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Response of a Damped System under Harmonic Force 

 

The equation of motion is written in the form: 

 tFkxxcxm cos0   (1) 

Note that F0 is the amplitude of the driving force and  is the 

driving (or forcing) frequency, not to be confused with n. 

Equation (1) is a non-homogeneous, 2nd order differential 

equation. This will have two solutions: the homogeneous 

(F0=0) and the particular (the periodic force), with the total 

response being the sum of the two responses. The 

homogeneous solution is the free vibration problem from last 

chapter.  We will assume that the particular solution is of the 

form: 

 tAtAtxp  cossin)( 21   (2) 

Thus the particular solution is a steady-state oscillation having 

the same frequency  as the exciting force and a phase angle, 

as suggested by the sine and cosine terms. Taking the 

derivatives and substituting into (1) we get: 

     tFtAtActAtAmk  cossincoscossin 02121
2   

Equating the coefficients of the sine and the cosine terms, we 

get two equations: 
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Aside: The equation 

tAtAtxp  cossin)( 21   

can also be written as: 
   tXtxp cos)(  

To convert between the 2 forms, i.e. to get the constants X 

and , substitute t=0 and equate the displacements and 

velocities in both equations. This yields: 

2 1cos , sinA X A X    

Thus 

2 2 1
1 2

2

, tan
A

X A A
A

    

The solution can then be written in the form: 

   tXtxp cos)(  

where 
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using n and  from before and introducing X0 and r to be 
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we can write 
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where M is the magnification factor (amplitude ratio) and 
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See figure 3.11 

The total response of the system is the sum of the 

homogeneous solution plus the particular solution or: 

)cos()cos()()()( 0 



tXteXtxtxtx od

t
ph

n  

Note that the homogeneous solution xh(t) dies out with time, 

and the steady-state solution prevails as long as the forcing 

function is present. 

To solve this, you find xp(0) and vp(0) and then find X0 and 0 

such that the true initial conditions match x(0) and v(0). 
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Complex Analysis 

 

Using the fact that the complex exponential is periodic, we 

can look at the real component of 
tieFkxxcxm 

0   

we can assume a solution of the form: 
 

( )
i t

px t Xe
 

  

This leads to the equation: 

   2

0

i t i tm c i k Xe F e
   


     

which can be written as: 

 2 0 iF
k m i c e

X

    
   

This can be represented vectorially as: 

 
from which we can get: 
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so             
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which is the same solution we had for the cosine case before, 

with a lot less work. 
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Base Motion 

The equation of motion of the system is: 
  0)(  yxkyxcxm   

I. Relative Motion 

Sometimes we are concerned with the relative motion of the 

mass with respect to the base. (Example: accelerometer and 

the velocity meter). In this case, we can define z=x-y.  Our 

equation of motion becomes: 
  0)(  yxkyxcxm   

If the periodic input is in the form 

siny Y t  

 the equation of motion becomes: 

0

2 sin
P

mz cz kz my m Y t         

which is identical to the previous case (harmonic force), with 

F0 replaced by P0. The steady state solution can be written as: 

 ( ) sinz t Z t    

where 

   
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hence the solution is: 
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Application: vibration measuring instruments 

 

For negligible damping ( 1  ), we have 
2

21

Z r

Y r



 

2
2

2
Case 1: 1

n

r Z Yr Y



     

At “low” frequencies, Z is proportional to 2Y, i.e. 

proportional to acceleration.  In this range the accelerometer 

works. It must have a high n  such that n  is small . 

 

Case 2: 1r Z Y    

At “high” frequencies, the ratio between Z and Y is one, i.e. Z 

is equal to the displacement.  In this range the vibrometer 

works. It must have a low n such that n  is high.
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I. Absolute Motion 

If we are concerned with the absolute motion, we can write 

the equation of motion as: 

mx cx kx ky cy       

Here it becomes more convenient to assume the base motion 

having the form*: 
i ty Ye   

We seek a solution in the form: 
 i t

x Xe
 

  
Substituting into the equation of motion yields: 

     2 i t i tm c i k Xe k i c Ye
    


      

from which 

 2

iX k i c
e

Y k m i c

 

 

 


   

hence 
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*
 We can also assume a periodic base input of the form y = Y sin wt, see page 11. 
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 Note: the motion transmitted is less than 1 for 2r  . Hence 

for vibration isolation, we must have 2n   , i.e. n  must be 

small compared to . 
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The above solution can also be obtained if we assume a 

periodic input of 
tYy sin  

the equation of motion can be written as 

 

sin cos

sin

mx cx kx kY t c Y t

mx cx kx A t

  

 

   

   

 

   

where 

 
22 1, tan

c
A Y k c

k


    

    
 

 (see page 2) 

But the above equation is in the same format now as the 

forced vibration one, with an amplitude of A instead of F0 

and an additional phase .  So we can find (see page 2) 
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We can write the ratio of the amplitudes as 

 

   

 

   
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  


 

   
 

using the same definition for  and r as before, we can also 

write the total solution as 

   tXtxp sin)(  

where 
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
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 
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which is the same solution obtained using complex analysis. 
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Force Transmitted 

 

To find the force on the base during base motion, we have: 

 ( )F k x y c x y mx         

but x is known from before, so F is given by: 

     tFtXmF T sinsin2  

where FT is the amplitude or maximum value of the force 

transmitted to the base.  Hence: 

 

   

2

2

2 22

1 2

1 2
T

r
F m Y

r r









 
 

from which we get: 

   2
22

2
2

21

)2(1

rr

r
r

kY

FT








  

In this relationship, kY represents the force on the mass if it 

remained stationary, while the base moved with only the 

spring attached.  This ratio is called the force transmissibility.  
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The force transmitted can also be calculated for the case of a 

harmonic force (Chapter 9).  In this case: 

TF kx cx kx i cx     

so the force amplitude is: 

   
2 2

TF kX cX   

Thus, the transmissibility or transmission ratio of the isolator 

(Tr) can be calculated to be: 

     

2 2 2 2

2 2 22 2 2 2
0

1 (2 )

1 2

T
r

F k c r
T

F k m c r r

 

  

 
  

   
 

This has the same amplitude as the base motion ratio found 

earlier.  If Tr is less than one, then the system behaves like a 

vibration isolator, i.e. the ground receives less force than the 

input force. (See figure 3.15) 
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Rotating Unbalance 

 

Having a rotating unbalance is a common problem in 

machinery.  In this case, we have the following equation of 

motion: 

tmekxxcxM  sin2   
If we denote the particular solution xp(t) as: 

     tXtxp sin  

then the displacement amplitude is: 

   
2 220

1

1 2

X

X
r r



 
 

where 
2 2

0

me mer
X

k M


   

then 

   

2
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

 
 

and 











 

2

1

1

2
tan

r

r
  

(See figure 3.17) 
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(See figure 3.16) 

The force transmitted because of the rotating imbalance is 

F kx cx    
The transmissibility can be analyzed as before to give: 
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 
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 Response under a general periodic force 

 

If the forcing function is periodic, we can use the Fourier 

series and the principle of superposition to get the response. 

The Fourier series states that a periodic function can be 

represented as a series of sines and cosines: 

 

 

   

   

0
1 2 1 2

0

1

0

0

cos cos 2 ... sin sin 2 ...
2

cos sin
2

2
cos , 0,1,2,

2
sin , 1,2,3,

j j

j

T

j

T

j

a
F t a t a t b t b t

a
a j t b j t

a F t j t dt j
T

b F t j t dt j
T

   

 









      

  

 

 











 

 

where 2T    is the period. Now the equation of motion 

can be written as: 
 

  0

1

cos sin
2

j j

j

a
mx cx kx F t a j t b j t 





      
 

Using the principle of superposition, the steady-sate solution 

of this equation is the sum of the steady-state solutions of: 
 

tjbkxxcxm

tjakxxcxm

a
kxxcxm

j

j





sin

cos

2

0













 

The particular solution of the 1st equation is: 

  0

2
p

a
x t

k
  
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The particular solutions of the 2nd and 3rd equations are: 

 
   

 

 
   

 

2 22 2

2 22 2

1

2 2

cos

1 2

sin

1 2

2
tan

1

j

p j

j

p j

j

n

a

kx t j t

j r jr

b

kx t j t

j r jr

jr

j r

r

 



 












 

 

 

 

 
  

 



 

Then add up all the sums to get the complete steady-state 

solution as: 

 
   

 
   

 
2 22 22 2 2 21 1

cos sin
2

1 2 1 2

j j

o
p j j

j j

a b
a k kx t j t j t
k

j r jr j r jr

   

 

 

 

    

   
 

 

Observe that if nj  , the amplitude will be significantly 

large, especially for small j and . Further, as j becomes large, 

the amplitude becomes smaller and the corresponding terms 

tend to zero. How many terms do you need to include? 

 

 

Example: Obtain the 

steady-state response of a 

dynamic system having 

m=1, c=0.7 and k=1 when 

subjected to the force 

shown. 
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Solution: here we have: 

20 , 2 2 20 10T T        

and the forcing function is given by: 
( ) 1 0 10

( ) 1 10 20

F t t

F t t

  

   
 

The Fourier series of the forcing function is given by: 

  0
1 2 1 2cos cos 2 ... sin sin 2 ...

2

a
F t a t a t b t b t           

To get the constants, we have: 

   
10 20

0
0 0 10

2 2
0.1 10 20 10 0

20

T

a F t dt dt dt
T

                

 

   
0

10 20

0 10

10 20

0 10

2
cos

2
cos cos

20 10 10

10 10
0.1 sin sin 0

10 10

T

ja F t j t dt
T

j t dt j t dt

j t j t
j j



 

 

 



    
     

    

 
   

  



 
 

i.e. all cosine terms vanish 

   

   

0

10 20

0 10

10 20

0 10

2
sin

2
sin sin

20 10 10

10 10
0.1 cos cos

10 10

10 10
0.1 cos 1 cos 2 cos

T

jb F t j t dt
T

j t dt j t dt

j t j t
j j

j j j
j j



 

 

 

  
 



    
     

    

  
  

  

 
    

 



 
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If j is odd,  

   
10 10 4

0.1 2 2jb
j j j  

 
    

 
 

If j is even, 

   
10 10

0.1 0 0 0jb
j j 

 
   

 
 

i.e. all even terms vanish. 

In this way, the force can be represented by a Fourier series 

as: 

 1 1 3 3 5 5

1

1

( ) sin sin sin sin , 1,3,5,7,

4 4 3 4 5 4
sin sin sin sin , 1,3,5,7,

10 3 10 5 10 10

j

j

j

F t b t b t b t b j t j

t t t j t j
j









         

    
       
     





 



or graphically as: 
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%   *********************************************************** 
%   Periodic response of a dynamic system to a square input waveform 
%   *********************************************************** 
clear; close all; 
m=1; c=0.7; k=1; % Parameters 
 
wn=sqrt(k/m); zi=c/wn/2; w=pi/10; 
 
t=linspace(0,40,500); x=zeros(size(t)); r=w/wn; 
for jj=1:2:19 
 a(jj)=4/pi/jj; 
 X(jj)=a(jj)/k/sqrt((1-jj^2*r^2)^2+(2*zi*jj*r)^2);   % term in summation 
 phi(jj)=atan2(2*zi*jj*r,1-jj*jj*r*r); 
 x(jj+2,:)=x(jj,:)+X(jj)*sin(w*jj*t-phi(jj)); 
end 
u=sign(sin(w*t)); 
 
figure(1) 
plot(t,x([3 5 7 21],:),t,sign(sin(w*t)),'linewidth',2);grid 
legend('1 term','2 terms','3 terms','19 terms') 
xlabel('Time [s]','fontsize',18);ylabel('x(t)','fontsize',18) 
title('Response to Periodic Input','fontsize',18); 
 
figure(2) 
plot(1:2:19,X(1:2:19),'o','markersize',10,'linewidth',4);grid 
ylabel('Magnitude of term in summation','fontsize',18) 
xlabel('Summation term','fontsize',18)
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The system response is shown below: 

 
The contribution of each term in the summation is determined 

from: 
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Response to an impulse 

From ENGR 214, the principle of impulse and momentum 

states that impulse equals change in momentum: 

𝐼𝑚𝑝𝑢𝑙𝑠𝑒 = 𝐹∆𝑡 = 𝑚(𝑣2 − 𝑣1) 

or: 

𝐹 =  𝐹𝑑𝑡 = 𝑚𝑥 2 − 𝑚𝑥 1

𝑡+∆𝑡

𝑡

 

A unit impulse is defined as: 

𝑓 = lim
∆𝑡→0

 𝐹𝑑𝑡 = 1
𝑡+∆𝑡

𝑡

 

 

Now consider the response of 

an undamped system to a unit 

impulse. Recall that the free 

vibration response is given 

by: 

 

 

𝑥 𝑡 = 𝑥0𝑐𝑜𝑠𝜔𝑛𝑡 +
𝑥 0
𝜔𝑛

𝑠𝑖𝑛𝜔𝑛𝑡 

If the mass starts from rest, we can get the velocity just after 

impulse as: 

𝑥 0 =
𝑓

𝑚
=

1

𝑚
 

and the response becomes: 

𝑥 𝑡 =
1

𝑚𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡 

for a non-unit impulse, the response is: 

 

𝑥 𝑡 =
𝐹

𝑚𝜔𝑛
𝑠𝑖𝑛𝜔𝑛𝑡 
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For an underdamped system, recall that the free response was 

gven by: (see page 142) 

𝑥 𝑡 = 𝑒−𝜁𝜔𝑛 𝑡  𝑥0𝑐𝑜𝑠𝜔𝑑𝑡 +
𝑥 0 + 𝜁𝜔𝑛𝑥0

𝜔𝑑
𝑠𝑖𝑛𝜔𝑑𝑡  

For a unit impulse, the response for zero initial conditions is: 

𝑥 𝑡 =
𝑒−𝜁𝜔𝑛 𝑡

𝑚𝜔𝑑
𝑠𝑖𝑛𝜔𝑑𝑡 = 𝑔(𝑡) 

where 𝑔(𝑡) is known as the impulse response function. For a 

non-unit impulse, the response is: 

𝑥 𝑡 =
𝐹𝑒−𝜁𝜔𝑛 𝑡

𝑚𝜔𝑑
𝑠𝑖𝑛𝜔𝑑𝑡 = 𝐹𝑔(𝑡) 

If the impulse occurs at a delayed time 𝑡 = 𝜏, then 

𝑥 𝑡 =
𝐹𝑒−𝜁𝜔𝑛  𝑡−𝜏 

𝑚𝜔𝑑
𝑠𝑖𝑛𝜔𝑑 𝑡 − 𝜏 = 𝐹𝑔(𝑡 − 𝜏) 

If two impulses occur at two different times, then their 

responses will superimpose. 

 

Example: For a system having 𝑚 = 1 kg; 𝑐 = 0.5 kg/s;  𝑘 =
4 N/m; F = 2 Ns obtain the response when two impulses are 

applied 5 seconds apart. 

 

Solution: here we have 𝜔𝑛 = 2
rad

s
, ζ = 0.125, 𝜔𝑑 =

1.984
rad

s
  so the solutions become: 

𝑥1 𝑡 =
2𝑒−0.25𝑡

1.984
sin 1.984𝑡      𝑡 > 0 

𝑥2 𝑡 =
2𝑒−0.25 𝑡−𝜏 

1.984
sin 1.984 𝑡 − 𝜏       𝑡 > 5 

And the total response is: 
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𝑥 𝑡 

=

 
 

 
2𝑒−0.25𝑡

1.984
sin 1.984𝑡      0 < 𝑡 < 5

2𝑒−0.25𝑡

1.984
sin 1.984𝑡 +

2𝑒−0.25 𝑡−𝜏 

1.984
sin 1.984 𝑡 − 𝜏     5 < 𝑡 < 20

  

 

 

 
 

Response to an Arbitrary Input 

 

The input force is viewed as a 

series of impulses. The 

response at time t due to an 

impulse at time  is: 

 
 

𝑥 𝑡 = 𝐹 𝜏 ∆𝜏𝑔(𝑡 − 𝜏) 

The total response at time t is the sum of all responses: 
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𝑥 𝑡 =  𝐹 𝜏 𝑔 𝑡 − 𝜏 ∆𝜏 

Hence 

𝑥 𝑡 =  𝐹 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
𝑡

0

 

For an underdamped system: 

𝑥 𝑡 =
1

𝑚𝜔𝑑
 𝐹 𝜏 𝑒−𝜁𝜔𝑛  𝑡−𝜏 𝑠𝑖𝑛𝜔𝑑 𝑡 − 𝜏 

𝑡

0

𝑑𝜏 

 

Note: this does not consider initial conditions. This type of 

formula is called the convolution integral or the Duhamel 

integral.  For base excitation, the resulting response is 

         


t

d
t

d

dteytz n

0

sin
1




  

Example: determine the response of a spring-mass-damper 

system due to the application of a force (see Example 4.6 on 

page 318). 

 

Here we have 

  0F t F  

so the response is obtained from 

     0

0

1
sinn

t
t

d

d

x t F e t d
m

 
  



 
     

 

You can integrate this by parts, or look it up in a table of 

integrals. Here we will use MATLAB to symbolically 

integrate the equation. In MATLAB we write 



 

 26 

syms z wn t tau wd 

M=int(exp(-z*wn*(t-tau))*sin(wd*(t-tau)),tau,0,t) 

  

M = 

-(-wd+exp(-z*wn*t)*wd*cos(wd*t)+exp(-

z*wn*t)*z*wn*sin(wd*t))/(z^2*wn^2+wd^2) 

  

pretty(M) 

          -wd + exp(-z wn t) wd cos(wd t) + exp(-z wn t) z wn sin(wd t) 

        - --------------------------------------------------------------------------- 

                                   2   2     2 

                                  z  wn  + wd 

 

Therefore the solution is: 

  0

2 2 2

cos sinn nt t

d d d n d

d n d

F e t e t
x t

m

     

   

     
  

 
 

which can be put in the form: 

 
 

 

 

2 2

0

2 2 2 2

20

0

2

1 1 cos sin

1

1 cos

1
1 cos

1

n n

n

n

t t

n n d n d

d n n

t

d

d n

t

d

e t e tF
x t

m

F
e t

m

F
e t

k

 





      

    

  
 

 


 





     
 

   

      
 

 
   

  

 

where 
 

1

2
tan

1







 
 
  
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The response is shown below. Notice how it converges to 
0F

k
. 

 
Example: delayed step force (see Example 4.7, page 319).  

The solution is obtained directly from MATLAB by replacing 

the time vector t with a new t2, where t2=t-t0. Note that from 

t=0 to t=t0 no force exists, and hence no displacement should 

be present, so you have to impose zero displacement. The 

response is  
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Example: Pulse with finite width (see Example 4.8, page 320) 
 

 
 

Solution: The given forcing function can be considered a sum 

of 2 step functions. Thus the total response is the sum of the 2 

responses mentioned earlier. 

 
 
 

 

See figure 4.9. 

F(t) 

t 

F0 

F(t) 

t 

-F0 

F(t) 

t 

F0 + = 
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If there is no damping (c=0) some interesting things can 

happen 

 
2

0
0

1

)cos()cos(
sin)cos()(














n

n
stn

n

n

tt
t

x
txtx












 

As the forced frequency approaches the natural frequency 

(n) 

 

t
ttt

d

d

tt
d

d

tt

n

n

n

n

n

n

nn





























sin
2

2

sin
lim

1

)cos()cos(

lim

1

)cos()cos(
lim

2
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




































































 

so 

   t
t

t
x

txtx stn

n

n 





 sin
2

sin)cos()( 0
0 


 

See Fig 3.6 

If the frequencies are close (n) then a phenomena called 

beating occurs.  Assuming zero initial conditions  

  






 







 

















tt
m

F

tt
tx

nn

n

n

n
st

2
sin

2
sin2

1

)cos()cos(
)(

22
0

2












 

Using the following notation 

 422 22
 nnn  
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then 

   tttx st 



sinsin

2
)(   

This will be a sin wave with a slowly varying sinusoidal 

magnitude. 

 

Forced vibration with Coulomb Damping 

For the system 

tFkxNxm  cos0  

the solution is 

   


























































2

2
01

2

2

2

2

00

1

4

tan

1

4
1

cos

n
n

p

F

N

F

N

k

F
X

tXtx





















 

which is valid for F0>>N 

 

Forced vibration with Hysteretic Damping 

For the system 

tFkxx
bk

xm 


cos0   

the solution is 
   















































2

2

1

2

2

2

2

0

1

tan

1

cos

n
n

p

k

F

X

tXtx
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




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

 

See figure 3.24



 

 31 

 


