1. (40) The particle at A is given a downward velocity \(v_0 \) and swings in a vertical circle of radius \(r \) and center \(O \). Determine the smallest velocity \(v_0 \) for which the particle will travel around a circle if \(OA \) is:
 (a) a rope
 (b) a thin rod with negligible mass
 Ans. \(\sqrt{3gr} , \sqrt{2gr} \)

2. (30) The sphere of mass \(m_1 \) travels with an initial velocity \(v_1 \) directed as shown and strikes the stationary sphere of mass \(m_2 \). For a given coefficient of restitution \(e \), what condition on the mass ratio \(m_1/m_2 \) ensures that the final velocity of \(m_2 \) is greater than \(v_1 \)?
 Ans. \(\frac{m_1}{m_2} > \frac{1}{e} \)

3. (30) The ice hockey puck with a mass of 0.2 kg has a velocity of 12 m/s before being struck by the hockey stick. After the impact the puck moves in the new direction shown with a velocity of 18 m/s. If the stick is in contact with the puck for 0.04 s, compute the magnitude of the average force \(F \) exerted by the stick on the puck during contact, and find the angle \(\beta \) made by \(F \) with the x-direction.
 Ans. 147.81 N, 12.02°

Useful equations

Work and energy: \(T_1 + U_{1 \rightarrow 2} = T_2 \)
Work of a spring force: \(U_{1 \rightarrow 2} = \frac{1}{2} kx_1^2 - \frac{1}{2} kx_2^2 \)
Conservation of energy: \(T_1 + V_1 = T_2 + V_2 \)
Impulse and momentum: \(m\ddot{v}_1 + \int_{t_1}^{t_2} \vec{F}dt = m\ddot{v}_2 \)
Coefficient of restitution: \(e = \frac{v'_B - v'_A}{v_A - v_B} \)