1. The acceleration of a particle is directly proportional to the time \(t \). At \(t = 0 \), the velocity of the particle was 0.4 m/s. Knowing that \(v = 0.37 \) m/s and \(x = 0.5 \) m when \(t = 1 \) s, determine the velocity, position and total distance traveled when \(t = 7 \) s.

2. Two rockets are launched at a fireworks performance. Rocket A is launched with an initial velocity \(v_0 \) and rocket B is launched 4 s later with the same initial velocity. The two rockets are timed to explode simultaneously at a height of 80 m, as A is falling and B is rising. Determine (a) the initial velocity \(v_0 \), (b) the velocity of B relative to A at the time of the explosion.

3. A ski jumper starts with a horizontal take-off velocity of 25 m/s and lands on a straight landing hill inclined at 30°. Determine (a) the time between take-off and landing (b) the length \(d \) of the jump (c) the maximum vertical distance \(h \) between the jumper and the landing hill

4. Knowing that A starts from rest and moves downward with a constant acceleration of 3 m/s\(^2\), determine (b) the velocity and acceleration of B after 2 seconds (c) the change in position of B after 2 seconds