Response of a Damped System under Harmonic Force

The equation of motion is written in the form:

MX + cX + kx = F, cos ot (1)
Note that Fq is the amplitude of the driving force and w is the
driving (or forcing) frequency, not to be confused with a,.
Equation (1) is a non-homogeneous, 2™ order differential
equation. This will have two solutions: the homogeneous
(Fo=0) and the particular (the periodic force), with the total
response being the sum of the two responses. The
homogeneous solution is the free vibration problem from last
chapter. We will assume that the particular solution is of the
form:

Xp (t) = Asin at + A, cos ot (2)
Thus the particular solution is a steady-state oscillation having
the same frequency w as the exciting force and a phase angle,
as suggested by the sine and cosine terms. Taking the
derivatives and substituting into (1) we get:
(k —~ ma)ZXALsin wt + A, cosart )+ ca( A cosat — A, sin wt) = F, cos ot
Equating the coefficients of the sine and the cosine terms, we
get two equations:

C&)A1+(k—m0)2)A2 =F,
(k—mew®) A —coA, =0

This leads to a solution of:
Fo(k—ma)z)

(k — maw? )2 +(co)’

F,Co

(k — ma? )2 +(co)’

A= A, =



Aside: The equation
Xp (t) = Ajsin at + A, cos ot
can also be written as:
X, (t) = X cos(at — ¢)
To convert between the 2 forms, i.e. to get the constants X

and ¢, substitute t=0 and equate the displacements and
velocities in both equations. This yields:

A =Xcosg , A =Xsing

X=JAN+A | tan¢:%

Thus

The solution can then be written in the form:
X, (t) = X cos(at — ¢)

where

X = FOZ ,¢:tan1( @ Zj
J(k=me?)’ + (cor) k—me

using ax and £ from before and introducing X, and r to be

w_(g__Zmen zJ—kE‘m

= k = deflection under static force F,

O

0 .
r =— = frequency ratio
n

we can write

R R

where M is the magnification factor (amplitude ratio) and
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See figure 3.11
The total response of the system is the sum of the
homogeneous solution plus the particular solution or:

X(t) = X, (t) + X, (t) = X e~ cos(wyt — ¢,) + X cos(at — ¢)

Note that the homogeneous solution xy(t) dies out with time,
and the steady-state solution prevails as long as the forcing
function is present.

To solve this, you find x,(0) and v,(0) and then find X, and ¢
such that the true initial conditions match x(0) and v(0).



Complex Analysis

Using the fact that the complex exponential is periodic, we
can look at the real component of

mX +cX + kx = F,e
we can assume a solution of the form:
_ yai(®t—9)
X, (t) = Xe
This leads to the equation:
(-me” +coi + k) Xe'“* ) = F g
which can be written as:
[(k —me® )+ icoc] _Fo g
X
This can be represented vectorially as:
Im

it

from which we can get:

Lr} \/ — Mw? 2+(Ca))2

s0 - J(k=me?) +(co)

and
Cw
—tan| —
? ( k —ma” j

which is the same solution we had for the cosine case before,
with a lot less work.



Base Motion
The equation of motion of the system is:

mX+c(X—y) +k(x—y)=0
|. Relative Motion
Sometimes we are concerned with the relative motion of the
mass with respect to the base. (Example: accelerometer and
the velocity meter). In this case, we can define z=x-y. Our
equation of motion becomes:

mX+c(X—y) +k(x—y)=0
If the periodic input is in the form

y =Y sin ot
the equation of motion becomes:
mZ + ¢z +kz =—my = M@’ sin ot
I::'O

which is identical to the previous case (harmonic force), with
Fo replaced by Pqy. The steady state solution can be written as:

z(t) =Zsin(owt—9¢)

where
Z _ 1
Z, \/(1— r2)2 +(2¢r)
But
2
z, =0 MOV _
K K

hence the solution is:
2

E: r
i \/(1— r2)2 +(2¢rY

and
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Application: vibration measuring instruments

For negligible damping (¢ <<1), we have

z_r

Y 1-r?

0)2

Casel:r<<l = Z=Yr? =Y —
a)

At “low” frequencies, Z is proportional to &°Y, i.e.
proportional to acceleration. In this range the accelerometer

works. It must have a high @, such that @/, is small .

Case2:r>1 = Z=Y

At “high” frequencies, the ratio between Z and Y is one, i.e. Z
Is equal to the displacement. In this range the vibrometer

works. It must have a low @, such that @/, is high.



I. Absolute Motion
If we are concerned with the absolute motion, we can write

the equation of motion as:

mX + cX + kx = ky + cy

Ky +cy
Here it becomes more convenient to assume the base motion
having the form’:
y _ Yeia)t
We seek a solution in the form:
x = X'~
Substituting into the equation of motion yields:
(—ma)2 +Col + k) Xe'(?) — [k +icc]Ye'™

from which

X g K+iwc

Y (k—mw2)+ia)c
hence

‘x‘_ \/1+(2§r)2

i \/(1—r2)2+(2§r)2
and

$p=tan™ 2 S
1-r*+(2¢r)

“ We can also assume a periodic base input of the form y = Y sin wt, see page 11.
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Note: the motion transmitted is less than 1 for r>+/2. Hence
for vibration isolation, we must have o/, >/2, i.e. . must be
small compared to w.
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The above solution can also be obtained if we assume a
periodic input of
y =Y sin ot
the equation of motion can be written as
mX + cX + kx = KY sin wt + cowY cos wt

MX + cX + kx = Asin (ot —a)

A=Yk +(co) a= tanl(crwj (see page 2)

But the above equation is in the same format now as the
forced vibration one, with an amplitude of A instead of F,

and an additional phase .. So we can find (see page 2)
YK +(co)’
\/(k —Mmo° )2 +C’w’

where

x=Xsin(ot—a—¢)=

Cw
=tan™’
A ( k — me? j
We can write the ratio of the amplitudes as

X k2 +(co) - 1+(2¢r)

sin(wt—a—4¢,)

Yo (k—mw2)2+(cw)2 _\/(1—r2)2+(2§r)2

using the same definition for  and r as before, we can also
write the total solution as
X, (t) = X sin(at — ¢)

where

i mca® e 2¢1°
p=tan [k(k—mw2)+(a)c)2]_tan (l+(4§2—1)r2j

which is the same solution obtained using complex analysis.
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Force Transmitted

To find the force on the base during base motion, we have:
F =k(x—y)+c(x—y)=—mX
but x is known from before, so F is given by:
F = mo*X sin(at — ¢) = F; sin(at — ¢)
where F1 Is the amplitude or maximum value of the force
transmitted to the base. Hence:

JL+(2¢rY
\/(1— r2)2 +(2¢rY

F = mo®Y

from which we get:
K _ = 1+ (241)°
kY (1— r2)2 +(2¢r)

In this relationship, kY represents the force on the mass if it
remained stationary, while the base moved with only the

spring attached. This ratio is called the force transmissibility.
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The force transmitted can also be calculated for the case of a
harmonic force (Chapter 9). In this case:

F =kx+cx =kx+1acx
so the force amplitude is:

ol = (Jx )"+ ()
Thus, the transmissibility or transmission ratio of the isolator
(Tr) can be calculated to be:

R k? + w°c’ B 1+ (241)?
- K (k—mw2)2+w202 (1—r2)2+(2§r)2
This has the same amplitude as the base motion ratio found
earlier. If T, is less than one, then the system behaves like a

vibration isolator, i.e. the ground receives less force than the
input force. (See figure 3.15)
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Rotating Unbalance

Having a rotating unbalance is a common problem in
machinery. In this case, we have the following equation of
motion:
MX + cX + kx = mew? sin wt

If we denote the particular solution x,(t) as:

X, (t)= X sin(et —¢)
then the displacement amplitude is:

X 1

Xo \/(1— r2)2 +(2¢rY

where
2 2
Xo _ Mew _ mer
k M
then
XM re
me \/(1— r2)2 +(2¢rY
and
L 26
—tan™*
¢ (l—rzj
(See figure 3.17)
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Rotating Unbalance
T T

(&

T
— =00

— £=0.12
45 — =015 ]
- &=0.20
al —_ =050 ||
£=0.707
— =1
3.5
L
£
=
><» 3 | TPV TRTEIPRTRIRY [ ¢ SRTR Y B TTTTTIEN
s
3
w25
=
S
"
2 2r
=4
o
b=
151
1 e ———
05F
0 1 1 1 1 1 1 1 1 1
0 05 1 1.5 2 25 3 35 4 45 5
Frequency Ratio, o/on
180
160 -
140
120 -
=
13
=)
= 100+
.
[=)]
<
o 80-
[}
[
=
o

60 -

40 -

20+ i FERNOT

0

L 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 45 5
Frequency Ratio, o/on

(See figure 3.16)

The force transmitted because of the rotating imbalance is
F =kx+cX

The transmissibility can be analyzed as before to give:

c_F_F _F

" R, meo® merio,

2

thus

F_ 2| 1+(2)
meaw,’ A—r2f +(2cr)?
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Response under a general periodic force

If the forcing function is periodic, we can use the Fourier
series and the principle of superposition to get the response.
The Fourier series states that a periodic function can be
represented as a series of sines and cosines:

a . .
F(t)=—+a,cosmt +a, cos2mt +...+b sinwt +b, sin 2t +...
a1 2 1 2
a & . o
=2+ a,cos jot+b;sin jot

j=1

—I cos ja)t d , 1=0,12,...

—f sm Ja)td , 1=123,...

where T =27/ ® is the period. Now the equation of motion
can be written as:

mX +CX+kx = F (t) =%+Zaj cos jat +b; sin jot
j=1
Using the principle of superposition, the steady-sate solution
of this equation is the sum of the steady-state solutions of:

a
mX + cX + kx = 0.

mX + cX + kx = a;j cos jat
mX +cX + kx =bjsin jot
The particular solution of the 1% equation is:
e
X (t)=—-
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The particular solutions of the 2" and 3™ equations are:

X, (t)= 12% . cos( jet - 4;)
\/(1— i’rt) +(2¢jr)

b,
X, (t)= ? 2 sin( jot—g;)
\/(1— j’rt) +(2¢ jr)

20 jr
1_ j2r2

¢, = tanl(

@
r=—
[0

Then add up all the sums to get the complete steady-state
solution as:

S+

T2 [ e (2 ey ey

a } b;
X, (t) A i % cos(ja)t—¢j)+z % sin( joot—g,)

Observe that if jo=a,, the amplitude will be significantly

large, especially for small j and £ Further, as j becomes large,
the amplitude becomes smaller and the corresponding terms
tend to zero. How many terms do you need to include?

Example:  Obtain  the
steady-state response of a
dynamic system having
m=1, ¢=0.7 and k=1 when
subjected to the force
shown.

5 20 5
Time [s]
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Solution: here we have:
T=20 , w=2x/T=27/20=7r/10
and the forcing function is given by:
F(t)=1 0<t<10

F(t)=—1 10<t<20
The Fourier series of the forcing function is given by:

F(t):%Jraicosa)tJra2 oS 2t +...+ b, sin awt +b, sin 2t + ...

To get the constants, we have:
8, ——I dt——U:Odt—jlzodt}=O.1[10—(20—10)]=O

2 T :
a =?_[O F(t)cos( jet)dt

=i 10cos(jitjdt—jzocos[J—tjdt
20| 70 10 10 10

'10 10 10 20
=0.1| —sin jﬁt ——sin jit =0
7 10|, = 10 |,

I.e. all cosine terms vanish

——I sm Ja)t d

_2] 10sin(jlt dt—jzosin(jﬁtjdt
20| Jo 10 0 710

B 10 10 20
~0.1] ——cosjt ——cosjt
10, = 10 |,

=0.1 __—10(003 j7z—1)+1_—0(0052 jmr —cos jﬁ)}
7 ks
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If j is odd,
-10 10 4
b, =01 —(-2)+—(2) |=—
=012 00g) |-
If j is even,
-10 10
b. =01 —(0)+—(0) =0
-0122(0)+220)
I.e. all even terms vanish.

In this way, the force can be represented by a Fourier series
as:

F(t) =bsinet+bsinet+bsinot+-=> b sin(jot) , j=1357,...
=1

=isin£t+isin3—nt+isin5—nt+---=Z_isin£j£t) , j=135,7,...
n 10 3nr 10 5m 10 =L 10

or graphically as:
Fourier Series of a Square Wave

15 T I

I
— 1term
— 2terms

— 3terms
— 15 terms

15 I | | | 1 I |
0
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96 kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkx

% Periodic response of a dynamic system to a square input waveform
96 kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkhkhkhhhhhhhkhhhkhhhkhhdhik

clear; close all;

m=1; ¢c=0.7; k=1; % Parameters

wn=sqrt(k/m); zi=c/wn/2; w=pi/10;

t=linspace(0,40,500); x=zeros(size(t)); r=w/wn;

for jj=1:2:19
a(jj)=4/pi/jj;
X@(p=a()/k/sqrt((1-jjr2*r"2)"2+(2*zi*jj*r)"2); % term in summation
phi(jj)=atan2(2*zi*jj*r, 1-Jj*j*r*r);
x(1+2,:)=x(j,:)+X(1)*sin(w*jj*t-phi(jj));

end

u=sign(sin(w*t));

figure(1)

plot(t,x([3 5 7 21],),t,sign(sin(w*t)),'linewidth’,2);grid
legend('1 term’,'2 terms','3 terms','19 terms')
xlabel("Time [s]','fontsize’,18);ylabel('x(t)', fontsize',18)
title('Response to Periodic Input','fontsize’,18);

figure(2)
plot(1:2:19,X(1:2:19),'0','markersize’,10,'linewidth',4);grid
ylabel('Magnitude of term in summation','fontsize’,18)
xlabel('Summation term','fontsize’,18)
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The system response is shown below:
Response to Periodic Input

2 T T T T T
: : : = 1 term

0 5 10 15 20 25 30 35 40

The contribution of each term in the summation is determined
from:

1.4 o] ! ! ! ?

e © e =
IS = =3 - o
1 T 1 T T
i I i I I

Magnitude of term in summation
o]

e
[
T
i

0 2 4 6 8 10 12 14 16 18 20
Summation term
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Response to an impulse
From ENGR 214, the principle of impulse and momentum
states that impulse equals change in momentum:
Impulse = FAt = m(v, — vq)
or:
t+At
t
A unit impulse is defined as:

t+At
f = lim Fdt =1

Now consider the response of )

an undamped system to a unit -
impulse. Recall that the free F FAf =
) ) i : | t=1
vibration response is given 4
by:
At >

X
x(t) = xgcosw,t + —Osinwnt

n
If the mass starts from rest, we can get the velocity just after
impulse as:

1
xo _— e =
m m
and the response becomes:
x(t) = sinw,t
mw,

for a non-unit impulse, the response is:

x(t) = —sinw,t
maw,

22



For an underdamped system, recall that the free response was
gven by: (see page 142)

Xog + (w,x
x(t) = e~$@nt [xocoswyt + 0 - L Osinwdt]
d
For a unit impulse, the response for zero initial conditions is:

e_{wnt

x(t) = — sinwgt = g(t)

where g(t) is known as the impulse response function. For a
non-unit impulse, the response is:

Fe—{a)nt
t) = ———si t=Fg(t
x(t) mo, Sinwgq Fg(t)
If the impulse occurs at a delayed time t = 7, then
Fe_{wn(t_‘[)
t) == j t—1)=Fg(t—
X(6) = S sinwg (t = 7) = Fg(t =)

If two impulses occur at two different times, then their
responses will superimpose.

Example: For a system having m = 1 kg;c = 0.5kg/s; k =
4 N/m; F = 2 Ns obtain the response when two impulses are
applied 5 seconds apart.

rad

Solution:  here we have w, =2-—,0=0.125 0y =

1.984% so the solutions become:

28—0.25t

x1(t) = Wsin 1984t t>0
Ze—O.ZS(t—T)

X, (t) = 1984 sin[1.984(t—1)] t>5

And the total response is:
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‘ Ze—O.ZSt
Wsin 1984t 0<t<5
= < Ze_O'ZSt . Ze—O.ZS(t—T)
T9gz Sin 1.984t + 1984 sin[1.984(¢t — 7)]

T
=0

x(t)

x(t)

10
Time [s]

Response to an Arbitrary Input

The input force is viewed as a F1)

series of impulses. The
response at time t due to an /1IN
impulse at time t is: Z \
AT T f>

x(t) = F(r)Atg(t — 1)
The total response at time t is the sum of all responses:

24
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x(t) = Z F(0)g(t — T)At
Hence
x(t) = J F(t)g(t —1)dt
0

For an underdamped system:

t
x(t) = j F()e ontDginw, (t — 1) dt
0

Wy

Note: this does not consider initial conditions. This type of
formula is called the convolution integral or the Duhamel
integral. For base excitation the resulting response is

———jy g“a) -t Sln(a)d(t—r))dr

Example: determme the response of a spring-mass-damper
system due to the application of a force (see Example 4.6 on
page 318).

Here we have
F(t)=F,
so the response is obtained from

x(t)= _[Fegw“”sm[a)d (t- r]dr

M@y %

You can integrate this by parts, or look it up in a table of
integrals. Here we will use MATLAB to symbolically
integrate the equation. In MATLAB we write

25



syms z wn t tau wd
M=int(exp(-z*wn*(t-tau))*sin(wd*(t-tau)),tau,0,t)

M =
-(-wd+exp(-z*wn*t)*wd*cos(wd*t)+exp(-
z*wn*t)*z*wn*sin(wd*t))/(z*2*wn"2+wd"2)

pretty(M)
-wd + exp(-z wn t) wd cos(wd t) + exp(-z wn t) z wn sin(wd t)
2 2 2
z wn +wd

Therefore the solution is;
X(t) = —F, | —o, +e ™' o, cosm,t +e " (w, sinm,t
CPa? + )

Ma,
which can be put in the form:

(1) = —F, | —0,1-¢7 +e " o, 1—4“2 cos w,t+e "¢, sin w,t

ma, $Pof + o} (1-¢7)
—F, ot B
:ma)d [ —J1-¢% +e7 cos(w,t ¢)J
—ioll 1}42 e e cos(a)dtqﬁ)]
where
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F
The response is shown below. Notice how it converges to ?O

0.16

T
014 ”

01244

o
=

0081 L . . . . . 8 . o . i

Displacement [m]

-0.02
0

Time [s]
Example: delayed step force (see Example 4.7, page 319).
The solution is obtained directly from MATLAB by replacing
the time vector t with a new t2, where t2=t-t0. Note that from
t=0 to t=t0 no force exists, and hence no displacement should
be present, so you have to impose zero displacement. The
response is

0.16

T
014+ ﬂ

012

o
o

<o

o

(=)
T

=4

=

=)
T

Displacement [m]

0.04

1 1 | 1 1 1 1 | 1
2 4 6 8 10 12 14 16 18 20
Time [s]
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Example: Pulse with finite width (see Example 4.8, page 320)

Solution: The given forcing function can be considered a sum
of 2 step functions. Thus the total response is the sum of the 2
responses mentioned earlier.

0.25

T [

[ | —Step

. | === Delayed reeponse
. | == Finite pulse

01}

0.05

Displacement [m]

-0.05

01 I | | | I | I | I
0 2 4 6 8 10 12 14 16 18 20

See figure 4.9.
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If there is no damping (c=0) some interesting things can
happen

X(t) = X, cos(w,t) + ﬁsin (a)nt)+ S cos(at) — cos(w,t)

o, t (wjz
a)n
As the forced frequency approaches the natural frequency

(0> wn)

d
cos(mt) — cos(aw,t) do (cos(at) — cos(w,t))

lim 5 = |im >
, dw ,

—tsin wt ot

= lim = —sin ot
w—>w, 2 w 2
-2
n

SO

Xg . ot .
X(t) = X, cos(e,t) + ~2sin(w,t)+ 5 - sin ()

a)n

See Fig 3.6

If the frequencies are close (ow~wm,) then a phenomena called
beating occurs. Assuming zero initial conditions

X(t) = 5, cos(amt) — cosz(a)nt)
1@
-

= |2:° 5 Zsin(w i
m(a)n - )
Using the following notation
w,—0=2 w,+O=20 o,

©n tjsin(w”;wt)

2
— 0w’ =dcw

29



then
x(t) = ﬁsin(e‘t)sin(a}t)
2w

This will be a sin wave with a slowly varying sinusoidal
magnitude.

Forced vibration with Coulomb Damping
For the system

mX + uN +kx = F, cosawt
the solution is
X,(t)= X cos(at — ¢)

1_(4yNj 4N
X = o it ~ ¢=tan” ﬂFOZ
Kk 0)2 1 0]
1- )

@y W

which is valid for Fo>>uN

Forced vibration with Hysteretic Damping
For the system

mXi%x+kx: F, cos wt
Q

the solution i1s
X, (t)= X cos(wt — ¢)

R
k

¢ =tan’ P

2 \2 @
\/Ll_a)zJ + 1=
@y, n

See figure 3.24

X =
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