0

L L

m
n m m n

d Y
Y dx c Y Y dx

dx
    (21) 

The LHS of the above equation can be integrated by parts: 

 
0 0 0

L L L

m m n m n
n

dY dY dY dY dY
LHS Y dx dx

dx dx dx dx dx

 
    

  
   (22) 

and the first term vanishes due to the boundary conditions defined (both ends fixed). It 

follows that: 

  
2

0 0

L L

m n
m m n

dY dY
dx c Y Y dx

dx dx
   (23) 

Similarly, we can multiply equation (20) by mY  and integrate over the string length. This 

yields: 

  
2

0 0

L L

n m
n m n

dY dY
dx c Y Y dx

dx dx
   (24) 
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It is noted that the LHS of Eqs. (23) and (24) are identical, irrespective of the order of 

multiplication.  Subtracting Eq. (24) from Eq. (23) gives: 

 
2 2

2

0

0

L

m n
m nY Y dx

c

 
   (25) 

But ,m n   are two distinct modes, i.e. m n  , therefore: 

 
0

0 ,

L

m nY Y dx m n   (26) 

which proves the orthogonality condition for eigenfunctions of a fixed-fixed string. This 

condition also holds true for other types of BC’s. Moreover, since eigenfunctions can be 

arbitrarily scaled (or normalized), we can write: 

 
0

,

L

m m mY Y dx h m n   (27) 

where mh  is a constant. 

 

Elastic or Inertial Attachments 

 

Finally, let us now consider other forms of boundary conditions. Figure 6 shows a string 

that is fixed at one end and attached to a spring at the other. The boundary condition at 

the fixed end 0x   is given by (0, ) 0y t  . This is called a geometric boundary 

condition, because it describes a specified displacement. Such a condition is also known 

as an essential or imposed boundary condition. 

 

 

Elastic attachments. 

 

L 

k 

y(x,t) x 
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The boundary condition at the other end is not so obvious at first sight. Indeed it becomes 

appropriate to draw a free-body diagram of the string in order to investigate the force 

interaction. Such a free-body diagram is shown in Fig.7.  At x L  we need to balance 

forces in the vertical direction. Thus we have: 

 ( , ) ( , )
y

T L t ky L t
x


 


 (28) 

This is called a natural boundary condition (also known as dynamic or additional 

boundary condition) as it describes forces and moments acting on the system. We can 

then proceed with the solution in the same way described above in order to obtain the 

natural frequencies, eigenfunctions and response to initial conditions. 

 

Figure 7. Free-body diagram. 

 

y 

y(x,t) 
x 

( , )kz ky L t 

T

( , )
y

L t
x







z 
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Vibration of Rods 

In this section, let us study the free longitudinal vibration of rods (bars). Consider a 

fixed-free rod of length L undergoing longitudinal vibration, as shown below. 

 

 

The nomenclature adopted in this case is listed below. 

 

  Density (mass per unit volume) 

P  Axial force 

( , )u x t  Longitudinal displacement 

A  Cross-sectional area 

E  Young’s modulus of elasticity 

 

The longitudinal displacement, which is assumed to be small, depends on both the spatial 

(x) and temporal (t) variables. It is assumed that the displacement is small. In order to 

study the rod vibration, we need to write down its equation of motion. Consider a rod 

element, as shown in below. 

 

 

 

L 

x 

u(x,t) 

Undeformed 

Deformed 

u
u

u dx
x





P
P dx

x





P

x dx
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An infinitesimal element of the rod, shown by the hatched area, undergoes longitudinal 

motion, and is drawn in its deformed configuration, as shown. The change in length of 

the element is expressed as: 

 
u

L dx
x


 


 (29) 

The axial strain is then given by: 

 
L u

L x


 
 


 (30) 

The axial stress in the element can be written as: 

 
P

A
   (31) 

Applying Hooke’s law, E  , yields: 

 
P u

E
A x





 (32) 

Rearranging: 

 
u

EA P
x





 (33) 

Differentiating with respect to x gives: 

 
2

2

u P
EA

x x

 


 
 (34) 

Now apply Newton’s second law in the axial direction: 

  
2

2

P u
dx Adx

x t


 


 
 (35) 

Combining the previous equations gives: 

 
2 2

2 2

u u
EA A

x t


 


 
 (36) 

which is rearranged to give: 

 
2 2

2 2 2

1u u

x c t

 


 
 (37) 
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where 
E

c


  is the velocity of wave propagation along the rod. Note the similarity 

between the wave equation of a string and that of a rod. Once again, the wave equation is 

a second order partial differential equation that must be satisfied over the entire rod 

domain, subject to boundary and initial conditions. Also note that the displacement is a 

function of two independent variables, x and t.  

 

Solution of the wave equation is emulated by using separation of variables, and the 

process follows directly from that adopted for strings. Thus we seek a solution in the 

form: 

 ( , ) ( ) ( )u x t U x G t   (38) 

Upon differentiating partially with respect to t and x yields: 

 
2 2

2 2

u d U
G

x dx


 


 (39) 

and 

 
2 2

2 2

u d G
U

t dt


 


 (40) 

Substitution into the equation of motion gives: 

 
2 2

2 2 2

1d U d G
G U

dx c dt
  (41) 

which is rearranged in the form: 

 
2 2

2 2 2

1 1 1d U d G

U dx c G dt
  (42) 

Once again, we note that the LHS depends only on x, whereas the RHS depends only on 

t. In order to satisfy this equation, both sides must be equal to a constant. Let this constant 

be  
2

c  for oscillatory motion to prevail. It then follows that: 

  
2

2

2

1 d U
c

U dx
   (43) 

or: 

  
2

2

2
0

d U
c U

dx
   (44) 
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and  

  
2

2

2 2

1 1 d G
c

c G dt
   (45) 

or: 

 
2

2

2
0

d G
G

dt
   (46) 

These have the general solutions: 

    1 2( ) sin cosU x A c x A c x    (47) 

and 

 3 4( ) sin cosG t A t A t    (48) 

The solution ( )U x  defines the deformation shape, whereas ( )G t defines the motion to be 

harmonic in time. The four constants 1 2 3 4, , ,A A A A  are to be determined from the 

boundary and initial conditions. The natural frequency   is yet to be determined, and the 

expression  c  is known as the wave number or spatial frequency. The general 

solution is finally obtained by: 

    1 2 3 4( , ) sin( ) cos( ) sin cosu x t A c x A c x A t A t        (49) 

After some algebraic manipulation, the solution may also be expressed as: 

 
   

   

1 2

3 4

( , ) sin ( ) cos ( )

sin ( ) cos ( )

y x t a c x t a c x t

a c x t a c x t

   

   

    

  
 (50) 
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Example: Fixed-free Rod 

 

As an example, let us investigate the case of a fixed-free rod. 

 

 

The boundary conditions for this case are: 

(0, ) 0u t   

which results in: 

20 ( )A G t   

from which we get: 

2 0A   

The general solution then becomes: 

 1( , ) sin( ) ( )u x t A c x G t   

At the free end x L  the axial force must vanish 0P  . But  

 1( ) cos( ) ( )
u

P EA EA c A c x G t
x

 


  


 

hence: 

 10 ( ) cos( ) ( )EA c A L c G t    

which implies: 

cos( ) 0L c   

which is the frequency equation or characteristic equation of the system. Solution of 

this equation is: 

2 1
, 1,2,3,

2

n
L c n 

 
  
 

 

Hence the natural frequencies of the system are given by: 

 
2 1

, 1,2,3,
2

n

n c
n

L




 
  
 

 

L 

x,u 
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and the normal modes of vibration are: 

 1( ) sin( )n n nU x A c x  

The solution of each mode becomes: 

   1 1 1( , ) sin (2 1) 2 sin cosn n n n n nu x t A n x L C t D t       

In other words, at each natural frequency, there corresponds a mode shape or an 

eigenfunction defined by: 

 1( ) sin (2 1) 2n nU x A n x L   

and each n represents a normal mode vibration with a natural frequency 

2 1

2
n

n c

L




 
  
 

 where 1nA  are arbitrary constants. 
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Rod with Non-uniform Cross Section 

 

Consider a rod with a non-uniform cross section, as shown below. The equation of 

motion can be obtained using the same techniques described previously.  

 

 

 

Applying Newton’s second law yields: 

  
2

2
( )

P u
dx A x dx

x t


 


 
 (51) 

which gives: 

  
2

2
( )

P u
A x

x t


 


 
 (52) 

Note that ( )A x  describes the variation of cross sectional area along the rod axis. Upon 

application of Hooke’s law, we obtain: 

 ( )
u

P EA x
x





 (53) 

Differentiating with respect to x  gives: 

 ( )
P u

EA x
x x x

   
  

   
 (54) 

and hence the equation of motion is expressed as: 

x dx

u
u dx

x





u

P
P dx

x





P



 20 

 

2

2
( ) ( )

u u
A x EA x

t x x


   
  

   
 (55) 

 

Other Boundary Conditions 

 

Finally, let us consider the case where inertial attachments are appended to the rod, as 

shown below.  

 

 

The boundary condition at the fixed end is straight forward. Examination of the boundary 

condition at the free end leads us to write the equation of motion of the attached mass 

using Newton’s second law. The resulting equation can be expressed as: 

 

2

2
( , ) ( , )

u u
EA L t m L t

x t

 
 

 
 (56) 

 

Torsional Vibration of Rods 

 

Now consider a rod that is subjected to a  twisting moment T, as shown below. 

L 

 m 

 ( , )
u

EA L t
x




m 
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The angle of twist can be expressed as: 

 

Tdx
d

GJ
   (57) 

where  

  : angle of twist 

G  : modulus of rigidity 

J  : polar moment of inertia 

 

We can then write: 

 

2

2

T
dx GJ dx

x x

 


 
 (58) 

Applying Newton’s law to the rod element, we obtain: 

 

2 2

2 2
dxGJ Jdx

x t

 


 


 
 (59) 

hence 

 

2 2

2 2

G

t J x

  


 
 (60) 

which is in the form: 

T

T

T
T dx

x




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2 2

2 2 2

1

x c t

  


 
 (61) 

with 
G

c


  representing the wave velocity. It is noted that this equation has exactly 

the same form as equation (37) representing the axial vibration of rods, with the 

,u E G  . Thus the evaluating of the natural frequencies, mode shapes and 

system response follows directly from the equations previously mentioned. 

 

Vibration of Beams 

This section deals with the transverse vibration of beams. The figure shows an elastic 

beam drawn in both the undeformed and deformed configurations. Although the figure 

suggests a cantilever arrangement, the analysis is suited for arbitrary boundary 

conditions. Transverse displacements, measured from the neutral axis at equilibrium, are 

designated as w(x,t). 

 

 

 

From strength of materials, and adopting the Euler-Bernoulli beam theory, we have: 

 
2

2

w
M EI

x


 


 (62) 

and: 

 
M

V
x





 (63) 

where 

E  Young’s modulus of elasticity [N/m
2
] 

x 
w(x,t) 

L 

w 



 23 

I   Second moment of area [m
4
] 

M bending moment [Nm] 

w  Transverse displacement [m] 

V   Shear force [N] 

 

Consider an infinitesimal beam element as shown in Fig. 15.  

 

 

Figure 15. Forces and moments acting on a beam element. 

 

Neglecting rotary inertia, we can apply Newton’s law in the vertical (transverse) direction 

to obtain the equation of motion: 

 
2

2

V w
dx Adx

x t


 


 
 (64) 

where A  is the cross-sectional area. From equations (57) and (58), we have: 

 
2

2

M w
V EI

x x x

   
   

   
 (65) 

For constant EI  we obtain: 

 
3

3

w
V EI

x


 


 (66) 

or: 

 
4

4

V w
EI

x x

 
 

 
 (67) 

Combining equation (59) with (62) yields the equation that governs the free transverse 

vibration of a uniform elastic beam as: 

V
M

V
V dx

x





dx

M
M dx

x




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4 2

4 2

( , ) ( , )w x t w x t
EI A

x t


 
 

 
 (68) 

Solution of the above equation can be emulated using the technique of separation of 

variables, as described in previous sections. In this way, the solution can be expressed as: 

 ( , ) ( ) ( )w x t W x F t  (69) 

Substituting (64) into (63) yields: 

 
4 2

4 2

1 1EI d W d F

A W dx F dt
   (70) 

We observe that the left side of (65) depends only on x, while the right side depends only 

on t. Because x and t are independent variables, we conclude that both sides of (65) must 

be equal to a constant. Let this constant be 
2

. It follows that: 

 
2

2

2
0

d F
F

dt
   (71) 

which has a solution in the form: 

 1 2( ) sin cosF t C t C t    (72) 

 

where C1 and C2 are constants to be determined from the initial conditions.  

 

Furthermore, we have: 

 
4

2

4
0

d W A
W

dx EI


   (73) 

Denoting 4 2A

EI


   we get: 

 
4

4

4
0

d W
W

dx
   (74) 

The solution of (69) can be shown to be: 

 1 2 3 4( ) sin cos sinh coshW x A x A x A x A x        (75) 

where A1, A2, A3 and A4 are constants to be determined from the boundary conditions.  

 

1.12 Example: Cantilever Beam 
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The boundary conditions for a cantilever beam are given by: 

At  0, 0, 0
dW

x W
dx

     

At  
2 3

2 3
, 0, 0

d W d W
x L

dx dx
     

Upon substitution into (70), and after some algebraic manipulation, we obtain the 

eigenfunctions for a cantilever beam as: 

 

 
sin sinh

( ) sin sinh cos cosh
cos cosh

n n
n n n n n n

n n

L L
W x A x x x x

L L

 
   

 

 
    

 
 (76) 

where n  is obtained by solving 

 cos cosh 1L L    (77) 

Equation (72) can be solved numerically to give the eigenvalues 1 2, , , nL L L   . The 

first three solutions can be shown to be: 

 

 

1

2

3

1.8751/

4.6941/

7.8548 /

L

L

L













 

Now the natural frequencies can be obtained from 2

n n

EI

A
 


   and the first three 

values are obtained as: 

 

 

 

 

2

1 4

2

2 4

2

3 4

1.8751

4.6941

7.8548

EI

AL

EI

AL

EI

AL
















 

Figure 16 shows a typical frequency response plot of a cantilever beam, acted upon by a 

harmonic force at its tip. The amplitude of the tip motion is plotted as a function of the 

excitation frequency. The peaks occur at the natural frequencies of the system, and the 

deformation pattern of the beam (eigenfunctions) at each frequency is plotted at the top. 
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Figure 16. Frequency response of a beam. 

 

Table 1 shows gives a summary of the boundary conditions, natural frequencies and 

normal modes of commonly-encountered uniform beam configurations, as taken from 

Harris’ Shock and Vibration Handbook, 5
th

 edition, 2002. 

 

Frequency 1 2 3

Amplitude 
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Table 1. Properties of uniform beams. 
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1.13 Forced Response 

 

The solution of the forced vibration problem for beams, as well as other continuous 

systems, can be emulated through the principle of mode superposition. The equation of 

motion for forced vibration is: 

 

 
4 2

4 2

( , ) ( , )
( , )

w x t w x t
EI A f x t

x t


 
 

 
 (78) 

The solution is assumed to be in the form: 

 
1

( , ) ( ) ( )n n

n

w x t W x q t




  (79) 

where ( )nW x  is the n
th

 normal mode or eigenfunction of the beam satisfying the 

differential equation (73) which is: 

 
4

2

4

( )
( ) 0n

n n

d W x A
W x

dx EI


   (80) 

and ( )nq t  is the generalized coordinate for the n
th

 mode. By substituting (79) into (78) we 

get: 

 
4 2

4 2
1 1

( ) ( )
( ) ( ) ( , )n n

n n

n n

d W x d q t
EI q t A W x f x t

dx dt


 

 

    (81) 

Dividing by A  yields: 

 
4 2

4 2
1 1

( ) ( ) ( , )
( ) ( )n n

n n

n n

d W x d q tEI f x t
q t W x

A dx dt A 

 

 

    (82) 

But from (80) we have: 

 
4

2

4

( )
( )n

n n

d W x A
W x

dx EI


  (83) 

 

Inserting (83) into (82) yields: 

 

 
2

2

2
1 1

( ) ( , )
( ) ( ) ( ) n

n n n n

n n

d q t f x t
W x q t W x

dt A




 

 

    (84) 
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Multiplying (84) throughout by ( )mW x  and integrating along the beam length and using 

the orthogonality conditions, we obtain: 

 
2

2

2

( ) 1
( ) ( )n

n n n

d q t
q t Q t

dt Ab



   (85) 

where ( )nQ t  is the generalized force corresponding to ( )nq t  and is given by: 

 
0

( ) ( , ) ( )

l

n nQ t f x t W x dx   (86) 

and the constant b  is given by: 

 2

0

( )

l

nb W x dx   (87) 

The solution of (85) can be obtained using the Duhamel integral as: 

0

1
( ) cos sin ( )sin ( )

t

n n n n n n n

n

q t A t B t Q t d
Ab

     
 

     (88) 

The first 2 terms on the right hand side of (88) represent the transient or free vibration 

solution (resulting from initial conditions) and the 3
rd

 term denotes the steady-state 

vibration (resulting from the forcing function). 

 

1.14 Example 

Find the steady-state response of a simply-supported beam that is subjected to a harmonic 

force ( , ) sinof x t F t  applied at x a  as shown in Fig. 17. 

 

 

Figure 17. Simply-supported beam under harmonic excitation. 

Fosint 

a 
l 
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The normal modes of a simply-supported beam are expressed as: 

( ) sinn

n x
W x

l


  

Consequently, the generalized force is obtained as: 

0

( ) sin sin sin sin

l

n o o

n x n a
Q t F t dx F t

l l

 
    

The steady-state response of the beam is then obtained from (88) as: 

0

1
( ) ( )sin ( )

t

n n n

n

q t Q t d
Ab

   
 

   

with 

2 2

0 0

( ) sin
2

l l

n

n x l
b W x dx dx

l


     

The solution can be expressed as: 

2 2

sin
2

( ) sino
n

n

n a
F lq t t
Al




  




 

Hence the response is obtained from (79) as: 

2 2
1

2 1
( , ) sin sin sino

n n

F n a n x
w x t t

Al l l

 


  








  

 

 

 


